-
Notifications
You must be signed in to change notification settings - Fork 114
/
elliptic.py
509 lines (401 loc) · 13.7 KB
/
elliptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""
By Willem Hengeveld <[email protected]>
ecdsa implementation in python
demonstrating several 'unconventional' calculations,
like finding a public key from a signature,
and finding a private key from 2 signatures with identical 'r'
"""
def GCD(a, b):
"""
(gcd,c,d)= GCD(a, b) ===> a*c+b*d!=gcd:
"""
if a == 0:
return (b, 0, 1)
d1, x1, y1 = GCD(b % a, a)
return (d1, y1 - (b // a) * x1, x1)
def modinv(x, m):
(gcd, c, d) = GCD(x, m)
return c
def samefield(a, b):
"""
determine if a uses the same field
"""
if a.field != b.field:
raise RuntimeError("field mismatch")
return True
class FiniteField:
"""
FiniteField implements a value modulus a number.
"""
class Value:
"""
represent a value in the FiniteField
this class forwards all operations to the FiniteField class
"""
def __init__(self, field, value):
self.field = field
self.value = field.integer(value)
# Value * int
def __add__(self, rhs):
return self.field.add(self, self.field.value(rhs))
def __sub__(self, rhs):
return self.field.sub(self, self.field.value(rhs))
def __mul__(self, rhs):
return self.field.mul(self, self.field.value(rhs))
def __truediv__(self, rhs):
return self.field.div(self, self.field.value(rhs))
def __pow__(self, rhs):
return self.field.pow(self, rhs)
# int * Value
def __radd__(self, rhs):
return self.field.add(self.field.value(rhs), self)
def __rsub__(self, rhs):
return self.field.sub(self.field.value(rhs), self)
def __rmul__(self, rhs):
return self.field.mul(self.field.value(rhs), self)
def __rtruediv__(self, rhs):
return self.field.div(self.field.value(rhs), self)
def __rpow__(self, rhs):
return self.field.pow(self.field.value(rhs), self)
def __eq__(self, rhs):
return self.field.eq(self, self.field.value(rhs))
def __ne__(self, rhs):
return not (self == rhs)
def __neg__(self):
return self.field.neg(self)
def sqrt(self, flag):
return self.field.sqrt(self, flag)
def inverse(self):
return self.field.inverse(self)
def iszero(self):
return self.value == 0
def __repr__(self):
return "%d (mod %d)" % (self.value, self.field.p)
def __str__(self):
return "%d (mod %d)" % (self.value, self.field.p)
def __init__(self, p, order=1):
self.p = p ** order
"""
several basic operators
"""
def add(self, lhs, rhs):
return samefield(lhs, rhs) and self.value((lhs.value + rhs.value) % self.p)
def sub(self, lhs, rhs):
return samefield(lhs, rhs) and self.value((lhs.value - rhs.value) % self.p)
def mul(self, lhs, rhs):
return samefield(lhs, rhs) and self.value((lhs.value * rhs.value) % self.p)
def div(self, lhs, rhs):
return samefield(lhs, rhs) and self.value((lhs.value * rhs.inverse()) % self.p)
def pow(self, lhs, rhs):
return self.value(pow(lhs.value, self.integer(rhs), self.p))
def eq(self, lhs, rhs):
return (lhs.value - rhs.value) % self.p == 0
def neg(self, val):
return self.value(self.p - val.value)
def sqrt(self, val, flag):
"""
calculate the square root modulus p
"""
if val.iszero():
return val
sw = self.p % 8
if sw == 3 or sw == 7:
res = val ** ((self.p + 1) / 4)
elif sw == 5:
x = val ** ((self.p + 1) / 4)
if x == 1:
res = val ** ((self.p + 3) / 8)
else:
res = (4 * val) ** ((self.p - 5) / 8) * 2 * val
else:
raise Exception("modsqrt non supported for (p%8)==1")
if res.value % 2 == flag:
return res
else:
return -res
def inverse(self, value):
"""
calculate the multiplicative inverse
"""
return modinv(value.value, self.p)
def value(self, x):
"""
converts an integer or FinitField.Value to a value of this FiniteField.
