-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathoptimize.py
307 lines (251 loc) · 13.7 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean CLI v1.0. Copyright 2021 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple
from click import command, option, Choice, argument, confirm
from lean.click import LeanCommand, ensure_options
from lean.components.config.optimizer_config_manager import NodeType, available_nodes
from lean.container import container
from lean.models.api import QCOptimizationBacktest, QCProject, QCCompileWithLogs, QCFullOrganization
from lean.models.optimizer import OptimizationConstraint, OptimizationExtremum, OptimizationParameter, \
OptimizationTarget
def _calculate_backtest_count(parameters: List[OptimizationParameter]) -> int:
"""Calculates the number of backtests needed for the given optimization parameters.
:param parameters: the parameters to optimize
:return: the number of backtests a grid search on the parameters would require
"""
from operator import mul
from functools import reduce
steps_per_parameter = [round((p.max - p.min) / p.step) + 1 for p in parameters]
return int(reduce(mul, steps_per_parameter, 1))
def _calculate_hours(backtest_time: int, backtest_count: int) -> float:
"""Calculates the total number of hours the optimization will take, given only one node is used.
:param backtest_time: the number of seconds one backtest is expected to take
:param backtest_count: the number of backtests that need to be ran
"""
from math import ceil
deploy_time = 30
backtest_cpu_factor = 1.5
seconds = (deploy_time + backtest_time * backtest_cpu_factor) * backtest_count
hours = ceil((seconds * 100) / 3600) / 100
return max(0.1, hours)
def _format_hours(hours: float) -> str:
"""Format a certain number of hours to a string.
If the number of hours is less than 1 this returns "x minutes".
If the number of hours is greater than or equal to 1 this returns "x hours".
:param hours: the number of hours
:return: the formatted number of hours
"""
from datetime import timedelta
seconds = timedelta(hours=hours).total_seconds()
if seconds < 60 * 60:
amount = round(seconds / 60)
unit = "minute"
else:
amount = round(seconds / (60 * 60))
unit = "hour"
unit_suffix = "s" if amount != 1 else ""
return f"{amount:,} {unit}{unit_suffix}"
def _get_backtest_statistic(backtest: QCOptimizationBacktest, target: str) -> float:
"""Returns a statistic of a backtest.
:param backtest: the backtest to retrieve the statistic from
:param target: the target statistic to retrieve, must be one of OptimizerConfigManager.available_targets
:return: the value of the target statistic on the backtest
"""
if target == "TotalPerformance.PortfolioStatistics.SharpeRatio":
return backtest.statistics[15]
elif target == "TotalPerformance.PortfolioStatistics.CompoundingAnnualReturn":
return backtest.statistics[6]
elif target == "TotalPerformance.PortfolioStatistics.ProbabilisticSharpeRatio":
return backtest.statistics[13]
elif target == "TotalPerformance.PortfolioStatistics.Drawdown":
return backtest.statistics[7]
else:
raise ValueError(f"Target is not supported: {target}")
def _backtest_meets_constraints(backtest: QCOptimizationBacktest, constraints: List[OptimizationConstraint]) -> bool:
"""Returns whether the backtest meets all constraints.
:param backtest: the backtest to check
:param constraints: the constraints the backtest has to meet
:return: True if the backtest meets all constraints, False if not
"""
optimizer_config_manager = container.optimizer_config_manager
for constraint in constraints:
expression = str(constraint)
for target, _ in optimizer_config_manager.available_targets:
expression = expression.replace(target, str(_get_backtest_statistic(backtest, target)))
if not eval(expression):
return False
return True
def _display_estimate(cloud_project: QCProject,
finished_compile: QCCompileWithLogs,
organization: QCFullOrganization,
name: str,
strategy: str,
target: OptimizationTarget,
parameters: List[OptimizationParameter],
constraints: List[OptimizationConstraint],
node: NodeType,
parallel_nodes: int) -> None:
"""Displays the estimated optimization time and cost."""
from math import ceil
api_client = container.api_client
estimate = api_client.optimizations.estimate(cloud_project.projectId,
finished_compile.compileId,
name,
strategy,
target,
parameters,
constraints,
node.name,
parallel_nodes)
backtest_count = _calculate_backtest_count(parameters)
hours = _calculate_hours(estimate.time, backtest_count)
batch_time = ceil((hours * 100) / parallel_nodes) / 100
batch_cost = max(0.01, ceil(node.price * hours * 100) / 100)
logger = container.logger
logger.info(f"Estimated number of backtests: {backtest_count:,}")
logger.info(f"Estimated batch time: {_format_hours(batch_time)}")
logger.info(f"Estimated batch cost: ${batch_cost:,.2f}")
logger.info(
f"Organization balance: {organization.credit.balance:,.0f} QCC (${organization.credit.balance / 100:,.2f})")
@command(cls=LeanCommand)
@argument("project", type=str)
@option("--target",
type=str,
help="The target statistic of the optimization")
@option("--target-direction",
type=Choice(["min", "max"], case_sensitive=False),
help="Whether the target must be minimized or maximized")
@option("--parameter",
type=(str, float, float, float),
multiple=True,
help="The 'parameter min max step' pairs configuring the parameters to optimize")
@option("--constraint",
type=str,
multiple=True,
help="The 'statistic operator value' pairs configuring the constraints of the optimization")
@option("--node",
type=Choice([node.name for node in available_nodes], case_sensitive=False),
help="The node type to run the optimization on")
@option("--parallel-nodes",
type=int,
help="The number of nodes that may be run in parallel")
@option("--name", type=str, help="The name of the optimization (a random one is generated if not specified)")
@option("--push",
is_flag=True,
default=False,
help="Push local modifications to the cloud before starting the optimization")
def optimize(project: str,
target: Optional[str],
target_direction: Optional[str],
parameter: List[Tuple[str, float, float, float]],
constraint: List[str],
node: Optional[str],
parallel_nodes: Optional[int],
name: Optional[str],
push: bool) -> None:
"""Optimize a project in the cloud.
