Skip to content

QingruiSun/ESRGAN-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ESRGAN-pytorch

This repository implements a deep-running model for super resolution. Super resolution allows you to pass low resolution images to CNN and restore them to high resolution. We refer to the following article.
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks

architecture

[Overall Architecture] ESRGAN architecture
[Basic block]
BasicBlock

Test Code

python test.py --lr_dir LR_DIR --sr_dir SR_DIR

Prepare dataset

Use Flicker2K and DIV2K

cd datasets
python prepare_datasets.py
cd ..

custom dataset

Make dataset like this; size of hr is 128x128 ans lr is 32x32

datasets/
    hr/
        0001.png
        sdf.png
        0002.png
        0003.png
        0004.png
        ...
    lr/
        0001.png
        sdf.png
        0002.png
        0003.png
        0004.png
        ...

how to train

run main file

python main.py --is_perceptual_oriented True --num_epoch=10
python main.py --is_perceptual_oriented False --epoch=10

Sample

we are in training on this code and train is not complete yet. this is intermediate result.

About

super resolution pytorch using ESRGAN

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%