-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathquick_start.py
87 lines (70 loc) · 3.7 KB
/
quick_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import logging
from logging import getLogger
from recbole.utils import init_logger, init_seed, set_color
from recbole_gnn.config import Config
from recbole_gnn.utils import create_dataset, data_preparation, get_model, get_trainer
def run_recbole_gnn(model=None, dataset=None, config_file_list=None, config_dict=None, saved=True):
r""" A fast running api, which includes the complete process of
training and testing a model on a specified dataset
Args:
model (str, optional): Model name. Defaults to ``None``.
dataset (str, optional): Dataset name. Defaults to ``None``.
config_file_list (list, optional): Config files used to modify experiment parameters. Defaults to ``None``.
config_dict (dict, optional): Parameters dictionary used to modify experiment parameters. Defaults to ``None``.
saved (bool, optional): Whether to save the model. Defaults to ``True``.
"""
# configurations initialization
config = Config(model=model, dataset=dataset, config_file_list=config_file_list, config_dict=config_dict)
init_seed(config['seed'], config['reproducibility'])
# logger initialization
init_logger(config)
logger = getLogger()
logger.info(config)
# dataset filtering
dataset = create_dataset(config)
logger.info(dataset)
# dataset splitting
train_data, valid_data, test_data = data_preparation(config, dataset)
# model loading and initialization
init_seed(config['seed'], config['reproducibility'])
model = get_model(config['model'])(config, train_data.dataset).to(config['device'])
logger.info(model)
# trainer loading and initialization
trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
# model training
best_valid_score, best_valid_result = trainer.fit(
train_data, valid_data, saved=saved, show_progress=config['show_progress']
)
# model evaluation
test_result = trainer.evaluate(test_data, load_best_model=saved, show_progress=config['show_progress'])
logger.info(set_color('best valid ', 'yellow') + f': {best_valid_result}')
logger.info(set_color('test result', 'yellow') + f': {test_result}')
return {
'best_valid_score': best_valid_score,
'valid_score_bigger': config['valid_metric_bigger'],
'best_valid_result': best_valid_result,
'test_result': test_result
}
def objective_function(config_dict=None, config_file_list=None, saved=True):
r""" The default objective_function used in HyperTuning
Args:
config_dict (dict, optional): Parameters dictionary used to modify experiment parameters. Defaults to ``None``.
config_file_list (list, optional): Config files used to modify experiment parameters. Defaults to ``None``.
saved (bool, optional): Whether to save the model. Defaults to ``True``.
"""
config = Config(config_dict=config_dict, config_file_list=config_file_list)
init_seed(config['seed'], config['reproducibility'])
logging.basicConfig(level=logging.ERROR)
dataset = create_dataset(config)
train_data, valid_data, test_data = data_preparation(config, dataset)
init_seed(config['seed'], config['reproducibility'])
model = get_model(config['model'])(config, train_data.dataset).to(config['device'])
trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
best_valid_score, best_valid_result = trainer.fit(train_data, valid_data, verbose=False, saved=saved)
test_result = trainer.evaluate(test_data, load_best_model=saved)
return {
'best_valid_score': best_valid_score,
'valid_score_bigger': config['valid_metric_bigger'],
'best_valid_result': best_valid_result,
'test_result': test_result
}