-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfast_embedding.py
103 lines (80 loc) · 3.62 KB
/
fast_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from typing import List
import torch
from torch import nn
from torch.autograd import Function
import fast_embedding_native
class FastEmbeddingFunction(Function):
@staticmethod
def forward(ctx, inputs, weights):
inputs = inputs.contiguous()
ctx.save_for_backward(inputs)
ctx.num_weights = weights.size(0)
return torch.embedding(weights, inputs)
@staticmethod
def backward(ctx, grad_output):
grad_output = grad_output.contiguous()
indices, = ctx.saved_tensors
if grad_output.is_cuda:
output = fast_embedding_native.backward_cuda(grad_output, indices, ctx.num_weights)
else:
output = fast_embedding_native.backward_cpu(grad_output, indices, ctx.num_weights)
return None, output
class FastEmbedding(nn.Module):
def __init__(self, num_embeddings: int, embedding_dim: int, _weight: torch.Tensor = None):
super(FastEmbedding, self).__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if _weight is None:
self.weight = nn.Parameter(torch.zeros(num_embeddings, embedding_dim))
self.reset_parameters()
else:
assert list(_weight.shape) == [num_embeddings, embedding_dim], \
'Shape of weight does not match num_embeddings and embedding_dim'
self.weight = nn.Parameter(_weight)
def forward(self, x):
return FastEmbeddingFunction.apply(x, self.weight)
def reset_parameters(self):
self.weight.data.normal_(0, 1)
def extra_repr(self):
return f"{self.weight.size(0)}, {self.weight.size(1)}"
class FastMultiEmbeddingFunction(Function):
@staticmethod
def forward(ctx, inputs, weight):
inputs = inputs.contiguous()
ctx.save_for_backward(inputs)
ctx.num_weights = weight.size(0)
return torch.gather(weight, 0, inputs)
@staticmethod
def backward(ctx, grad_output):
indices, = ctx.saved_tensors
grad_output = grad_output.contiguous()
if grad_output.is_cuda:
output = fast_embedding_native.multi_backward_cuda(grad_output, indices, ctx.num_weights)
else:
output = fast_embedding_native.multi_backward_cpu(grad_output, indices, ctx.num_weights)
return None, output
class FastMultiEmbedding(nn.Module):
def __init__(self, embedding_sizes: List[int], embedding_dims: List[int], _weight: torch.Tensor = None):
super(FastMultiEmbedding, self).__init__()
assert len(embedding_sizes) == len(embedding_dims)
self.embedding_sizes = embedding_sizes
self.embedding_dims = embedding_dims
membership_index = torch.tensor([i for i, v in enumerate(embedding_dims) for _ in range(v)])
self.register_buffer("membership_index", membership_index)
if _weight is None:
self.weight = nn.Parameter(torch.zeros(max(embedding_sizes), sum(embedding_dims)))
self.reset_parameters()
else:
assert list(_weight.shape) == [max(embedding_sizes), sum(embedding_dims)], \
'Shape of weight does not match num_embeddings and embedding_dim'
self.weight = nn.Parameter(_weight)
def forward(self, x):
# "Only two dimensional inputs are allowed"
if x.dim() == 1:
x.unsqueze_(1)
index = x.long().index_select(1, self._buffers["membership_index"])
return FastMultiEmbeddingFunction.apply(index, self.weight)
def reset_parameters(self):
self.weight.data.normal_(0, 1)
def extra_repr(self):
return f"{self.embedding_sizes}, {self.embedding_dims}"