-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathinstruction.py
577 lines (473 loc) · 19.9 KB
/
instruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
A generic quantum instruction.
Instructions can be implementable on hardware (u, cx, etc.) or in simulation
(snapshot, noise, etc.).
Instructions can be unitary (a.k.a Gate) or non-unitary.
Instructions are identified by the following:
name: A string to identify the type of instruction.
Used to request a specific instruction on the backend, or in visualizing circuits.
num_qubits, num_clbits: dimensions of the instruction.
params: List of parameters to specialize a specific instruction instance.
Instructions do not have any context about where they are in a circuit (which qubits/clbits).
The circuit itself keeps this context.
"""
import copy
from itertools import zip_longest
from typing import List
import numpy
from qiskit.circuit.exceptions import CircuitError
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.classicalregister import ClassicalRegister, Clbit
from qiskit.qasm.exceptions import QasmError
from qiskit.qobj.qasm_qobj import QasmQobjInstruction
from qiskit.circuit.parameter import ParameterExpression
from qiskit.circuit.operation import Operation
from .tools import pi_check
_CUTOFF_PRECISION = 1e-10
class Instruction(Operation):
"""Generic quantum instruction."""
# Class attribute to treat like barrier for transpiler, unroller, drawer
# NOTE: Using this attribute may change in the future (See issue # 5811)
_directive = False
def __init__(self, name, num_qubits, num_clbits, params, duration=None, unit="dt", label=None):
"""Create a new instruction.
Args:
name (str): instruction name
num_qubits (int): instruction's qubit width
num_clbits (int): instruction's clbit width
params (list[int|float|complex|str|ndarray|list|ParameterExpression]):
list of parameters
duration (int or float): instruction's duration. it must be integer if ``unit`` is 'dt'
unit (str): time unit of duration
label (str or None): An optional label for identifying the instruction.
Raises:
CircuitError: when the register is not in the correct format.
TypeError: when the optional label is provided, but it is not a string.
"""
if not isinstance(num_qubits, int) or not isinstance(num_clbits, int):
raise CircuitError("num_qubits and num_clbits must be integer.")
if num_qubits < 0 or num_clbits < 0:
raise CircuitError(
"bad instruction dimensions: %d qubits, %d clbits." % num_qubits, num_clbits
)
self._name = name
self._num_qubits = num_qubits
self._num_clbits = num_clbits
self._params = [] # a list of gate params stored
# Custom instruction label
# NOTE: The conditional statement checking if the `_label` attribute is
# already set is a temporary work around that can be removed after
# the next stable qiskit-aer release
if not hasattr(self, "_label"):
if label is not None and not isinstance(label, str):
raise TypeError("label expects a string or None")
self._label = label
# tuple (ClassicalRegister, int), tuple (Clbit, bool) or tuple (Clbit, int)
# when the instruction has a conditional ("if")
self.condition = None
# list of instructions (and their contexts) that this instruction is composed of
# empty definition means opaque or fundamental instruction
self._definition = None
self._duration = duration
self._unit = unit
self.params = params # must be at last (other properties may be required for validation)
def __eq__(self, other):
"""Two instructions are the same if they have the same name,
same dimensions, and same params.
Args:
other (instruction): other instruction
Returns:
bool: are self and other equal.
"""
if (
type(self) is not type(other)
or self.name != other.name
or self.num_qubits != other.num_qubits
or self.num_clbits != other.num_clbits
or self.definition != other.definition
):
return False
for self_param, other_param in zip_longest(self.params, other.params):
try:
if self_param == other_param:
continue
except ValueError:
pass
try:
self_asarray = numpy.asarray(self_param)
other_asarray = numpy.asarray(other_param)
if numpy.shape(self_asarray) == numpy.shape(other_asarray) and numpy.allclose(
self_param, other_param, atol=_CUTOFF_PRECISION, rtol=0
):
continue
except (ValueError, TypeError):
pass
try:
if numpy.isclose(
float(self_param), float(other_param), atol=_CUTOFF_PRECISION, rtol=0
):
continue
except TypeError:
pass
return False
return True
def __repr__(self) -> str:
"""Generates a representation of the Intruction object instance
Returns:
str: A representation of the Instruction instance with the name,
number of qubits, classical bits and params( if any )
"""
return "Instruction(name='{}', num_qubits={}, num_clbits={}, params={})".format(
self.name, self.num_qubits, self.num_clbits, self.params
)
def soft_compare(self, other: "Instruction") -> bool:
"""
Soft comparison between gates. Their names, number of qubits, and classical
bit numbers must match. The number of parameters must match. Each parameter
is compared. If one is a ParameterExpression then it is not taken into
account.
Args:
other (instruction): other instruction.
Returns:
bool: are self and other equal up to parameter expressions.
