-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndex.Rmd
733 lines (671 loc) · 30 KB
/
Index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
---
title: "IPBES Value Assessment"
author:
- name: Raïsa Carmen
email: [email protected]
orcid: 0000-0003-1025-8702
- name: Sander Jacobs
email: [email protected]
orcid: 0000-0002-2196-4234
date: "21-10-2021"
output:
bookdown::gitbook: default
bookdown::pdf_document2:
toc: true
fig_caption: yes
params:
printfigures: FALSE
---
```{r setup, include=FALSE}
library(ggplot2)
library(scales)
library(stringr)
library(tidyverse)
library(grDevices)
library(likert)
library(writexl)
library(grid)
library(gridExtra)
require(gtable)
library(openxlsx)
knitr::opts_chunk$set(echo = TRUE)
#load the final dataset
load('output/s3_single_WithDummies.Rdata')
#the columns in s3_single to use for method families
MFkeycol <- c('MF1.key','MF2.key','MF3.key','MF4.key')
#the columns in s3_single to use
MFSODcol <- c('MF1.SOD','MF2.SOD','MF3.SOD','MF4.SOD')
#the columns in s3_single to use for IPBEs method families
MFIPBEScol <- c("IPBES.econ_SOD", "IPBES.soccul_SOD", "IPBES.bioph_SOD",
"IPBES.health_SOD","IPBES.ILK_SOD")
#Labels for the method families
MFLabels <- c('Nature-based valuation','Statement-based valuation','Behaviour-based valuation','Integrated valuation', 'AllArticles') # change the names here if needed.
names(MFLabels) <- c('MF1','MF2','MF3','MF4', 'All articles')
MFIPBESLabels <- c("Economic valuation", "Socio-cultural valuation",
"Biophysical valuation", "Health related", "ILK related")
names(MFIPBESLabels) <- c('MF1','MF2','MF3','MF4', 'MF5')
#define colors for the figures
IPbesdarkgreen <- rgb(92/255, 102/255, 93/255) #5c665d
IPbeslightgreen <- rgb(181/255, 212/255, 141/255) #b5d48d
colfunc <- colorRampPalette(c(rgb(92/255, 102/255, 93/255),
rgb(181/255, 212/255, 141/255))
)
#Useful function if you want just one legend for several figures
g_legend <- function(a.gplot){
tmp <- ggplot_gtable(ggplot_build(a.gplot))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)
}
#define themes for clean figures
blank_theme <- theme_minimal() +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.border = element_blank(),
panel.grid = element_blank(),
axis.ticks = element_blank(),
plot.title = element_text(size = 14, face = "bold")
)
minimal_theme_bars <- theme_bw() +
theme(panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black")
)
```
# Introduction
This report will summarize all responses for the IPBES Value assessment. The data cleaning process can be found in the R script *'DataCleaning.R'*. Starting from the cleaned dataset, we develop data overviews for each of the themes in this report.
# Data overviews
```{r Figurefunctions, echo=FALSE}
lgnd <- read.xlsx("data/LegendListForDummyColumns.xlsx")
