forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlayer_norm_transform.py
186 lines (157 loc) · 6.77 KB
/
layer_norm_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os.path
import sys
import numpy as np
import onnx
from onnx import * # noqa: F403
def find_node(graph_proto, op_type):
nodes = []
map_input_node = {}
for node in graph_proto.node:
if node.op_type == op_type:
node_input = node.input[1] if op_type == "Div" or op_type == "Mul" else node.input[0]
nodes.append(node)
map_input_node[node_input] = node
return nodes, map_input_node
def gen_attribute(key, value):
attr = AttributeProto() # noqa: F405
attr.name = key
attr.ints.extend(int(v) for v in value)
attr.type = AttributeProto.INTS # noqa: F405
return attr
def main():
if len(sys.argv) < 2:
print("Please give model path...")
return
model_file_path = sys.argv[1]
# model_file_path = os.path.dirname(sys.argv[1:])
print("model_file_path: " + model_file_path)
model_file_name = os.path.basename(model_file_path)
print("model_file_name: " + model_file_name)
new_model_file_path = model_file_path[:-5] + "_layer_norm.onnx"
print(new_model_file_path)
model_proto = onnx.load(model_file_path)
# print(model_proto)
graph_proto = model_proto.graph
# print(graph_proto)
# print(graph_proto.input)
nodes_Div, map_input_Div = find_node(graph_proto, "Div") # noqa: N806
# print(map_input_Div)
nodes_Sqrt, map_input_Sqrt = find_node(graph_proto, "Sqrt") # noqa: N806
# print(map_input_Sqrt)
nodes_Add, map_input_Add = find_node(graph_proto, "Add") # noqa: N806
# print(map_input_Add)
nodes_ReduceMean, map_input_ReduceMean = find_node(graph_proto, "ReduceMean") # noqa: N806
# print(map_input_ReduceMean)
nodes_Pow, map_input_Pow = find_node(graph_proto, "Pow") # noqa: N806
# print(map_input_Pow)
nodes_Mul, map_input_Mul = find_node(graph_proto, "Mul") # noqa: N806
# find right side Sub
nodes_Sub = [] # noqa: N806
map_input_Sub = {} # noqa: N806
for node in graph_proto.node:
if node.op_type == "Sub":
if node.output[0] in map_input_Pow:
nodes_Sub.append(node)
map_input_Sub[node.input[1]] = node
# print(map_input_Sub)
# find first ReduceMean
first_ReduceMean = [] # noqa: N806
first_ReduceMean_outputs = [] # noqa: N806
for node in nodes_ReduceMean:
if node.output[0] in map_input_Sub:
first_ReduceMean.append(node)
first_ReduceMean_outputs.append(node.output[0])
# print(first_ReduceMean)
# find constant node
nodes_Constant = [] # noqa: N806
map_output_Constant = {} # noqa: N806
for node in graph_proto.node:
if node.op_type == "Constant":
nodes_Constant.append(node)
map_output_Constant[node.output[0]] = node
# print(map_input_Sub)
id = 0
removed_nodes = []
layer_norm_nodes = []
# Replace with layer norm
for node in first_ReduceMean:
layer_norm_input = []
layer_norm_output = []
layer_norm_input.append(node.input[0])
node_sub = map_input_Sub[node.output[0]]
node_pow = map_input_Pow[node_sub.output[0]]
node_reduce = map_input_ReduceMean[node_pow.output[0]]
node_Add = map_input_Add[node_reduce.output[0]] # noqa: N806
node_Sqrt = map_input_Sqrt[node_Add.output[0]] # noqa: N806
node_Div = map_input_Div[node_Sqrt.output[0]] # noqa: N806
node_Mul = map_input_Mul[node_Div.output[0]] # noqa: N806
layer_norm_input.append(node_Mul.input[0])
node_Add1 = map_input_Add[node_Mul.output[0]] # noqa: N806
layer_norm_input.append(node_Add1.input[1])
removed_nodes.append(node)
removed_nodes.append(node_sub)
removed_nodes.append(node_pow)
removed_nodes.append(node_reduce)
removed_nodes.append(node_Add)
removed_nodes.append(node_Sqrt)
removed_nodes.append(node_Div)
removed_nodes.append(node_Mul)
removed_nodes.append(node_Add1)
removed_nodes.append(map_output_Constant[node_pow.input[1]])
# print(map_output_Constant[node_Add.input[1]])
removed_nodes.append(map_output_Constant[node_Add.input[1]])
layer_norm_output.append(node_Add1.output[0])
id = id + 1
layer_norm_output.append("saved_mean_" + str(id))
id = id + 1
layer_norm_output.append("saved_inv_std_var_" + str(id))
layer_norm = helper.make_node( # noqa: F405
"LayerNormalization",
layer_norm_input,
layer_norm_output,
"LayerNormalization_" + str(id),
None,
axis=node_reduce.attribute[0].ints[0],
epsilon=9.999999960041972e-13,
)
layer_norm_nodes.append(layer_norm)
# remove left side Subs
for node in graph_proto.node:
if node.op_type == "Sub":
if node.input[1] in first_ReduceMean_outputs:
removed_nodes.append(node)
all_nodes = []
for node in graph_proto.node:
if node not in removed_nodes:
all_nodes.append(node)
for node in layer_norm_nodes:
all_nodes.append(node) # noqa: PERF402
graph_proto.ClearField("node")
graph_proto.node.extend(all_nodes)
with open(new_model_file_path, "wb") as f:
f.write(model_proto.SerializeToString())
# Use ORT to verify the converted model. Notice that you must use python package from the
# training branch because training requires some extra ops.
import onnxruntime as ort
# We convert model to accept variable-length batch size, so it can be any positive integer.
batch = 3
# This should match --max_seq_length when calling nv_run_pretraining.py.
sq_length = 512
# This should match vocab_size in bert_config.json in DeepLearningExamples/PyTorch/LanguageModeling/BERT.
vocab_size = 30528
# Create a fake data point.
vocab_size = 30528 # It shoudl match the value from BERT config file.
input_ids = np.random.randint(low=0, high=vocab_size, size=(batch, sq_length), dtype=np.int64)
segment_ids = np.random.randint(low=0, high=2, size=(batch, sq_length), dtype=np.int64)
input_mask = np.ones((batch, sq_length), dtype=np.int64)
# Do forward using the original model.
sess = ort.InferenceSession(model_file_path, providers=ort.get_available_providers())
result = sess.run(None, {"input1": input_ids, "input2": segment_ids, "input3": input_mask})
# Do forward using the new model.
new_sess = ort.InferenceSession(new_model_file_path, providers=ort.get_available_providers())
new_result = new_sess.run(None, {"input1": input_ids, "input2": segment_ids, "input3": input_mask})
# Compare the outcomes from the two models.
print(np.linalg.norm(result[0] - new_result[0]))
print(np.linalg.norm(result[1] - new_result[1]))
if __name__ == "__main__":
main()