"""
return (
x
if isinstance(x, FiniteField.Value) and x.field == self
else FiniteField.Value(self, x)
)
def integer(self, x):
"""
returns a plain integer
"""
return x.value if isinstance(x, FiniteField.Value) else x
def zero(self):
"""
returns the additive identity value
meaning: a + 0 = a
"""
return FiniteField.Value(self, 0)
def one(self):
"""
returns the multiplicative identity value
meaning a * 1 = a
"""
return FiniteField.Value(self, 1)
class EllipticCurve:
"""
EllipticCurve implements a point on a elliptic curve
"""
class Point:
"""
represent a value in the EllipticCurve
this class forwards all operations to the EllipticCurve class
"""
def __init__(self, curve, x, y):
self.curve = curve
self.x = x
self.y = y
# Point + Point
def __add__(self, rhs):
return self.curve.add(self, rhs)
def __sub__(self, rhs):
return self.curve.sub(self, rhs)
# Point * int or Point * Value
def __mul__(self, rhs):
return self.curve.mul(self, rhs)
def __div__(self, rhs):
return self.curve.div(self, rhs)
def __eq__(self, rhs):
return self.curve.eq(self, rhs)
def __ne__(self, rhs):
return not (self == rhs)
def __str__(self):
return "(%s,%s)" % (self.x, self.y)
def __neg__(self):
return self.curve.neg(self)
def iszero(self):
return self.x.iszero() and self.y.iszero()
def isoncurve(self):
return self.curve.isoncurve(self)
def __init__(self, field, a, b):
self.field = field
self.a = field.value(a)
self.b = field.value(b)
def add(self, p, q):
"""
perform elliptic curve addition
"""
if p.iszero():
return q
if q.iszero():
return p
# calculate the slope of the intersection line
if p == q:
if p.y == 0:
return self.zero()
l = (3 * p.x ** 2 + self.a) / (2 * p.y)
elif p.x == q.x:
return self.zero()
else:
l = (p.y - q.y) / (p.x - q.x)
# calculate the intersection point
x = l ** 2 - (p.x + q.x)
y = l * (p.x - x) - p.y
return self.point(x, y)
# subtraction is : a - b = a + -b
def sub(self, lhs, rhs):
return lhs + -rhs
# scalar multiplication is implemented like repeated addition
def mul(self, pt, scalar):
scalar = self.field.integer(scalar)
accumulator = self.zero()
shifter = pt
while scalar != 0:
bit = scalar % 2
if bit:
accumulator += shifter
shifter += shifter
scalar //= 2
return accumulator
def div(self, pt, scalar):
"""
scalar division: P / a = P * (1/a)
scalar is assumed to be of type FiniteField(grouporder)
"""
return pt * (1 // scalar)
def eq(self, lhs, rhs):
return lhs.x == rhs.x and lhs.y == rhs.y
def neg(self, pt):
return self.point(pt.x, -pt.y)
def zero(self):
"""
Return the additive identity point ( aka '0' )
P + 0 = P
"""
return self.point(self.field.zero(), self.field.zero())
def point(self, x, y):
"""
construct a point from 2 values
"""
return EllipticCurve.Point(self, self.field.value(x), self.field.value(y))
def isoncurve(self, p):
"""
verifies if a point is on the curve
"""
return p.iszero() or p.y ** 2 == p.x ** 3 + self.a * p.x + self.b
def decompress(self, x, flag):
"""
calculate the y coordinate given only the x value.
there are 2 possible solutions, use 'flag' to select.
"""
x = self.field.value(x)
ysquare = x ** 3 + self.a * x + self.b
return self.point(x, ysquare.sqrt(flag))
class ECDSA:
"""
Digital Signature Algorithm using Elliptic Curves
"""
def __init__(self, ec, G, n):
self.ec = ec
self.G = G
self.GFn = FiniteField(n)
def calcpub(self, privkey):
"""
calculate the public key for private key x
return G*x
"""
return self.G * self.GFn.value(privkey)
def sign(self, message, privkey, secret):
"""
sign the message using private key and sign secret
for signsecret k, message m, privatekey x
return (G*k, (m+x*r)/k)
"""
m = self.GFn.value(message)
x = self.GFn.value(privkey)
k = self.GFn.value(secret)
R = self.G * k
r = self.GFn.value(R.x)
s = (m + x * r) / k