### this function generates a figure with bars and a pie-chart
# type can be either "piebar" or "pie" such that either the pie or a barchart
# ith a pie chart is shown. Default is piebar.
PieBar <- function(Q, title, short, ordered, save, type = "piebar"){
legend <- lgnd[lgnd$Question == Q,]
sbst <- s3_single[,c('paperID',MFkeycol,MFSODcol,as.character(legend$code))]
#from wide to long format
sbst %>%
gather(question, value, -paperID,-as.character(MFkeycol),
-as.character(MFSODcol)) ->
sbst_long
if (sum(str_detect(colnames(sbst),'_unclear')) > 0) {
fillCol <- as.factor(1*(sbst[,str_detect(colnames(sbst),'_unclear')] == 1) +
2*(pmax(sbst[,str_detect(colnames(sbst),
'_none|_irrelevant')]) == 1)
)
fillCol[fillCol == '3'] <- '2'
pie <- ggplot() +
geom_bar(aes(x = factor(1), fill = fillCol), width = 1, color = 'black') +
blank_theme +
theme(axis.text.x = element_blank(), axis.text.y = element_blank()) +
scale_fill_manual(name = '',
breaks = c('0','1','2'),
labels = c('It is assessed','Unclear','It is assessed'),
values = c('black', 'grey','white')) +
xlab('') + ylab('') +
coord_polar("y", start = 0,direction = 1) +
theme(legend.position = 'bottom' )
}else if (sum(str_detect(colnames(sbst),'_none|_irrelevant')) > 0) {
pie <- ggplot() +
geom_bar(aes(x = factor(1), fill = (pmax(sbst[,str_detect(
colnames(sbst), '_none|_irrelevant')]) == 1)),
width = 1,
color = 'black') +
blank_theme +
theme(axis.text.x = element_blank(), axis.text.y = element_blank()) +
scale_fill_manual(name = '',
breaks = c(TRUE, FALSE),
labels = c('Not assessed','It is assessed'),
values = c('white', 'grey')) +
xlab('') + ylab('') +
coord_polar("y", start = 0,direction = 1) +
theme(legend.position = 'bottom' )
}
if (ordered) {#make ordered bar charts
cnt <- aggregate(1*(sbst_long$value), by = list(sbst_long$question),
FUN = function(x) sum(x))
sbst_long$question <- factor(sbst_long$question,
levels = cnt[order(cnt$x, decreasing = FALSE),
'Group.1'])
selection <- !(str_detect(sbst_long$question,
regex('_none|_irrelevant|_unclear')))
}else{
selection <- !(str_detect(sbst_long$question,
regex('_irrelevant|_unclear')))
}
bar <- ggplot(sbst_long[selection,]) +
geom_bar(alpha = 1, size = 1,color = 'grey', fill = 'grey',
aes(x = question, y = 1*value),
stat = "identity") +
coord_flip() +
minimal_theme_bars +
scale_x_discrete(breaks = legend$code,
labels = str_wrap(as.character(legend$txt),50)) +
ylab('Number of papers') + xlab('') + ggtitle(title)
library(cowplot)
piebar <- ggdraw() +
draw_plot(bar) +
draw_plot(pie, x = 0.65, y = 0.09, width = .3, height = .4)
if (type == "piebar") {
return(piebar)
} else if (type == "pie") {
return(pie)
}
if (save) {
ggsave(pie,
filename = sprintf('output/Q%s%sPie.pdf',Q,short),
width = 4, height = 4)
ggsave(bar, filename = sprintf('output/Q%s%sBar.pdf',Q,short),
width = 10, height = 4)
ggsave(piebar, filename = sprintf('output/Q%s%sPieBar.pdf', Q, short),
width = 10, height = 4)
ggsave(pie, filename = sprintf('output/Q%s%sPie.jpg', Q, short),
width = 4, height = 4)
ggsave(bar, filename = sprintf('output/Q%s%sBar.jpg', Q, short),
width = 10, height = 4)
ggsave(piebar, filename = sprintf('output/Q%s%sPieBar.jpg', Q, short),
width = 10, height = 4)
