-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
155 lines (135 loc) · 5.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import argparse
import importlib
import random
import os
import tensorflow as tf
from flearn.utils.model_utils import read_data
import os
os.environ['CUDA_VISIBLE_DEVICES']='2'
# PKGS: tensorflow 1.3
# GLOBAL PARAMETERS
OPTIMIZERS = ['npsgd', 'dpsgd', 'ldpsgd', 'v1sgd', 'v2sgd', 'v3sgd']
DATASETS = ['mnist']
MODEL_PARAMS = {
'mnist.mclr': (10,), # num_classes
'mnist_cpsgd.mclr': (10,), # num_classes
'shakespeare.stacked_lstm': (80, 80, 50), # seq_len, emb_dim, num_hidden
'adult.mclr': (2,), # num_classes
}
def read_options():
''' Parse command line arguments or load defaults '''
parser = argparse.ArgumentParser()
# main setting
parser.add_argument('--optimizer',
help='name of optimizer;',
type=str,
choices=OPTIMIZERS,
default='v3sgd')
parser.add_argument('--dataset',
help='name of dataset;',
type=str,
choices=DATASETS,
default='mnist')
parser.add_argument('--model',
help='name of model;',
type=str,
default='mclr')
# initialization global epoch, client batchs
parser.add_argument('--num_rounds',
help='number of rounds to simulate;',
type=int,
default=2) #
parser.add_argument('--eval_every',
help='evaluate every ____ rounds;',
type=int,
default=1)
parser.add_argument('--clients_per_round',
help='number of clients trained per round;',
type=int,
default=1000)
# for local update
parser.add_argument('--batch_size', # LOCAL: no greater than the local data size
help='batch size for local iteration (for sampling-based, denotes the number of local data that will be used throughout one epoch, for grouping-based, denotes the batch size for one/multiple local iterations for one updating);',
type=int,
default=7)
parser.add_argument('--num_epochs', # LOCAL: local epoch
help='number of epochs when clients train on data;',
type=int,
default=10)
# for global model
parser.add_argument('--learning_rate',
help='learning rate for inner solver;',
type=float,
default=0.1)
parser.add_argument('--seed',
help='seed for randomness;',
type=int,
default=0)
# for privacy
parser.add_argument('--epsilon',
help='eps_c for DP, LDP, eps_lk/ld for SS',
type=float,
default=0.5)
parser.add_argument('--delta',
help='delta for DP, delta_lk for LDP(no SS-FL)',
type=float,
default=0.001)
parser.add_argument('--mechanism',
help='type of local randomizer: gaussian, laplace, krr',
type=str,
default='gaussian')
# for sparsification
parser.add_argument('--norm',
help='L2 norm clipping threshold',
type=float,
default=10)
parser.add_argument('--rate',
help='compression rate, 1 for no compression',
type=int,
default=1)
# for padding
parser.add_argument('--mp_rate',
help='under factor for mp=m/mp_rate',
type=float,
default=1)
try: parsed = vars(parser.parse_args())
except IOError as msg: parser.error(str(msg))
# Set seeds
random.seed(1 + parsed['seed'])
np.random.seed(12 + parsed['seed'])
tf.set_random_seed(123 + parsed['seed'])
# load selected model
model_path = '%s.%s.%s.%s' % ('flearn', 'models', parsed['dataset'], parsed['model'])
mod = importlib.import_module(model_path)
learner = getattr(mod, 'Model')
# load selected trainer
opt_path = 'flearn.trainers.%s' % parsed['optimizer']
mod = importlib.import_module(opt_path)
optimizer = getattr(mod, 'Server')
# add selected model parameter
parsed['model_params'] = MODEL_PARAMS['.'.join(model_path.split('.')[2:])]
# print and return
maxLen = max([len(ii) for ii in parsed.keys()]);
fmtString = '\t%' + str(maxLen) + 's : %s';
print('Arguments:')
for keyPair in sorted(parsed.items()): print(fmtString % keyPair)
return parsed, learner, optimizer
def main():
# suppress tf warnings
tf.logging.set_verbosity(tf.logging.WARN)
# parse command line arguments
options, learner, optimizer = read_options()
# read data
path = "/".join(os.path.abspath(__file__).split('/')[:-1])
log_path = os.path.join(os.path.abspath('.'), 'out_new', options['dataset'])
if not os.path.exists(log_path):
os.makedirs(log_path)
train_path = os.path.join(path, 'data/train')
test_path = os.path.join(path, 'data/test')
dataset = read_data(train_path, test_path)
# call trainer
t = optimizer(options, learner, dataset)
t.train()
if __name__ == '__main__':
main()