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Abstract

In this abstract we introduce a core programming framework for formally verified quan-
tum programming, called Qbricks.Thanks to it, we could implement a completely verified
scale invariant non trivial quantum calculus (phase estimation).

1 Introduction

Context. After important progresses [19] in algorithmic since 1982 [6] and the advent of the
first quantum computers, led by great investors (Google, IBM, D-Wawe, etc), the different stages
of quantum software development are now identified and start being explored: programming
languages (Quipper [10, 11], Q# [26, 27], liqui|〉 [28],Q#, Qwire [20] etc), compilers [15, 24],
assembly languages [5, 25] or optimization [13, 17, 18].

The Qram model.

The standard architecture model (Figure 1) for quantum computing is an hybrid model, called
Qram: programs are written thanks to a classical computer, which ensures the execution control
flow. This computer also controls a quantum coprocessor, by sending it computing instruc-
tions formatted as structured sequences of unitary operations (we call such sequences quantum
circuits).

Figure 1 also illustrates the human-computer interaction in the simplest scenario, when an
user requires a value f(x) that requires a single run of the quantum co processor.

∗This work was partially supported by the French National Research Agency (ANR) under the research project
SoftQPRO ANR-17-CE25-0009-02, by the DGE of the French Ministry of Industry under the research project PIA-
GDN/QuantEx P163746-484124.
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let C(f)(x)
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Figure 1: The Qram hybrid model

Problem. A crucial question rises from this model:

How a developer can get insured of the correction of the programs she writes?

This problem is crucial for programming, both in the classical and in the quantum case.
Nevertheless, due to the nature of quantum calculus, testing and debugging strategies (which are
the most widely used in classical computing) are not transposable in the quantum case. Indeed,
the destructive measurement of quantum registers makes impossible to insert run time control
assertions (they would require measurements along the execution, which would destruct the
state of the memory and falsify the rest of the execution). On an other hand, strategies based on
complete executions testing would also fail on this probabilistic frame (testing would concern
probability distributions for the output of a circuit, which would require sufficiently many test
runs to build such a distribution).

We think the solution to these dead ends should come from formal verification of programs.
In addition to offering an alternative to dead ended testing strategy, it has the decisive additional
advantages both to enable functional scale-invariant proof certificates and to offer once for all
absolute guarantee for the correction of programs.

Goal and challenge. We therefore aim at developing a complete solution for formally certified
quantum programming. We want it to meet the following requirements :

• it should provide means for writing programs straightly derived from the description of
algorithms in the literature,

• it should enable to clearly distinguish a program from its specification,

• it should provide scale invariant certifications for parametrized families of circuits,

• it should enable, as far as possible, an automatic treatment of proof obligations support.

State of the art. Some efforts have been recently made towards formal verification of quan-
tum programs, yet none of them satisfy all the identified requirements: the model-checking
approach [8, 29] is fully automatic but scale sensitive. Approaches based on Coq proof as-
sistant, such as [3] or Qwire [14, 20, 22], use formal proofs and are therefore better fitted for
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Figure 2: Certified quantum circuits in the literature

proving big calculi. So far, the approach mainly came with illustration by small examples (eg.:
coin_flip [21], teleportation [3], etc). Recently, a fragment of Qwire, called sQIRE [14], was
used to exhibit a verified parametrized implementation of the Deutsch-Jozsa algorithm. Fur-
thermore, this approach requires from the user to fully write the proofs, using the complex type
annotations system of Coq.

Matthew Amy developed a powerful semantic framework, the path-sums semantics [1, 2]
that he used for certified compilation and thanks to which he could prove the correction of
scale sensitive quantum calculi (including up to 100 qubits). These different achievements are
reported in Figure 2. The horizontal axis represents the structural complexity of circuits, from
a simple state superposition to the complete implementation of an actual algorithm. Many of
the mentioned elements being steps in the implementation of Shor algorithm, we can use it as
a milestone. On the vertical axis is the size, ie the number of qubits, of the verified quantum
circuits. The scale is logarithmic and we include the infinite limit, corresponding to parametrized
families of circuits. Our aim was to enable scale-invariant specifications and verifications for
complex circuits. As a proof of concept for our framework we implemented a fully verified
version of the phase estimation algorithm, which we also figured on Figure 2.