}
}
# type can be either "mfkey", "mfsod" or "ipbes" such that either the
# keyword search based, SOD, or ipbes method families are used. Default is mfkey.
MFBar <- function(Q, short, save, type = "mfkey"){
legend <- lgnd[lgnd$Question == Q,]
sbst <- s3_single[,c('paperID',MFkeycol,MFSODcol,MFIPBEScol, as.character(legend$code))]
familysummary <- data.frame(MF = c('MF1','MF1','MF2','MF2','MF3','MF3','MF4','MF4'),
Answer = c('Yes','No','Yes','No','Yes','No','Yes','No'),
N = NA,
Percentage = NA)
if (type == "mfkey") {
familysummary$N <- sapply(1:nrow(familysummary), FUN = function(x)
ifelse(familysummary$Answer[x] == 'No',
sum(sbst[,(1 + as.numeric(str_remove(familysummary[x,'MF'], "MF")))]
== 1 &
pmax(sbst[,str_detect(colnames(sbst),'none|irrelevant')]) == 1,
na.rm = T),
sum(sbst[,(1 + as.numeric(str_remove(familysummary[x,'MF'], "MF")))]
== 1 &
pmax(sbst[,str_detect(colnames(sbst),'none|irrelevant')]) == 0,
na.rm = T))
)
familysummary$Percentage <- familysummary$N /
sapply(familysummary$MF,
FUN = function(x) sum(familysummary[familysummary$MF == x, 'N'])
)
} else if (type == "mfsod") {
familysummary$N <- sapply(1:nrow(familysummary),
FUN = function(x) ifelse(
familysummary$Answer[x] == 'No',
sum(
sbst[pmax(
sbst[,str_detect(colnames(sbst),
'none|irrelevant')]) == 1,
(5 + as.numeric(str_remove(
familysummary[x,'MF'], "MF")))],
na.rm = T),
sum(
sbst[pmax(
sbst[,str_detect(colnames(sbst),
'none|irrelevant')]) == 0,
(5 + as.numeric(str_remove(
familysummary[x,'MF'], "MF")))],
na.rm = T)
)
)
familysummary$Percentage <- familysummary$N /
sapply(familysummary$MF, FUN = function(x)
sum(familysummary[familysummary$MF == x, 'N'])
)
} else if (type == "ipbes") {
familysummary <- data.frame(MF = c('MF1','MF1','MF2','MF2','MF3','MF3',
'MF4','MF4','MF5','MF5'),
Answer = c('Yes','No','Yes','No','Yes','No',
'Yes','No', 'Yes','No'),
N = NA,
Percentage = NA)
familysummary$N <- sapply(1:nrow(familysummary),
FUN = function(x) ifelse(
familysummary$Answer[x] == 'No',
sum(
sbst[pmax(
sbst[,str_detect(colnames(sbst),
'none|irrelevant')]) == 1,
(9 + as.numeric(str_remove(
familysummary[x,'MF'], "MF")))],
na.rm = T),
sum(
sbst[pmax(
sbst[,str_detect(colnames(sbst),
'none|irrelevant')]) == 0,
(9 + as.numeric(str_remove(
familysummary[x,'MF'], "MF")))],
na.rm = T)
)
)
familysummary$Percentage <- familysummary$N /
sapply(familysummary$MF, FUN = function(x)
sum(familysummary[familysummary$MF == x, 'N'])
)
}else {
warning('invalid type')
}
p <- ggplot(familysummary) +
geom_bar(color = 'black',
aes(x = MF, fill = Answer, y = Percentage * 100),
stat = 'identity',
position = 'stack') +
scale_fill_manual(name = '',
breaks = c('Yes','No'),
labels = c('It is assessed','Not assessed'),
values= c('grey', 'white')) +
ylab('Percentage in the method family') +
xlab('Method family') +
minimal_theme_bars
if(type != 'ipbes'){
p <- p + scale_x_discrete(labels = MFLabels)
} else {
p <- p + scale_x_discrete(labels = MFIPBESLabels)
}
if (save) {
ggsave(p,
filename = sprintf('output/Q%s%sMF%sbars.pdf', Q, short,
ifelse(type == "mfkey",
"key",
ifelse(type == "mfsod",
"SOD",
"IPBES"))),
width = 10,
height = 4)
ggsave(p,
filename = sprintf('output/Q%s%sMF%sbars.jpg', Q, short,
ifelse(type == "mfkey",
"key",
ifelse(type == "mfsod",
"SOD",
"IPBES"))),
width = 10,
height = 4)
}
return(p)
}
```
## General overviews
After each theme, respondents were asked how certain the were about their answers.