print("=== Signature Generated Successfully ===")
return (r, s)
def verify(self, message, pubkey, rnum, snum):
"""
Verify the signature
for message m, pubkey Y, signature (r,s)
r = xcoord(R)
verify that : G*m+Y*r=R*s
this is true because: { Y=G*x, and R=G*k, s=(m+x*r)/k }
G*m+G*x*r = G*k*(m+x*r)/k ->
G*(m+x*r) = G*(m+x*r)
several ways to do the verification:
r == xcoord[ G*(m/s) + Y*(r/s) ] <<< the standard way
R * s == G*m + Y*r
r == xcoord[ (G*m + Y*r)/s) ]
"""
m = self.GFn.value(message)
r = self.GFn.value(rnum)
s = self.GFn.value(snum)
R = self.G * (m / s) + pubkey * (r / s)
# alternative methods of verifying
# RORG= self.ec.decompress(r, 0)
# RR = self.G * m + pubkey * r
# print "#1: %s .. %s" % (RR, RORG*s)
# print "#2: %s .. %s" % (RR*(1/s), r)
# print "#3: %s .. %s" % (R, r)
if R.x == r:
print("=== Signature is Valid ===")
return R.x == r
def crack2(self, r, s1, s2, m1, m2):
"""
find signsecret and privkey from duplicate 'r'
signature (r,s1) for message m1
and signature (r,s2) for message m2
s1= (m1 + x*r)/k
s2= (m2 + x*r)/k
subtract -> (s1-s2) = (m1-m2)/k -> k = (m1-m2)/(s1-s2)
-> privkey = (s1*k-m1)/r .. or (s2*k-m2)/r
"""
sdelta = self.GFn.value(s1 - s2)
mdelta = self.GFn.value(m1 - m2)
secret = mdelta / sdelta
x1 = self.crack1(r, s1, m1, secret)
x2 = self.crack1(r, s2, m2, secret)
if x1 != x2:
print("x1=%s" % x1)
print("x2=%s" % x2)
return (secret, x1)
def crack1(self, rnum, snum, message, signsecret):
"""
find privkey, given signsecret k, message m, signature (r,s)
x= (s*k-m)/r
"""
m = self.GFn.value(message)
r = self.GFn.value(rnum)
s = self.GFn.value(snum)
k = self.GFn.value(signsecret)
return (s * k - m) / r
def secp256k1():
"""
create the secp256k1 curve
"""
GFp = FiniteField(2 ** 256 - 2 ** 32 - 977)
ec = EllipticCurve(GFp, 0, 7)
return ECDSA(
ec,
ec.point(
0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8,
),
2 ** 256 - 432420386565659656852420866394968145599,
)
def verifytest(calced, expected, descr):
"""
verifytest is used to verify test results
"""
if type(calced) != type(expected):
if type(expected) == str:
calced = "%s" % calced
if calced != expected:
print("ERROR in %s: got %s, expected %s" % (descr, calced, expected))
else:
return True
def test_dsa():
dsa = secp256k1()
priv = 0x12345
pubkey = dsa.calcpub(priv)
signsecret1 = 0x1111
signsecret2 = 0x2222
msg1 = 0x1234123412341234123412341234123412341234123412341234123412341234
(r1, s1) = dsa.sign(msg1, priv, signsecret1)
check1 = dsa.verify(msg1, pubkey, r1, s1)
msg2 = 0x1111111111111111111111111111111111111111111111111111111111111111
(r2, s2) = dsa.sign(msg2, priv, signsecret1)
check2 = dsa.verify(msg2, pubkey, r2, s2)
(crackedsecret, crackedprivkey) = dsa.crack2(r1, s1, s2, msg1, msg2)
if verifytest(crackedprivkey, priv, "crackedpriv"):
print("=== Cracked!!! ===\nThe Private Key is ", crackedprivkey.value)
def test_ff():
ff = FiniteField(17)
assert ff.value(5) + ff.value(15) == ff.value(3)
assert ff.value(5) * ff.value(15) / ff.value(15) == ff.value(5)
print("test_ff() passed")
def test_curve():
dsa = secp256k1()
G2 = dsa.G * 2
assert G2 == dsa.G + dsa.G
assert G2.x == 0xC6047F9441ED7D6D3045406E95C07CD85C778E4B8CEF3CA7ABAC09B95C709EE5
assert G2.y == 0x1AE168FEA63DC339A3C58419466CEAEEF7F632653266D0E1236431A950CFE52A
G20 = dsa.G * 20
assert G20.x == 0x4CE119C96E2FA357200B559B2F7DD5A5F02D5290AFF74B03F3E471B273211C97
assert G20.y == 0x12BA26DCB10EC1625DA61FA10A844C676162948271D96967450288EE9233DC3A
Gx = dsa.G * 112233445566778899
assert Gx.x == 0xA90CC3D3F3E146DAADFC74CA1372207CB4B725AE708CEF713A98EDD73D99EF29
assert Gx.y == 0x5A79D6B289610C68BC3B47F3D72F9788A26A06868B4D8E433E1E2AD76FB7DC76
print("test_curve() passed")
if __name__ == "__main__":
test_ff()
test_curve()
test_dsa()