PROJECT must be the name or id of the project to optimize.
An interactive prompt will be shown to configure the optimizer.
If --target is given the command runs in non-interactive mode.
In this mode the CLI does not prompt for input and the following options become required:
--target, --target-direction, --parameter, --node and --parallel-nodes.
\b
In non-interactive mode the --parameter option can be provided multiple times to configure multiple parameters:
- --parameter <name> <min value> <max value> <step size>
- --parameter my-first-parameter 1 10 0.5 --parameter my-second-parameter 20 30 5
\b
In non-interactive mode the --constraint option can be provided multiple times to configure multiple constraints:
- --constraint "<statistic> <operator> <value>"
- --constraint "Sharpe Ratio >= 0.5" --constraint "Drawdown < 0.25"
If the project that has to be optimized has been pulled to the local drive
with `lean cloud pull` it is possible to use the --push option to push local
modifications to the cloud before running the optimization.
"""
logger = container.logger
api_client = container.api_client
cloud_project_manager = container.cloud_project_manager
cloud_project = cloud_project_manager.get_cloud_project(project, push)
if name is None:
name = container.name_generator.generate_name()
cloud_runner = container.cloud_runner
finished_compile = cloud_runner.compile_project(cloud_project)
optimizer_config_manager = container.optimizer_config_manager
organization = api_client.organizations.get(cloud_project.organizationId)
if target is not None:
ensure_options(["target", "target_direction", "parameter", "node", "parallel_nodes"])
optimization_strategy = "QuantConnect.Optimizer.Strategies.GridSearchOptimizationStrategy"
optimization_target = OptimizationTarget(target=optimizer_config_manager.parse_target(target),
extremum=target_direction)
optimization_parameters = optimizer_config_manager.parse_parameters(parameter)
optimization_constraints = optimizer_config_manager.parse_constraints(constraint)
node = next(n for n in available_nodes if n.name == node)
if parallel_nodes < node.min_nodes:
raise RuntimeError(f"The minimum number of parallel nodes for {node.name} is {node.min_nodes}")
if parallel_nodes > node.max_nodes:
raise RuntimeError(f"The maximum number of parallel nodes for {node.name} is {node.max_nodes}")
_display_estimate(cloud_project,
finished_compile,
organization,
name,
optimization_strategy,
optimization_target,
optimization_parameters,
optimization_constraints,
node,
parallel_nodes)
else:
optimization_strategy = optimizer_config_manager.configure_strategy(cloud=True)
optimization_target = optimizer_config_manager.configure_target()
optimization_parameters = optimizer_config_manager.configure_parameters(cloud_project.parameters, cloud=True)
optimization_constraints = optimizer_config_manager.configure_constraints()
while True:
node, parallel_nodes = optimizer_config_manager.configure_node()
_display_estimate(cloud_project,
finished_compile,
organization,
name,
optimization_strategy,
optimization_target,
optimization_parameters,
optimization_constraints,
node,
parallel_nodes)
if confirm("Do you want to start the optimization on the selected node type?", default=True):
break
optimization = cloud_runner.run_optimization(cloud_project,
finished_compile,
name,
optimization_strategy,
optimization_target,
optimization_parameters,
optimization_constraints,
node.name,
parallel_nodes)
backtests = optimization.backtests.values()
backtests = [b for b in backtests if b.exitCode == 0]
backtests = [b for b in backtests if
_backtest_meets_constraints(b, optimization_constraints)]
if len(backtests) == 0:
logger.info("No optimal parameter combination found, no successful backtests meet all constraints")
return
optimal_backtest = sorted(backtests,
key=lambda backtest: _get_backtest_statistic(backtest, optimization_target.target),
reverse=optimization_target.extremum == OptimizationExtremum.Maximum)[0]
parameters = ", ".join(f"{key}: {optimal_backtest.parameterSet[key]}" for key in optimal_backtest.parameterSet)
logger.info(f"Optimal parameters: {parameters}")
optimal_backtest = api_client.backtests.get(cloud_project.projectId,
optimal_backtest.id)
logger.info(f"Optimal backtest id: {optimal_backtest.backtestId}")
logger.info(f"Optimal backtest name: {optimal_backtest.name}")
logger.info(f"Optimal backtest results:")
logger.info(optimal_backtest.get_statistics_table())