2 Qbricks working program

In order to reach the goals mentioned above, we are developing a core quantum certified pro-
gramming language, called Qbricks. It is embedded in the Why3 verification environment [7]
and enables writing and manipulating (families of) quantum circuits. In addition, Qbricks comes
with semantical tools. They enable to interpret quantum circuits as mathematical objects, to
write formal specifications for these circuits and to formally verify these specifications.
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Annotated programming and dual Qbricks semantics. The aim of Qbricks is to enable com-
pletely specified and proved programming in the Qram model. In the present state of its devel-
opment, specifications and proofs concern quantum circuits, which corresponds to fragments of
code for the quantum co-processor (or to the basis case scenario, where the expected outcome
requires a single run of the quantum co-processor).

In future works, we plan to implement a semantic interpretation of the measurement opera-
tion and the classical control flow at stake in the Qram model.

The overall framework is represented in Figure 3. It extends the Qram model with Qbricks.
As in the model from Figure 1, an agent aiming at computing function f programs it on a classi-
cal computer. To do so, she makes use of our Quantum circuits package, providing functions for
writing and manipulating (families of) quantum circuits. She includes in her code some speci-
fications, to get f(x) as a result. Why3 indeed provides a specification language, enabling the
annotation of code with, for example, pre- and post-conditions or loop invariants.

These specifications are logical predicates, built on a semantic interpretation of quantum
circuits (the Path-sum semantics [1, 2], denoted by L·M). In a nutshell, path-sums are an elegant
representation for tensor product and tensor product combination in a complex vectorial space.
The implementation of this semantics is deeply rooted in mathematical material written in Why3
language, that we specifically developed for this aim (package Mathematical libraries, consist-
ing in definitions and lemmas for linear algebra, binary arithmetic, complex number theory, etc).

In Figure 3, the post-condition, that the semantics of the circuit C(f) applied to x is equal
to f(x), is written

requires{LresultM = f(x)} (1)

where:

• requires is a Why3 keyword introducing post-conditions for a function

• result is a Why3 keyword designating the output of this function.

Proof obligation generation and support. From this annotated code, why3 compilation gen-
erates the proof obligations, which are mathematical formulas. In the Figure, the proof obliga-
tion generated from the specification in Equation 1 is given as

PO : ∀y.LC(f)(y)M = f(y) (2)

Note that it is built by universally quantifying the variable x appearing free in Equation 1. It
requires the semantics of C(f) to be equivalent to f .

Now, to certify the program, one has to prove that this proof obligation is satisfied by the
current logical context Ct. This logical context is made of:

• the content of the called Why3 modules. In our case they are the mathematical libraries
developed for the definition and use of the path-sum semantics, forming a mathematical
theory written Th in Figure 3,

4



let C(f)(x)
requires{LresultM = f(x)}

= . . .

?
f(x)

QRAM

x
C(f)

o(C(f), x)f(x)

Certification framework

Proof engine

Why3
transformations,

Coq

Interactive proof

CVC4, Alt-Ergo
Z3,etc.

SMT-solvers

Why3 compilation

Qbricks

Mathematical
libraries (Th)

Qbricks core

Quantum circuits

Matrix
semantics (o(·))

Path-sum
semantics (L·M)

Semantics
equivalence

Thm: ∀c, x.Lc(x)M = o(c, x)) Semantical
shortcuts

PO : ∀y.LC(f)(y)M = f(y)

Ct |= PO

f(x) = o(C(f), x)

Figure 3: The Qram hybrid model.

• the specifications for functions defined in the current module. This is of importance as typ-
ically, specifications concern a quantum circuit C defined by combination (either sequen-
tial or parallel) of simpler quantum circuits {Ck}. Then, proof support for specifications
of C can rely on the specified implementations of circuits {Ck}.