```{r certainty, echo=FALSE, message = FALSE, fig.width = 8, fig.height = 5, fig.cap= "Respondent ratings of how certain they are about their aswers for each of the topics and overall."}
A <- data.frame(colnm = c('1.7', '2.20', '3.6','4.6','5.7','6.6','7.4','8.15','8.17'),
subject = c('topic 1: Methods and their use', 'topic 2: Context of application','topic 3: Application descriptors','topic 4: Reliability and Validity','topic 5: IPLMLC','topic 6: Human well-being','topic 7: Ecological Sustainability','topic 8: Justice','All topics'))
L <- as.data.frame(s3_single[,sapply(A$colnm,FUN = function(x)
which(colnames(s3_single) == x))])
for (i in 1:ncol(L)) {
L[,i] <- recode_factor(factor(as.factor(L[,i]),
levels = c('5','4','3','2','1')),
'1' = 'very sure',
'2' = 'sure',
'3' = 'in between',
'4' = 'unsure',
'5' = 'very unsure')
L[,i] <- factor(L[,i],levels =
c('very unsure','unsure','in between','sure','very sure'),
ordered = TRUE)
}
l <- likert(L)
a <- order(rowSums(l$results[,5:6]))
plotCertainty <- likert.bar.plot(l,
low.color = 'red',
high.color = 'forestgreen',
plot.percent.low = TRUE,
plot.percent.neutral = TRUE,
plot.percent.high = TRUE,
legend.position = "bottom", legend = '') +
theme_classic() + ylab('Percentage of the respondents') +
theme(legend.position = 'bottom') +
scale_x_discrete(limits = summary(l, center = 3)[a,'Item'],
labels = sapply(summary(l,center = 3)[a,'Item'],
FUN = function(x)
str_wrap(A[A$colnm == x,'subject'],
width = 22))
)
plotCertainty
ggsave(plotCertainty, filename = 'output/CertaintyLikertPlot.pdf', width = 8, height = 5)
ggsave(plotCertainty, filename = 'output/CertaintyLikertPlot.jpg', width = 8, height = 5)
```
Figure \@ref(fig:certainty) shows how certain the respondents were for their answers in each of the topics. At the end of the questionnaire, they were also asked to rate their confidence foor all topics (denoted by "All topics" in Figure \@ref(fig:certainty)). It can be seen that the highest certainty is observed for "`r A[A$colnm == l$results[a[length(a)], 1],"subject"]`" while the highest uncertainty is observed for "`r A[A$colnm == l$results[a[1], 1],"subject"]`".
The alluvial plot in Figure \@ref(fig:alluvial) shows how the method families are related to the IPBES categories. The behaviour based valuation and statement-based method family are the largest (they envelop the most methods). The alluvial plot shows how many methods in each of the families belong to each of the IPBES categories. As expected, many statement-based methods belong to the socio-cultural valuation category. Many of the nature-based methods belong to biophysical valuation category.
```{r alluvial, echo=FALSE, message = FALSE, fig.width = 8, fig.height = 12, fig.cap= "Alluvial plot to show the relation between the method families and the IPBES categories."}
library(ggalluvial)
lMF <- read.xlsx('data/methods x MF x IPBESclasses SOD.xlsx')
#Only keep the unique SOD methods
a <- sapply(X = unique(lMF[!is.na(lMF$method.name.SOD),'method.name.SOD']),
FUN = function(x) min(which(lMF$method.name == x)))
A <- lMF[a,c("method.name.SOD",
"MF1.-.Nature.based.valuation",
"MF2.-.Statement-based",
"MF3.-.Behaviour.based.valuation",
"MF4.-.Integrated.valuation" ,
"Economic.valuation",
"socio-cultural.valuation",
"biophysical.valuation",
"health.related",
"ILK.related")]
limit <- 1 #we only say the method belong to the metod family/ipbes category if it scores higher than 'limit'
Along <- data.frame(MF = rep(c("Nature based","Statement-based",
"Behaviour based valuation","Integrated"),
each = 5),
IPBES = rep(c('Economic valuation','socio-cultural valuation',
'biophysical valuation','health related',
'ILK related'),4),
n = NA)
for (i in 1:nrow(Along)) {
Along[i,'n'] <- sum((lMF[,which(str_detect(colnames(lMF),str_replace_all(
as.character(Along[i,'IPBES'])," ",".")))] > limit) &
(lMF[,which(str_detect(colnames(lMF),
str_replace_all(as.character(
Along[i,'MF'])," ",".")))] > limit)
)
}
p <- ggplot(data = Along, aes(axis1 = MF, axis2 = IPBES, y = n)) +
geom_alluvium(aes(fill = MF, colour = MF), alpha = .75, width = 0,
reverse = FALSE) +
guides(fill = "none") +
geom_stratum(width = 1/8, reverse = FALSE) +
geom_text(stat = "stratum", aes(label = after_stat(stratum)),
reverse = FALSE, angle = 90) +
scale_x_continuous(breaks = c(1,2),
labels = c("Method family", "IPBES category")) +
ylab('Nuber of methods') + theme_bw() +
theme(legend.position = "none")
p
ggsave(p,file = "output/MethodsAlluvialPlot.pdf", height = 12, width=8)
ggsave(p,file = "output/MethodsAlluvialPlot.jpg", height = 12, width=8)
```
## Topic 1: Methods and their use
## Topic 2: Context of application
```{r plot215, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Assessment of multiple values."}
p <- PieBar(Q = '2.15',