"""
if (
self.name != other.name
or other.num_qubits != other.num_qubits
or other.num_clbits != other.num_clbits
or len(self.params) != len(other.params)
):
return False
for self_param, other_param in zip_longest(self.params, other.params):
if isinstance(self_param, ParameterExpression) or isinstance(
other_param, ParameterExpression
):
continue
if isinstance(self_param, numpy.ndarray) and isinstance(other_param, numpy.ndarray):
if numpy.shape(self_param) == numpy.shape(other_param) and numpy.allclose(
self_param, other_param, atol=_CUTOFF_PRECISION
):
continue
else:
try:
if numpy.isclose(self_param, other_param, atol=_CUTOFF_PRECISION):
continue
except TypeError:
pass
return False
return True
def _define(self):
"""Populates self.definition with a decomposition of this gate."""
pass
@property
def params(self):
"""return instruction params."""
return self._params
@params.setter
def params(self, parameters):
self._params = []
for single_param in parameters:
if isinstance(single_param, ParameterExpression):
self._params.append(single_param)
else:
self._params.append(self.validate_parameter(single_param))
def validate_parameter(self, parameter):
"""Instruction parameters has no validation or normalization."""
return parameter
def is_parameterized(self):
"""Return True .IFF. instruction is parameterized else False"""
return any(
isinstance(param, ParameterExpression) and param.parameters for param in self.params
)
@property
def definition(self):
"""Return definition in terms of other basic gates."""
if self._definition is None:
self._define()
return self._definition
@definition.setter
def definition(self, array):
"""Set gate representation"""
self._definition = array
@property
def decompositions(self):
"""Get the decompositions of the instruction from the SessionEquivalenceLibrary."""
# pylint: disable=cyclic-import
from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
return sel.get_entry(self)
@decompositions.setter
def decompositions(self, decompositions):
"""Set the decompositions of the instruction from the SessionEquivalenceLibrary."""
# pylint: disable=cyclic-import
from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
sel.set_entry(self, decompositions)
def add_decomposition(self, decomposition):
"""Add a decomposition of the instruction to the SessionEquivalenceLibrary."""
# pylint: disable=cyclic-import
from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
sel.add_equivalence(self, decomposition)
@property
def duration(self):
"""Get the duration."""
return self._duration
@duration.setter
def duration(self, duration):
"""Set the duration."""
self._duration = duration
@property
def unit(self):
"""Get the time unit of duration."""
return self._unit
@unit.setter
def unit(self, unit):
"""Set the time unit of duration."""
self._unit = unit
def assemble(self):
"""Assemble a QasmQobjInstruction"""
instruction = QasmQobjInstruction(name=self.name)
# Evaluate parameters
if self.params:
params = [x.evalf(x) if hasattr(x, "evalf") else x for x in self.params]
instruction.params = params
# Add placeholder for qarg and carg params
if self.num_qubits:
instruction.qubits = list(range(self.num_qubits))
if self.num_clbits:
instruction.memory = list(range(self.num_clbits))
# Add label if defined
if self.label:
instruction.label = self.label
# Add condition parameters for assembler. This is needed to convert
# to a qobj conditional instruction at assemble time and after
# conversion will be deleted by the assembler.
if self.condition:
instruction._condition = self.condition
return instruction
@property
def label(self) -> str:
"""Return instruction label"""
return self._label
@label.setter
def label(self, name: str):
"""Set instruction label to name
Args:
name (str or None): label to assign instruction
Raises:
TypeError: name is not string or None.
"""
if isinstance(name, (str, type(None))):
self._label = name
else:
raise TypeError("label expects a string or None")
def reverse_ops(self):
"""For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions.
It does not invert any gate.
Returns:
qiskit.circuit.Instruction: a new instruction with
sub-instructions reversed.
"""
if not self._definition:
return self.copy()
reverse_inst = self.copy(name=self.name + "_reverse")
reversed_definition = self._definition.copy_empty_like()
for inst in reversed(self._definition):
reversed_definition.append(inst.operation.reverse_ops(), inst.qubits, inst.clbits)
reverse_inst.definition = reversed_definition
return reverse_inst
def inverse(self):
"""Invert this instruction.
If the instruction is composite (i.e. has a definition),
then its definition will be recursively inverted.
Special instructions inheriting from Instruction can
implement their own inverse (e.g. T and Tdg, Barrier, etc.)
Returns:
qiskit.circuit.Instruction: a fresh instruction for the inverse
Raises:
CircuitError: if the instruction is not composite
and an inverse has not been implemented for it.
"""
if self.definition is None:
raise CircuitError("inverse() not implemented for %s." % self.name)
from qiskit.circuit import Gate # pylint: disable=cyclic-import
if self.name.endswith("_dg"):
name = self.name[:-3]
else:
name = self.name + "_dg"
if self.num_clbits:
inverse_gate = Instruction(
name=name,
num_qubits=self.num_qubits,
num_clbits=self.num_clbits,
params=self.params.copy(),
)
else:
inverse_gate = Gate(name=name, num_qubits=self.num_qubits, params=self.params.copy())
inverse_definition = self._definition.copy_empty_like()
inverse_definition.global_phase = -inverse_definition.global_phase
for inst in reversed(self._definition):
inverse_definition._append(inst.operation.inverse(), inst.qubits, inst.clbits)
inverse_gate.definition = inverse_definition
return inverse_gate
def c_if(self, classical, val):
"""Set a classical equality condition on this instruction between the register or cbit
``classical`` and value ``val``.
