forked from bubbliiiing/yolov4-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kmeans_for_anchors.py
113 lines (90 loc) · 3.7 KB
/
kmeans_for_anchors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#-------------------------------------------------------------------------------------------------#
# kmeans虽然会对数据集中的框进行聚类,但是很多数据集由于框的大小相近,聚类出来的9个框相差不大,
# 这样的框反而不利于模型的训练。因为不同的特征层适合不同大小的先验框,越浅的特征层适合越大的先验框
# 原始网络的先验框已经按大中小比例分配好了,不进行聚类也会有非常好的效果。
#-------------------------------------------------------------------------------------------------#
import glob
import xml.etree.ElementTree as ET
import numpy as np
def cas_iou(box,cluster):
x = np.minimum(cluster[:,0],box[0])
y = np.minimum(cluster[:,1],box[1])
intersection = x * y
area1 = box[0] * box[1]
area2 = cluster[:,0] * cluster[:,1]
iou = intersection / (area1 + area2 -intersection)
return iou
def avg_iou(box,cluster):
return np.mean([np.max(cas_iou(box[i],cluster)) for i in range(box.shape[0])])
def kmeans(box,k):
# 取出一共有多少框
row = box.shape[0]
# 每个框各个点的位置
distance = np.empty((row,k))
# 最后的聚类位置
last_clu = np.zeros((row,))
np.random.seed()
# 随机选5个当聚类中心
cluster = box[np.random.choice(row,k,replace = False)]
# cluster = random.sample(row, k)
while True:
# 计算每一行距离五个点的iou情况。
for i in range(row):
distance[i] = 1 - cas_iou(box[i],cluster)
# 取出最小点
near = np.argmin(distance,axis=1)
if (last_clu == near).all():
break
# 求每一个类的中位点
for j in range(k):
cluster[j] = np.median(
box[near == j],axis=0)
last_clu = near
return cluster
def load_data(path):
data = []
# 对于每一个xml都寻找box
for xml_file in glob.glob('{}/*xml'.format(path)):
tree = ET.parse(xml_file)
height = int(tree.findtext('./size/height'))
width = int(tree.findtext('./size/width'))
if height<=0 or width<=0:
continue
# 对于每一个目标都获得它的宽高
for obj in tree.iter('object'):
xmin = int(float(obj.findtext('bndbox/xmin'))) / width
ymin = int(float(obj.findtext('bndbox/ymin'))) / height
xmax = int(float(obj.findtext('bndbox/xmax'))) / width
ymax = int(float(obj.findtext('bndbox/ymax'))) / height
xmin = np.float64(xmin)
ymin = np.float64(ymin)
xmax = np.float64(xmax)
ymax = np.float64(ymax)
# 得到宽高
data.append([xmax-xmin,ymax-ymin])
return np.array(data)
if __name__ == '__main__':
# 运行该程序会计算'./VOCdevkit/VOC2007/Annotations'的xml
# 会生成yolo_anchors.txt
SIZE = 416
anchors_num = 9
# 载入数据集,可以使用VOC的xml
path = r'./VOCdevkit/VOC2007/Annotations'
# 载入所有的xml
# 存储格式为转化为比例后的width,height
data = load_data(path)
# 使用k聚类算法
out = kmeans(data,anchors_num)
out = out[np.argsort(out[:,0])]
print('acc:{:.2f}%'.format(avg_iou(data,out) * 100))
print(out*SIZE)
data = out*SIZE
f = open("yolo_anchors.txt", 'w')
row = np.shape(data)[0]
for i in range(row):
if i == 0:
x_y = "%d,%d" % (data[i][0], data[i][1])
else:
x_y = ", %d,%d" % (data[i][0], data[i][1])
f.write(x_y)
f.close()