diff --git a/lectures/black_litterman.md b/lectures/black_litterman.md index e686558e..59c3cdbe 100644 --- a/lectures/black_litterman.md +++ b/lectures/black_litterman.md @@ -3,8 +3,10 @@ jupytext: text_representation: extension: .md format_name: myst + format_version: 0.13 + jupytext_version: 1.16.4 kernelspec: - display_name: Python 3 + display_name: Python 3 (ipykernel) language: python name: python3 --- @@ -79,15 +81,13 @@ adjust investors' subjective beliefs about mean returns in order to render more Let's start with some imports: -```{code-cell} ipython +```{code-cell} ipython3 import numpy as np import scipy.stats as stat import matplotlib.pyplot as plt -from ipywidgets import interact, FloatSlider +from numba import jit ``` - - ## Mean-Variance Portfolio Choice A risk-free security earns one-period net return $r_f$. @@ -169,7 +169,7 @@ $w$'s with **extreme long and short positions**. A common reaction to these outcomes is that they are so implausible that a portfolio manager cannot recommend them to a customer. -```{code-cell} python3 +```{code-cell} ipython3 np.random.seed(12) N = 10 # Number of assets @@ -300,7 +300,7 @@ The starting point of the Black-Litterman portfolio choice model is thus a pair $(\delta_m, \mu_m)$ that tells the customer to hold the market portfolio. -```{code-cell} python3 +```{code-cell} ipython3 # Observed mean excess market return r_m = w_m @ μ_est @@ -316,11 +316,12 @@ d_m = r_m / σ_m # Derive "view" which would induce the market portfolio μ_m = (d_m * Σ_est @ w_m).reshape(N, 1) +x = np.arange(N) + 1 fig, ax = plt.subplots(figsize=(8, 5)) ax.set_title(r'Difference between $\hat{\mu}$ (estimate) and $\mu_{BL}$ (market implied)') -ax.plot(np.arange(N)+1, μ_est, 'o', c='k', label='$\hat{\mu}$') -ax.plot(np.arange(N)+1, μ_m, 'o', c='r', label='$\mu_{BL}$') -ax.vlines(np.arange(N) + 1, μ_m, μ_est, lw=1) +ax.plot(x, μ_est, 'o', c='k', label='$\hat{\mu}$') +ax.plot(x, μ_m, 'o', c='r', label='$\mu_{BL}$') +ax.vlines(x, μ_m, μ_est, lw=1) ax.axhline(0, c='k', ls='--') ax.set_xlabel('Assets') ax.xaxis.set_ticks(np.arange(1, N+1, 1)) @@ -384,7 +385,7 @@ If $\hat \mu$ is the maximum likelihood estimator and $\tau$ is chosen heavily to weight this view, then the customer's portfolio will involve big short-long positions. -```{code-cell} python3 +```{code-cell} ipython3 def black_litterman(λ, μ1, μ2, Σ1, Σ2): """ This function calculates the Black-Litterman mixture @@ -402,10 +403,9 @@ def black_litterman(λ, μ1, μ2, Σ1, Σ2): # The Black-Litterman recommendation for the portfolio weights w_tilde = np.linalg.solve(δ * Σ_est, μ_tilde) +``` -τ_slider = FloatSlider(min=0.05, max=10, step=0.5, value=τ) - -@interact(τ=τ_slider) +```{code-cell} ipython3 def BL_plot(τ): μ_tilde = black_litterman(1, μ_m, μ_est, Σ_est, τ * Σ_est) w_tilde = np.linalg.solve(δ * Σ_est, μ_tilde) @@ -439,6 +439,8 @@ def BL_plot(τ): ax[1].xaxis.set_ticks(np.arange(1, N+1, 1)) ax[1].legend(numpoints=1) plt.show() + +BL_plot(τ) ``` ## Bayesian Interpretation @@ -607,7 +609,7 @@ $\bar d_2$ on the RHS of the constraint, by varying $\bar d_2$ (or $\lambda$ ), we can trace out the whole curve as the figure below illustrates. -```{code-cell} python3 +```{code-cell} ipython3 np.random.seed(1987102) N = 2 # Number of assets @@ -641,21 +643,18 @@ r2 = np.linspace(-0.02, .15, N_r2) curve = np.asarray([black_litterman(λ, μ_m, μ_est, Σ_est, τ * Σ_est).flatten() for λ in λ_grid]) -λ_slider = FloatSlider(min=.1, max=7, step=.5, value=1) +λ = 1 +``` -@interact(λ=λ_slider) +```{code-cell} ipython3 def decolletage(λ): dist_r_BL = stat.multivariate_normal(μ_m.squeeze(), Σ_est) dist_r_hat = stat.multivariate_normal(μ_est.squeeze(), τ * Σ_est) X, Y = np.meshgrid(r1, r2) - Z_BL = np.zeros((N_r1, N_r2)) - Z_hat = np.zeros((N_r1, N_r2)) - - for i in range(N_r1): - for j in range(N_r2): - Z_BL[i, j] = dist_r_BL.pdf(np.hstack([X[i, j], Y[i, j]])) - Z_hat[i, j] = dist_r_hat.pdf(np.hstack([X[i, j], Y[i, j]])) + XY = np.stack((X, Y), axis=-1) + Z_BL = dist_r_BL.pdf(XY) + Z_hat = dist_r_hat.pdf(XY) μ_tilde = black_litterman(λ, μ_m, μ_est, Σ_est, τ * Σ_est).flatten() @@ -676,6 +675,8 @@ def decolletage(λ): ax.text(μ_est[0] + 0.003, μ_est[1], r'$\hat{\mu}$') ax.text(μ_m[0] + 0.003, μ_m[1] + 0.005, r'$\mu_{BL}$') plt.show() + +decolletage(λ) ``` Note that the line that connects the two points @@ -692,26 +693,22 @@ This leads to the following figure, on which the curve connecting $\hat \mu$ and $\mu_{BL}$ are bending -```{code-cell} python3 +```{code-cell} ipython3 λ_grid = np.linspace(.001, 20000, 1000) curve = np.asarray([black_litterman(λ, μ_m, μ_est, Σ_est, τ * np.eye(N)).flatten() for λ in λ_grid]) +λ = 200 +``` -λ_slider = FloatSlider(min=5, max=1500, step=100, value=200) - -@interact(λ=λ_slider) +```{code-cell} ipython3 def decolletage(λ): dist_r_BL = stat.multivariate_normal(μ_m.squeeze(), Σ_est) dist_r_hat = stat.multivariate_normal(μ_est.squeeze(), τ * np.eye(N)) X, Y = np.meshgrid(r1, r2) - Z_BL = np.zeros((N_r1, N_r2)) - Z_hat = np.zeros((N_r1, N_r2)) - - for i in range(N_r1): - for j in range(N_r2): - Z_BL[i, j] = dist_r_BL.pdf(np.hstack([X[i, j], Y[i, j]])) - Z_hat[i, j] = dist_r_hat.pdf(np.hstack([X[i, j], Y[i, j]])) + XY = np.stack((X, Y), axis=-1) + Z_BL = dist_r_BL.pdf(XY) + Z_hat = dist_r_hat.pdf(XY) μ_tilde = black_litterman(λ, μ_m, μ_est, Σ_est, τ * np.eye(N)).flatten() @@ -733,6 +730,8 @@ def decolletage(λ): ax.text(μ_est[0] + 0.003, μ_est[1], r'$\hat{\mu}$') ax.text(μ_m[0] + 0.003, μ_m[1] + 0.005, r'$\mu_{BL}$') plt.show() + +decolletage(λ) ``` ## Black-Litterman Recommendation as Regularization @@ -1247,7 +1246,7 @@ observations is related to the sampling frequency - Moreover, for a fixed lag length, $n$, the dependence vanishes as the sampling frequency goes to infinity. In fact, letting $h$ go to $\infty$ gives back the case of IID data. -```{code-cell} python3 +```{code-cell} ipython3 μ = .0 κ = .1 σ = .5 @@ -1346,7 +1345,8 @@ thus getting an idea about how the asymptotic relative MSEs changes in the sampling frequency $h$ relative to the IID case that we compute in closed form. -```{code-cell} python3 +```{code-cell} ipython3 +@jit def sample_generator(h, N, M): ϕ = (1 - np.exp(-κ * h)) * μ ρ = np.exp(-κ * h) @@ -1355,10 +1355,10 @@ def sample_generator(h, N, M): mean_uncond = μ std_uncond = np.sqrt(σ**2 / (2 * κ)) - ε_path = stat.norm(0, np.sqrt(s)).rvs((M, N)) + ε_path = np.random.normal(0, np.sqrt(s), (M, N)) y_path = np.zeros((M, N + 1)) - y_path[:, 0] = stat.norm(mean_uncond, std_uncond).rvs(M) + y_path[:, 0] = np.random.normal(mean_uncond, std_uncond, M) for i in range(N): y_path[:, i + 1] = ϕ + ρ * y_path[:, i] + ε_path[:, i] @@ -1366,7 +1366,7 @@ def sample_generator(h, N, M): return y_path ``` -```{code-cell} python3 +```{code-cell} ipython3 # Generate large sample for different frequencies N_app, M_app = 1000, 30000 # Sample size, number of simulations h_grid = np.linspace(.1, 80, 30)