.. note::
This is a setter method, not an additive one. Calling this multiple times will silently
override any previously set condition; it does not stack.
"""
if not isinstance(classical, (ClassicalRegister, Clbit)):
raise CircuitError("c_if must be used with a classical register or classical bit")
if val < 0:
raise CircuitError("condition value should be non-negative")
if isinstance(classical, Clbit):
# Casting the conditional value as Boolean when
# the classical condition is on a classical bit.
val = bool(val)
self.condition = (classical, val)
return self
def copy(self, name=None):
"""
Copy of the instruction.
Args:
name (str): name to be given to the copied circuit, if ``None`` then the name stays the same.
Returns:
qiskit.circuit.Instruction: a copy of the current instruction, with the name updated if it
was provided
"""
cpy = self.__deepcopy__()
if name:
cpy.name = name
return cpy
def __deepcopy__(self, _memo=None):
cpy = copy.copy(self)
cpy._params = copy.copy(self._params)
if self._definition:
cpy._definition = copy.deepcopy(self._definition, _memo)
return cpy
def _qasmif(self, string):
"""Print an if statement if needed."""
if self.condition is None:
return string
if not isinstance(self.condition[0], ClassicalRegister):
raise QasmError(
"OpenQASM 2 can only condition on registers, but got '{self.condition[0]}'"
)
return "if(%s==%d) " % (self.condition[0].name, self.condition[1]) + string
def qasm(self):
"""Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a
different format (e.g. measure q[0] -> c[0];).
"""
name_param = self.name
if self.params:
name_param = "{}({})".format(
name_param,
",".join([pi_check(i, output="qasm", eps=1e-12) for i in self.params]),
)
return self._qasmif(name_param)
def broadcast_arguments(self, qargs, cargs):
"""
Validation of the arguments.
Args:
qargs (List): List of quantum bit arguments.
cargs (List): List of classical bit arguments.
Yields:
Tuple(List, List): A tuple with single arguments.
Raises:
CircuitError: If the input is not valid. For example, the number of
arguments does not match the gate expectation.
"""
if len(qargs) != self.num_qubits:
raise CircuitError(
f"The amount of qubit arguments {len(qargs)} does not match"
f" the instruction expectation ({self.num_qubits})."
)
if len(cargs) != self.num_clbits:
raise CircuitError(
f"The amount of clbit arguments {len(cargs)} does not match"
f" the instruction expectation ({self.num_clbits})."
)
# [[q[0], q[1]], [c[0], c[1]]] -> [q[0], c[0]], [q[1], c[1]]
flat_qargs = [qarg for sublist in qargs for qarg in sublist]
flat_cargs = [carg for sublist in cargs for carg in sublist]
yield flat_qargs, flat_cargs
def _return_repeat(self, exponent):
return Instruction(
name=f"{self.name}*{exponent}",
num_qubits=self.num_qubits,
num_clbits=self.num_clbits,
params=self.params,
)
def repeat(self, n):
"""Creates an instruction with `gate` repeated `n` amount of times.
Args:
n (int): Number of times to repeat the instruction
Returns:
qiskit.circuit.Instruction: Containing the definition.
Raises:
CircuitError: If n < 1.
"""
if int(n) != n or n < 1:
raise CircuitError("Repeat can only be called with strictly positive integer.")
n = int(n)
instruction = self._return_repeat(n)
qargs = [] if self.num_qubits == 0 else QuantumRegister(self.num_qubits, "q")
cargs = [] if self.num_clbits == 0 else ClassicalRegister(self.num_clbits, "c")
if instruction.definition is None:
# pylint: disable=cyclic-import
from qiskit.circuit import QuantumCircuit, CircuitInstruction
qc = QuantumCircuit()
if qargs:
qc.add_register(qargs)
if cargs:
qc.add_register(cargs)
circuit_instruction = CircuitInstruction(self, qargs, cargs)
for _ in [None] * n:
qc._append(circuit_instruction)
instruction.definition = qc
return instruction
@property
def condition_bits(self) -> List[Clbit]:
"""Get Clbits in condition."""
if self.condition is None:
return []
if isinstance(self.condition[0], Clbit):
return [self.condition[0]]
else: # ClassicalRegister
return list(self.condition[0])
@property
def name(self):
"""Return the name."""
return self._name
@name.setter
def name(self, name):
"""Set the name."""
self._name = name
@property
def num_qubits(self):
"""Return the number of qubits."""
return self._num_qubits
@num_qubits.setter
def num_qubits(self, num_qubits):
"""Set num_qubits."""
self._num_qubits = num_qubits
@property
def num_clbits(self):
"""Return the number of clbits."""
return self._num_clbits
@num_clbits.setter
def num_clbits(self, num_clbits):
"""Set num_clbits."""
self._num_clbits = num_clbits