From 566b0535b1b9785d88267dbca8d70060c1d18da4 Mon Sep 17 00:00:00 2001 From: ryanswann-amd <109695074+ryanswann-amd@users.noreply.github.com> Date: Tue, 19 Nov 2024 13:57:23 -0600 Subject: [PATCH] StreamK Grid Prediction Model (#664) * Add grid model * Add comments to explain constants --- .../perf-kernels/streamk/utils/grid_model.py | 156 ++++++++++++++++++ 1 file changed, 156 insertions(+) create mode 100644 python/perf-kernels/streamk/utils/grid_model.py diff --git a/python/perf-kernels/streamk/utils/grid_model.py b/python/perf-kernels/streamk/utils/grid_model.py new file mode 100644 index 000000000000..92d8d31d7449 --- /dev/null +++ b/python/perf-kernels/streamk/utils/grid_model.py @@ -0,0 +1,156 @@ +import math +import time +import pandas as pd +import argparse + + +# Custom ceil division function to mimic C++ behavior +def ceil_div(n: int, d: int) -> int: + """Performs `(n + d - 1) / d`.""" + return (n + d - 1) // d + + +def num_iters_per_cta( + m: int, n: int, k: int, g: int, blk_m: int, blk_n: int, blk_k: int +) -> int: + return ceil_div(ceil_div(m, blk_m) * ceil_div(n, blk_n) * ceil_div(k, blk_k), g) + + +def number_of_output_tiles(m: int, n: int, blk_m: int, blk_n: int) -> int: + m_tiles = ceil_div(m, blk_m) + n_tiles = ceil_div(n, blk_n) + return m_tiles * n_tiles + + +def num_fixup_peers(k: int, iters_per_cta: int, blk_k: int) -> int: + return ceil_div(ceil_div(k, blk_k), iters_per_cta) + + +def predicted_runtime( + m: int, + n: int, + k: int, + g: int, + a: float, + b: float, + c: float, + d: float, + blk_m: int, + blk_n: int, + blk_k: int, +): + iters_per_cta = num_iters_per_cta(m, n, k, g, blk_m, blk_n, blk_k) + fixup_peers = num_fixup_peers(k, iters_per_cta, blk_k) + + runtime = ( + a + (b * (fixup_peers > 1)) + (c * iters_per_cta) + (d * (fixup_peers - 1)) + ) + return runtime, iters_per_cta, fixup_peers + + +def grid_model( + m: int, + n: int, + k: int, + blk_m: int, + blk_n: int, + blk_k: int, + grid_start: int = 1, + grid_end: int = 304, + verbose: bool = False, +) -> int: + + # Fixed overhead alpha (a), fixed-size cost incurred by + # each work-group, e.g. the grid launch latency, the initial + # compulsary cache misses, the cost of writing the final output tile + # to C. + a = 5.04 + 8.30 + # Beta (b) incorporates conditional costs of outputting temporary partial + # sums for scenarios where the number of output tiles does not quantize + # perfectly across the number of processors. + b = 5.47 + # c represents instruction and stall workload of each MAC-iteration. + c = 4.17 + # Delta (d) is the cost of reading and accumulating the partial sums from + # other work-groups covering the same tile. + d = 18.59 + + min_grid_runtime = (None, float("inf")) + + # Predict grid sizes + for g in range(grid_start, grid_end + 1): + runtime, iters_per_cta, fixup_peers = predicted_runtime( + m, n, k, g, a, b, c, d, blk_m, blk_n, blk_k + ) + + if verbose: + print( + f"grid size: {g}, runtime: {runtime}, iters_per_cta: {iters_per_cta}, " + f"fixup_peers: {fixup_peers}, m: {m}, n: {n}, k: {k}, a: {a}, b: {b}, c: {c}, d: {d}" + ) + + if min_grid_runtime[1] > runtime: + min_grid_runtime = (g, runtime) + + if verbose: + print(f"Number of Output Tiles: {number_of_output_tiles(m, n, blk_m, blk_n)}") + print( + f"Minimum runtime: {min_grid_runtime[1]} @ grid size: {min_grid_runtime[0]}" + ) + + return min_grid_runtime[0] + + +def main( + m: int, n: int, k: int, grid: int, num_runs: int, verbose: bool = False +) -> int: + # Block sizes + BLK_M = 256 + BLK_N = 256 + BLK_K = 64 + + # Start timing + start_time = time.time() + + # Run the prediction for the specified number of runs + g = 0 + for _ in range(num_runs): + g = grid_model(m, n, k, BLK_M, BLK_N, BLK_K, 1, grid, verbose) + + # End timing + end_time = time.time() + elapsed_time = (end_time - start_time) / num_runs + + print(f"Best predicted grid size: {g}") + if verbose: + print(f"Elapsed: {elapsed_time * 1e6:.6f} microseconds") + return g + + +if __name__ == "__main__": + # Argument parser for initial command-line inputs if needed + parser = argparse.ArgumentParser(description="Stream-K Library for GEMM") + parser.add_argument( + "-m", type=int, default=3072, help="Rows of A-Matrix (default: 3072)" + ) + parser.add_argument( + "-n", type=int, default=4096, help="Columns of B-Matrix (default: 4096)" + ) + parser.add_argument( + "-k", type=int, default=4096, help="Columns of A-Matrix (default: 4096)" + ) + parser.add_argument( + "-g", + "--grid", + type=int, + default=304, + help="Grid size used for Stream-K approach (default: 304)", + ) + parser.add_argument( + "--num_runs", type=int, default=10, help="Number of Runs (default: 10)" + ) + parser.add_argument("-v", "--verbose", action="store_true", help="Verbose output") + args = parser.parse_args() + + # Run the main function with initial command-line arguments + main(args.m, args.n, args.k, args.grid, args.num_runs, args.verbose)