title = 'The application assesses multiple values and brings them together into an overall value or importance by:',
short = 'MultipleValues',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot215MFkey, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Assessment of multiple values."}
p <- MFBar(Q = "2.15",
short = 'MultipleValues',
save = params$printfigures,
type = "mfkey")
p
```
```{r plot215MFsod, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Assessment of multiple values."}
p <- MFBar(Q = "2.15",
short = 'MultipleValues',
save = params$printfigures,
type = "mfsod")
p
```
```{r plot215ipbes, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Assessment of multiple values."}
p <- MFBar(Q = "2.15",
short = 'MultipleValues',
save = params$printfigures,
type = "ipbes")
p
```
```{r plot216, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Interests and conflicts."}
p <- PieBar(Q = '2.16',
title = 'The application mentions interests and conflicts:',
short = 'nterestsConflicts',
ordered = FALSE,
save = params$printfigures)
p
```
## Topic 3: Application descriptors
## Topic 4: Reliability and Validity
```{r plot41, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of the replicability of the results."}
p <- PieBar(Q = '4.1',
title = 'Replicability of the results',
short = 'Replicability',
ordered = TRUE,
save = params$printfigures,
type = "pie")
p
```
```{r plot42, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of the consistency of the results."}
p <- PieBar(Q = '4.2',
title = 'Consistency of the results',
short = 'Consistency',
ordered = TRUE,
save = params$printfigures,
type = "pie")
p
```
```{r plot43, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of the precision of the results."}
p <- PieBar(Q = '4.3',
title = 'Precision of the results',
short = 'Precision',
ordered = TRUE,
save = params$printfigures,
type = "pie")
p
```
```{r plot44, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of the internal validity of the results."}
p <- PieBar(Q = '4.4',
title = 'Internal validity of the results',
short = 'IntValidity',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot45, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of the external validity of the results."}
p <- PieBar(Q = '4.5',
title = 'External validity of the results',
short = 'ExtValidity',
ordered = TRUE,
save = params$printfigures)
p
```
## Topic 5: IPLMLC
```{r plot52, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of respect towards nature."}
p <- PieBar(Q = '5.2',
title = 'The application identifies/assesses respect towards nature by...',
short = 'NatureRespect',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot53, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of responsibility or care for the land."}
p <- PieBar(Q = '5.3',
title = 'The application assesses responsibility or care for the land by...',
short = 'ResponsibilityLand',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot54, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of kinship/communality with other people."}
p <- PieBar(Q = '5.4',
title = 'The application assesses kinship/communality with other people by...',
short = 'KinshipPeople',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot55, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of kinship/communality with non-human entities."}
p <- PieBar(Q = '5.5',
title = 'The application assesses kinship/communality with non-human entities by...',
short = 'KinshipNonHuman',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot56, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of values of self-determination and ancestral law."}
p <- PieBar(Q = '5.6',
title = 'The application assesses values of self-determination and ancestral law, by...',
short = 'SelfDeterminationAncestralLaw',
ordered = TRUE,
save = params$printfigures)
p
```
## Topic 6: Human well-being
```{r plot61, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Assessment of ecological human well-being."}
p <- PieBar(Q = '6.1',
title = 'The application assesses human well-being using one of the following indicators (multiple possible):',
short = 'HumanWellBeing',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot62, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of preferences (or importance) that humans assign to nature and biodiversity."}
p <- PieBar(Q = '6.2',
title = 'The application assesses the preferences (or importance) that humans assign to nature and biodiversity in terms of (multiple possible):',
short = 'AssessBiodiversity',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot63, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Assessment of the costs to protect nature & biodiversity."}
p <- PieBar(Q = '6.3',
title = 'The application assesses the costs to protect nature & biodiversity for its own sake or to maintain nature’s contributions to people in the form of (multiple possible):',
