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ABSTRACT

While recent progress in quantum hardware open the door for significant speedup in certain key
areas, quantum algorithms are still hard to implement right, and the validation of such quantum
programs is a challenge. Early attempts either suffer from the lack of automation or parametri-
zed reasoning, or require the user to write specifications and algorithms far from those presented
in research articles or textbooks, and as a consequence, no significant quantum algorithm imple-
mentation has been currently verified in a scale-invariant manner. We propose QBRICKS, the first
development environment for certified quantum programs featuring clear separation between code
and proof, scale-invariance specification and proof, high degree of proof automation and allowing to
encode quantum programs in a natural way, i.e. close to textbook style. This environment features a
new domain-specific language for quantum programs, namely QBRICKS-DSL, together with a new
logical specification language QBRICKS-SPEC. Especially, we introduce and intensively build upon
HOPS, a higher-order extension of the recent path-sum semantics, used for both specification (para-
metrized, versatile) and automation (closure properties). QBRICKS builds on best practice of formal
verification for the classic case and tailor them to the quantum case. To illustrate the opportunity of
QBRICKS, we implement the first scale-invariant verified implementations of non-trivial quantum
algorithms, namely phase estimation (QPE) – the purely quantum part of Shor algorithm for integer
factoring – and Grover search. It proves by fact that applying formal verification to real quantum
programs is possible and should be further developed.

1 Introduction

Quantum computing is a young research field. Indeed, its birth act is usually dated 1982, when Richard Feynman [1]
raised the idea of simulating the quantum mechanics phenomena by storing information in particles and controlling
them according to quantum mechanics laws. This initial idea has become one over many application fields for quan-
tum computing (cryptography [2], deep learning [3], optimization [4, 5], solving linear systems [6], etc). In all these
domains there are now quantum algorithms beating best known classical algorithm by either quadratic or even ex-
ponential factors. In parallel to the rise of quantum algorithms, the design of quantum hardware has moved from
lab-benches [7] to programmable, 50-qubits machines designed by industrial actors [8, 9] reaching the point where
quantum computers would beat classical computers for specific tasks [8]. This has stirred a shift from a theoretical
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Figure 1: Scheme of the hybrid model

standpoint on quantum algorithms to a more programming-oriented view with the question of their concrete coding
and implementation.

In this context, a particularly important problem is the adequacy between the mathematical description of the algori-
thm and its concrete implementation as a program.

A glimpse at quantum programming Quantum algorithms are commonly described within the quantum co-
processor model [10], a.k.a. the hybrid model, where a classical computer controls a quantum co-processor holding a
quantum memory (cf. Figure 1). The co-processor is able to apply a fixed set of elementary operations to update and
query (measure) the quantum memory. Importantly, while measurement allows to retrieve classical (probabilistic)
information from the quantum memory, it also modifies it (destructive effect). The state of the quantum memory is
represented by a vector in a Hilbert space: the core of a quantum algorithm consists in successfully setting the memory
in a specific quantum state.

Major quantum programming languages such as Liqui|〉 [11], Q# [12], Quipper [13, 14], and the rich ecosystem of
existing quantum programming frameworks [15] provide dedicated features for interacting with the quantum memory
and well-suited for implementing quantum algorithms. They usually embed these features within a standard classical
programming language, with forth (send quantum instructions) and backs (get measurement results) between the
classical control loop (classic computer) and the quantum part (co-processor).

1. |0〉|u〉 initial state

2. → 1√
2t

2t−1∑
j=0

|j〉|u〉 create superposition

3. → 1√
2t

2t−1∑
j=0

|j〉U j |u〉

=
1√
2t

2t−1∑
j=0

e2πijϕu |j〉|u〉 result of blackbox

4. → |ϕ̃u〉|u〉 apply inverse Fourier transform
5. → ϕ̃u measure first register

Figure 2: Quantum phase estimation (QPE) algorithm [16, p. 225]

The problem with quantum algorithms A quantum algorithm, i.e. a sequence of elementary operations, is usually
provided in the form of Figure 2. Starting from an initial state, the algorithm describes a series of high-level operations
which, once composed, realize the desired state. Each high-level operation may itself be described in a similar way,
until one reaches elementary operations. The description of the algorithm is therefore both the specification — the
global memory-state transformation — and the way to realize it — the list of elementary operations, or quantum
circuit.

A major issue is then to verify that the circuit generated by the code written as an implementation of a given algorithm
is indeed a run of this algorithm.

The case for quantum formal verification While testing and debugging are the common verification practice in
classic programming, they become extremely complicated in the quantum case. Indeed, debugging and assertion
checking are virtually made impossible by the destructive aspect of quantum measurement, the probabilistic nature
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of quantum algorithms seriously impedes system-level quantum testing and, finally, classic emulation of quantum
algorithms is (strongly believed to be) intractable.

On the other hand, nothing prevents a priori the formal verification of quantum programs. Formal methods and
formal verification [17] design a wide range of techniques aiming at proving the correctness of a system with absolute,
mathematical guarantee – reasoning over all possible inputs and paths of the system, with methods drawn from logic,
automated reasoning and program analysis. The last two decades have seen an extraordinary blooming of the field, with
significant case-studies ranging from pure mathematics [18] to complete software architectures [19, 20] and industrial
systems [21, 22]. In addition to offering an alternative to testing, formal verification has in principle the decisive
additional advantages to both enable scale-invariant proof certificates and offer once-for-all absolute guarantees for
the correction of programs.

We will focus on a formal technique called deductive verification [23–26], that, we argue, is well suited for quantum
formal verification (cf. Section 3).

Goal and challenges Our goal is to provide a programming framework for quantum computers together with a
formal verification apparatus for certifying programs. Such a framework should satisfy the following principles:

Close to algorithmic description: It should enable to specify and code algorithms in a way that directly matches
their usual description from the literature, in order both to lower implementation & certification time and to
increase confidence in the specification;

Separation of concerns: It should enable a clear distinction between the code and the specification, in order to de-
couple implementation from certification – in particular, specification should be optional and it should be
possible to add it to a program at a later stage;

Scale-invariant proofs: It should allow scale-invariant specifications and proofs, so as to enable the generic certifica-
tion of parametrized algorithms. This is crucial as quantum algorithms are always described as parametrized
families of circuits;

Proof automation: It should, as far as possible, provide automatic proof means. Indeed, the certification of a pro-
gram should be as painless as possible to the programmer in order to be adopted.

These requirements raise several challenges from the formal verification point of view. Indeed, while questions about
semantic, properties, specification and efficient verification algorithms have been largely investigated in the standard
case, everything remains to be done in the quantum case. For example:

• non-standard data: quantum algorithms rely heavily on amplitudes (generalization of probabilities to arbi-
trary complex numbers), not studied at all in standard verification;

• second-order reasoning: we are interested here in parametrized circuit-building programs, i.e. programs
that do not describe fixed-size circuits but families of circuits. We therefore want to be able to assert — and
check— specifications satisfied by such families.

The major scientific questions at stake here are: (1) How to specify quantum programs in a natural way? (2) How to
support efficient proof automation for quantum programs?

As a matter of fact, prior works on quantum circuit formal verification do not fully reach these goals.

Prior attempts We summarize in Table 3 the state of the art against the requirements laid above for proving prop-
erties of quantum circuits. Efforts for proving properties of general quantum programs involving measurements are
considered in Section 9. Model-checking approaches [27, 28] are fully automatic but highly scale-sensitive. Methods
based on proof assistants (here, Coq), such as [29] or Qwire [30, 31], lack proof automation (interactive proving) and
deeply mix code and specification. Moreover, the underlying matrix semantic makes it cumbersome to specify and
prove programs – so far the approach only came with illustration by small examples (e.g. coin_flip [32], teleporta-
tion [29], etc). More recently, Matthew Amy developed a powerful framework for reasoning over quantum circuits,
the path-sums semantics [33, 34], which can be made functional and which is closed with respect to the functional
composition and the Kronecker product. Thanks to their good closure properties, path-sums can be used to prove the
correction of problem instances larger than existing methods (up to 100 qubits). Yet, the method is still unable to
address scale-invariance: being completely disconnected from the structure of the program describing the circuit, they
can address one specific, fixed circuit, but they cannot handle a circuit parametrized by a problem instance.