In addition to generating proof obligations, Why3 gives some means for this proof support.
Indeed it enables to send proof obligations, together with their logical contexts, to a bench of
SMT-solvers (CVC4, Alt-Ergo, Z3,etc.) for automatised verification.
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Why3 also provides an user interface in which one can enter a series of interactive commands
to simplify proof obligations so as to help SMT-solvers. A third possibility is to call the Coq
proof assistant. Using these two last possibilities requires the agent to interact with provers.

Verified program. These proof support facilities establish that the generated proof obligation
is a theorem of the current logical context (written Ct |= PO in Figure 3).

In addition to path-sum semantics, Qbricks contains a complete implementation of the matrix
semantics, which is the standard reference in quantum mechanics. So as to use it as a truth
reference for our certified implementations, we developed it together with an implemented proof
equivalence for path-sum semantics and with translation functions between these two semantics.

3 Achievements

Case study. Thanks to Qbricks, we implemented a parametrized, verified and scale invari-
ant implementation of the phase estimation [4, 16] circuit. This algorithm is one of the major
routines in quantum computing. It constitutes, for example, the purely quantum part in Shor
algorithm [23] (integer factoring), but it is also at the heart of, e.g., HHL [12] logarithmic lin-
ear system solving algorithm or quantum simulation [9]. It takes as parameter a matrix U , an
eigen-vector |v〉 and answers the eigenvalue of U corresponding to |v〉.

We propose an implementation of the phase estimation algorithm in the core case, i.e. when
the phase is a dyadic multiple of π – this is the case where the algorithm returns an exact value
instead of an approximation. The formal statement can be found in Table 1. The function
inputs the black box U and the size n: these are the parameters. The function also inputs two
ghost arguments v and k: they only serve in the specifications. The first pre-condition states
that the number of qubits is non-negative, the second that k is between 0 and 2n, and the third
that circuit U has an eigen-vector v of eigenvalue ei

k
2n
π. The first post-condition states that

the resulting circuit has n more wires than the input circuit, and the second states the ultimate
desired specification: the result circuit actually computes |k〉.

The effective function is defined in line 8, calling functions defined in the implementa-
tion: function phase_estim is defined as a sequence of two subcircuits, phase_estim_pre and
rev_place_Qft.

This overall specified implementation is 237 lines long, progressively building circuits from
elementary gates to the function from Table 1. Its compilation generates 190 proof obligations,
166 of which are automatically supported by calls to SMT solvers. We proved the 24 non
automated proof obligations by inserting 163 online transformations. These statistical data are
reported in Table 2.

Conclusion : our contribution. In its actual state of development, our proposition contains:

• a core building circuit language, consisting in a library of Why3 functions. It enables to
build and manipulate any (family of) quantum circuit(s),
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Listing 1: Phase estimation specification
1let function phase_estim (U : circuit ) (n : int )
2 (ghost v : matrix complex ) (ghost k : int ) : circuit
3 requires {0 < n}
4 requires {k ∈ J0, 2nJ}
5 requires {eigen(U, v, k

2n )}
6 ensures{sresult = n+ sU}
7 ensures{result · |0〉n ⊗ v = |k〉n ⊗ v}
8 = sequence(phase_estim_pre(U, n, v, k, n), rev_place_Qft(n, sU ))

Table 1: Core specification for phase estimation

Lines of code 237 Proof obligations (POs) 190
Number of definitions 12 Automated POs 166
Number of lemmas 2 Online transformations 163

Table 2: Statistical data about the Qbricks phase estimation implementation.

• an implementation of the mathematical theory supporting quantum circuit semantics. It is
approximately 10 000 lines of code long, and contains more than 1 000 proved lemmas in
algebra, arithmetic, set theory, complex number theory, bit vector operations, etc,

• the complete implementation of both the path-sum and the matrix semantics, together with
their equivalence proof and translation functions.
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