-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_model.py
42 lines (36 loc) · 1.58 KB
/
training_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
####Importing the libraries####
import os
import pickle
import tensorflow as tf
from keras import backend as K
from preprocessing import get_data
from classification_network import compile_model
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, TensorBoard
from keras.models import Model
from numpy.random import seed
from tensorflow import set_random_seed
####Setting seeds####
def set_seeds():
seed(18)
set_random_seed(25)
####Training the model####
def train_model(model, dataset, n_epoch, n_batch, save_file, data_path):
####Set training parameters####
nb_epochs = n_epoch
nb_batch = n_batch
if not os.path.exists("weights"):
os.makedirs("weights")
save_path="weights/"+save_file+".h5"
earlyStopping=EarlyStopping(monitor='val_loss', patience=3, verbose=0, mode='auto')
lr_reduce = ReduceLROnPlateau(monitor='val_acc', factor=0.1, epsilon=0.0001, patience=2, verbose=1)
checkpoint = ModelCheckpoint(save_path, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
tbCallBack = TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=True)
####Get data####
[X_train, y_train, X_test, y_test] = dataset
####Training model####
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs = nb_epochs, batch_size=nb_batch, callbacks = [earlyStopping, lr_reduce, checkpoint, tbCallBack], verbose=2)
####Saving history####
if not os.path.exists("history"):
os.makedirs("history")
with open('history/'+save_file, 'wb') as file_pi:
pickle.dump(history.history, file_pi)