Project

Create a Policy Manager GUI for QubesOS
Resource touchpoints: GitHub Issue, GitHub Policy.md, Docs pages one, two, three, four

Problem

In order for a reasonably secure hypervisor system to also be usable by folks in the real world,
end users need to be able to manage a host of inter-VM permissions. These permissions exist in
Qubes OS as Policies.

Unfortunately today, all visibility into and the modification or creation of Policies requires users to:
1. To know that such a thing called Policies exists;
2. Be comfortable with using the Command Line;
3. Be capable of abstracting basic “I need this...” thoughts into computer jargon; and
4. Be curious enough about Policies to learn about the complete grexec system in the
Qubes docs.

All of those requirements exclude a number of both technical and non-technical Qubes OS users,
from taking advantage of this essential capability in making the most of the Qubes experience.

Users Targeted

Primary: non-technical, high risk folks with a lot to do and who “just need things to work.”
Journalists

Human rights defenders

Academics

Workers in enterprise environments (Gov or Corporate)

Folks currently dependent on Macs, Ubuntu, or Windows for “daily-driver” machines

Secondary: technical high-risk folks and developers. Early adopters with the patience to live with
quirks, troubleshoot in community forums, and are comfortable with a CLI.

e The majority of today’s users

e Folks with a need for a hypervisor that extends beyond just security stuff

e Security researchers whose “needs” include breaking things

e Libre and Linux fans

Why?

Consumer products have set the bar for patience and willingness of folks to use new tools. If
QubesOS is not usable enough for folks other than early-adopters to use on a consistent basis
over time, they’ll abandon it to use less-secure options; trading-off increased vulnerability to
threats, with decreased friction when using digital tools because they can get more stuff done
that way. That’s not cool. For the QubesOS project to sustain, its user-base needs to grow. To
minimize user attrition and attract new users, a balance needs to be struck between CLI-only and


https://github.com/QubesOS/qubes-issues/issues/4721
https://github.com/QubesOS/qubes-core-qrexec/blob/master/doc/multifile-policy.markdown
https://www.qubes-os.org/doc/vm-interface/#qubes-rpc
https://www.qubes-os.org/news/2017/10/03/core3/#more-expressive-qrexec-policies
https://www.qubes-os.org/doc/rpc-policy/
https://www.qubes-os.org/news/2020/06/22/new-qrexec-policy-system/

developer-friendly capabilities, and GUI access to rich information & functionality needed by
everybody—whether they know it or not. Robust capability, with minimal fanfare.

As such, a “Policy Manager” GUI is sought, to:
1. Offer folks visibility into...
a. Which Policies already exist on their machines, and what the details and
permissions of those Policies are.
b. Which pre-packaged Policy Services exist
c. What detailed opportunities (args/params) exist for each Service, a
2. Offer folks the opportunity to...
a. Modify existing Policies
b. Create their own Policies
c. (stretch) write their own Services
3. In a future point release, a visualization of one’s system has been expressed as an
interest by the community. However, much more basic and robust functionality must be
prioritized, ahead of such a consumable.

Design Principles

e Plain Language. Temper the mental gymnastics required by folks, today, to make the
most of Policies for their own needs.

e Promote Discovery. Of advanced security or permissions functionality that may be
foreign, and is today buried throughout documentation.

e Intuitive. It just works. Clear enough interface controls and object relationships, to guide
safe use and learning for both novice/lo-tech and advanced CLI users.

e Empowering. Instil confidence in users to make informed decisions with ease. Educate
users by making things invitingly basic, with opportunities to expose the gears and grease
to learn more at their own pace. Respect learning curves w/ user agency, while also
providing advanced users a non-CLI experience they’ll enjoy.

e “Speed” per OG Google Design team. Enable users to act upon and/or to meaningfully
consume as much information, as quickly as possible. Form follows function.

e Light. On graphics, any perceived bulk, and supportive aesthetics. Utility is key. Icons to
use sparingly to communicate simple semiotics to minimize translation and
character-count bloat.

Problem — the “have a tea with it” version

In order to serve the advanced security needs of at-risk users, Qubes was created as a
multi-environment system to compartmentalize different use domains with virtual machines (VMs).
However, if each VM had the access porosity—internet, external and internal devices, and other
VMs—of a sieve, the isolation benefits of compartmentalization would be rendered moot.
Conversely, if each qube were entirely enclosed in their own protective bubbles, none would be
of much use to anybody. Nothing could ever come in or go out.



To enable a reasonable balance between security and usability for a variety of folks in a world
with a variety of threats, a system of access permissions among qubes and with the outside world
was formed, called Policies. Without Policies, Qubes OS would be little more than a giant
collection of walled gardens, and effectively useless.

Policies

Policies today are written as text files that follow a set syntax and format, and are saved to a
directory on each Qubes OS device. Each instance of Qubes is installed with a set library of basic
“Qrexec Services,” that folks can use to establish permissions between specific qubes around.
Upon installation, a wizard asks users a few simple questions so that it can translate those
answers into a Policy file for one of those Services (how updates are downloaded). Outside of
that experience, however, Policy visibility, creation, and management are restricted to use of CLI
tooling. Furthermore, users must be comfortable with abstracting their own use and security
needs most naturally modeled as “l need this to do that,” into Qrexec syntax. Users need to have
a literal fluency with Bash, and the mental processing skills to abstract human thinking into
computer commands. That excludes a lot of users, while further excluding users with those skills
who simply don’t have the time to learn about this system outside the context of daily use (so,
reading docs).

Policies are composed of a Service (or “Operation”), and establish permissions for that Service
between a Source VM and a Target VM. Many services additionally have Arguments and
Parameters to facilitate richer detail around what parts of the Service are being impacted. The
basic permissions parameters today, are Allow, Deny, and Ask. Finally, all individual policy
statements are made between either an individual Source and Target VM, or All VMs via @anyvm.



