diff --git a/qiskit/algorithms/minimum_eigensolvers/diagonal_estimator.py b/qiskit/algorithms/minimum_eigensolvers/diagonal_estimator.py index 67835c9e55a0..dbb6fa12d5ba 100644 --- a/qiskit/algorithms/minimum_eigensolvers/diagonal_estimator.py +++ b/qiskit/algorithms/minimum_eigensolvers/diagonal_estimator.py @@ -171,7 +171,7 @@ def aggregate(measurements): accumulated_percent = 0 # once alpha is reached, stop cvar = 0 for probability, value in sorted_measurements: - cvar += value * max(probability, alpha - accumulated_percent) + cvar += value * min(probability, alpha - accumulated_percent) accumulated_percent += probability if accumulated_percent >= alpha: break diff --git a/qiskit/algorithms/minimum_eigensolvers/sampling_vqe.py b/qiskit/algorithms/minimum_eigensolvers/sampling_vqe.py index 577a399b4d2f..684252f54e4f 100755 --- a/qiskit/algorithms/minimum_eigensolvers/sampling_vqe.py +++ b/qiskit/algorithms/minimum_eigensolvers/sampling_vqe.py @@ -98,10 +98,12 @@ def my_minimizer(fun, x0, jac=None, bounds=None) -> OptimizerResult: optimizer (Optimizer | Minimizer): A classical optimizer to find the minimum energy. This can either be a Qiskit :class:`.Optimizer` or a callable implementing the :class:`.Minimizer` protocol. - aggregation (float | Callable[[list[float]], float] | None): A float or callable to specify - how the objective function evaluated on the basis states should be aggregated. If a - float, this specifies the :math:`\alpha \in [0,1]` parameter for a CVaR expectation - value [1]. + aggregation (float | Callable[[list[tuple[float, complex]], float] | None): + A float or callable to specify how the objective function evaluated on the basis states + should be aggregated. If a float, this specifies the :math:`\alpha \in [0,1]` parameter + for a CVaR expectation value [1]. If a callable, it takes a list of basis state + measurements specified as ``[(probability, objective_value)]`` and return an objective + value as float. If None, all an ordinary expectation value is calculated. callback (Callable[[int, np.ndarray, float, dict[str, Any]], None] | None): A callback that can access the intermediate data at each optimization step. These data are: the evaluation count, the optimizer parameters for the ansatz, the evaluated value, and the @@ -292,7 +294,9 @@ def store_best_measurement(best): ): best_measurement["best"] = best_i - estimator = _DiagonalEstimator(sampler=self.sampler, callback=store_best_measurement) + estimator = _DiagonalEstimator( + sampler=self.sampler, callback=store_best_measurement, aggregation=self.aggregation + ) def evaluate_energy(parameters): nonlocal eval_count diff --git a/releasenotes/notes/fix-sampling-vqe-aggregation-107e3983147c57bc.yaml b/releasenotes/notes/fix-sampling-vqe-aggregation-107e3983147c57bc.yaml new file mode 100644 index 000000000000..dac8d90bf3d2 --- /dev/null +++ b/releasenotes/notes/fix-sampling-vqe-aggregation-107e3983147c57bc.yaml @@ -0,0 +1,5 @@ +--- +fixes: + - | + Fixed a bug in :class:`.SamplingVQE` where the ``aggregation`` did not have an effect. + Now the aggregation function and CVaR expectation value can correctly be specified. diff --git a/test/python/algorithms/minimum_eigensolvers/test_sampling_vqe.py b/test/python/algorithms/minimum_eigensolvers/test_sampling_vqe.py index 4a301b8be414..e28908bffd85 100644 --- a/test/python/algorithms/minimum_eigensolvers/test_sampling_vqe.py +++ b/test/python/algorithms/minimum_eigensolvers/test_sampling_vqe.py @@ -256,6 +256,29 @@ def store_intermediate_result(eval_count, parameters, mean, metadata): for params in history["parameters"]: self.assertTrue(all(isinstance(param, float) for param in params)) + def test_aggregation(self): + """Test the aggregation works.""" + + # test a custom aggregration that just uses the best measurement + def best_measurement(measurements): + res = min(measurements, key=lambda meas: meas[1])[1] + return res + + # test CVaR with alpha of 0.4 (i.e. 40% of the best measurements) + alpha = 0.4 + + ansatz = RealAmplitudes(1, reps=0) + ansatz.h(0) + + for aggregation in [alpha, best_measurement]: + with self.subTest(aggregation=aggregation): + vqe = SamplingVQE(Sampler(), ansatz, _mock_optimizer, aggregation=best_measurement) + result = vqe.compute_minimum_eigenvalue(Pauli("Z")) + + # evaluation at x0=0 samples -1 and 1 with 50% probability, and our aggregation + # takes the smallest value + self.assertAlmostEqual(result.optimal_value, -1) + if __name__ == "__main__": unittest.main()