short = 'CostsProtect',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot65, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of well-being indicator for different socio-demographic groups."}
p <- PieBar(Q = '6.5',
title = 'If the application assesses human well-being (specified above), is the well-being indicator assessed for different socio-demographic groups?',
short = 'WellBeingIndicator',
ordered = TRUE,
save = params$printfigures)
p
```
## Topic 7: Ecological Sustainability
```{r plot71, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of ecological condition."}
p <- PieBar(Q = '7.1',
title = 'Was ECOLOGICAL CONDITION assessed & how?',
short = 'EcologicalCondition',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot72, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of ecosystem capacity."}
p <- PieBar(Q = '7.2',
title = 'Was ECOSYSTEM CAPACITY assessed and how?',
short = 'EcosystemCapacity',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot73, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of sustainable use/management."}
p <- PieBar(Q = '7.3',
title = 'Was SUSTAINABLE USE/MANAGEMENT of ecosystems assessed and how?',
short = 'SustainableUseManagement',
ordered = TRUE,
save = params$printfigures)
p
```
## Topic 8: Justice
```{r plot89, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of recognition."}
p <- PieBar(Q = '8.9',
title = 'Recognition: knowledge types',
short = 'RecogKnowledgeTypes',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot810, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of recognition."}
p <- PieBar(Q = '8.10',
title = 'Recognition: broad values',
short = 'RecogBroadValues',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot811, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of recognition."}
p <- PieBar(Q = '8.12',
title = 'Recognition: value types',
short = 'RecogValueTypes',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot812, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of recognition."}
p <- PieBar(Q = '8.13',
title = 'Recognition: value dimensions',
short = 'RecogValueDimensions',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot83, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Transparency of the valuation process."}
p <- PieBar(Q = '8.3',
title = 'Transparency level',
short = 'Transparency',
ordered = FALSE,
save = params$printfigures)
p
```
```{r plot84, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "- Representation of different stakeholders in the valuation process."}
p <- PieBar(Q = '8.4',
title = 'Stakeholder representation',
short = 'StkhldrRepr',
ordered = FALSE,
save = params$printfigures)
p
```
```{r plot85, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 6, fig.cap= "Based on what are stakeholder groups identified and targeted (for sample or for participation)."}
p <- PieBar(Q = '8.5',
title = 'Stakeholder identification',
short = 'StkhldrIdent',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot86, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "The application addresses inclusiveness of multiple stakeholders and minorities in the design of the valuation process by adjusting/providing:."}
p <- PieBar(Q = '8.6',
title = 'Stakeholder inclusion actions',
short = 'StkhldrIncl',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot87, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Does the application present results and data on internal power dynamics?(by e.g. showing speaking time, interruptions, use of physical space, testing difference in outputs in different power context..., )"}
p <- PieBar(Q = '8.7',
title = 'Power',
short = 'Power',
ordered = TRUE,
save = params$printfigures,
type = "pie")
p
```
```{r plot88, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Regarding participation level, the application:"}
p <- PieBar(Q = '8.8',
title = 'Participation',
short = 'Participation',
ordered = FALSE,
save = params$printfigures)
p
```
```{r plot81, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of intra-generational justice"}
p <- PieBar(Q = '8.1',
title = 'Was INTRA-GENERATIONAL JUSTICE assessed and how?',
short = 'IntraJustice',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot82, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of inter-generational justice"}
p <- PieBar(Q = '8.2',
title = 'Was INTER-GENERATIONAL JUSTICE assessed and how?',
short = 'InterGenJustice',
ordered = TRUE,
save = params$printfigures)
p
```
```{r plot814, echo=FALSE, message = FALSE, fig.width = 10, fig.height = 4, fig.cap= "Assessment of community of justice"}
p <- PieBar(Q = '8.14',
title = 'Who is part of the community of justice?',
short = 'CommunityJustice',
ordered = TRUE,
save = params$printfigures)
p
```