-
Notifications
You must be signed in to change notification settings - Fork 2
/
data_list.py
55 lines (42 loc) · 1.55 KB
/
data_list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#from __future__ import print_function, division
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
def make_dataset(image_list, labels):
if labels:
len_ = len(image_list)
images = [(image_list[i].strip(), labels[i, :]) for i in range(len_)]
else:
if len(image_list[0].split()) > 2:
images = [(val.split()[0], np.array([float(la) for la in val.split()[1:]])) for val in image_list]
else:
images = [(val.split()[0], float(val.split()[1])) for val in image_list]
return images
def rgb_loader(path):
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def l_loader(path):
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('L')
class ImageList(Dataset):
def __init__(self, image_list, labels=None, transform=None, target_transform=None, mode='RGB'):
imgs = make_dataset(image_list, labels)
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
if mode == 'RGB':
self.loader = rgb_loader
elif mode == 'L':
self.loader = l_loader
def __getitem__(self, index):
path, target = self.imgs[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, path
def __len__(self):
return len(self.imgs)