Previous practical verifications of quantum implementations are reported in Figure 4, where the horizontal axis gives
the structural complexity of the quantum circuits, and the vertical axis gives the size in qubits (∞ corresponds to the
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• Scale invariance
• Specifications fitting algorithm
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Table 3: Formal verification of quantum circuits

Size (number of qbits)

Difficulty
10

100

1000

∞

Superposition
coin flip

teleportation

QFT Grover QPE
Shor algorithm

Shor algorithm

×[29] ×[27, 28]

×
[30–32]

×[30–32]
×[33, 34]

THIS ARTICLE⊗⊗ ⊗

Figure 4: Certified quantum circuits from the literature

parametrized case). No significant quantum algorithm (e.g., Shor) has been formally verified so far. Also, the only
existing scale-invariant proof concerns a toy example (the coin_flip protocol in [32]).

Finally, we indicate where our proposal stands: we can verify QFT, Grover and QPE in a parametrized (scale-
invariant) manner, making a clear progress w.r.t. prior proofs.

Proposal and contributions We propose QBRICKS, the first development environment for certified quantum pro-
grams featuring clear separation between code and proof, scale-invariant specification and proof, high degree of proof
automation and allowing to encode quantum programs in a natural way, i.e. close to textbook style. QBRICKS builds on
best practice of formal verification for the classic case (separation of concerns, flexible logical specification language,
proof automation, domain-based specialization) and tailors them to the quantum case.

More precisely, QBRICKS builds upon the domain-specific language QBRICKS-DSL together with the logical spe-
cification language QBRICKS-SPEC. QBRICKS-SPEC is expressive enough to offer higher-order certification of pro-
grams: certification of parametrized programs. The key cornerstone behind QBRICKS is the new notion of higher-order
path-sums (HOPS), an extension of the well-defined path-sum semantics enabling parametrized reasoning while keep-
ing good closure properties – HOPS prove extremely useful both as a specification mechanism and as an automation
mechanism.

In the end, we bring the following contributions:

Framework. A programming and verification framework, that is: one one hand, a core domain-specific language
(QBRICKS-DSL) for describing families of quantum circuits, with an expressive power analogous to that of
preexisting languages such as Quipper [14] or QWIRE [30]; on the other hand, a logical, domain-specific,
specification language (QBRICKS-SPEC), tightly integrated with QBRICKS-DSL to specify properties of pa-
rametrized programs representing families of quantum circuits;

Higher-Order Path-Sums. A flexible semantics integrated withing QBRICKS-SPEC and building upon the recent
path-sum semantics [33, 34]. Our semantics, called higher-order path-sums (HOPS) (Section 3.3), retains
the compositional and closure properties of regular path-sums while allowing versatility and parametricity
of both specifications and proofs: HOPS expressions not only contain regular path-sum constructs but also
general terms from QBRICKS-DSL. Especially, HOPS provides a unified and powerful way to reason about
many essential quantum concepts (Section 3.4);

Automation This framework is embedded in the Why3 deductive verification tool [26, 35], providing proof automa-
tion mechanisms dedicated to the quantum case – this material is grounded in standard mathematics theories
—linear algebra, arithmetic, complex numbers, binary operations, etc.— with 450+ definitions and 1,000+
lemmas (Table 12). The Why3 embedding comes with a series of semantic shortcuts designed to increase the
overall level of proof automation, based on high-level composition rules and circuit subclasses with simple
HOPS semantics (Section 6);

Case studies We present a scale-invariant proven implementation of quantum phase estimation (QPE) [36, 37] in
Section 7. This algorithm is one of the major routines in quantum computing. It constitutes, for example,
the purely quantum part in Shor algorithm [2] (integer factoring), but it is also at the heart of, e.g., HHL [6]
logarithmic linear system solving algorithm or quantum simulation [38]. We also discuss several proofs
of the Quantum Fourier Transform (QFT) —a subroutine of QPE, and we present a scale-invariant proven
implementation of the Grover algorithm [39]. Altogether, this illustrates the genericity of our approach and

4



Toward certified quantum programming A PREPRINT

the strong interest of HOPS as a specification mechanism. These implementations constitute the first scale-
invariant, non-trivial proven quantum programs ever published.

Discussion The scope of this paper is limited to proving properties of quantum circuits; although a goal we have in
mind, we do not claim to support right now the interaction with the classical computer, nor the probabilistic side-effect
resulting from the measurement. Also, we do not claim any novelty in the proofs of QPE or Grover by themselves,
but rather the first parametric correctness proofs of the circuits produced by programs implementing QPE or Grover
against their specifications. Note that these are second-order proofs, since the programs —and therefore the circuits—
are parametrized by problem instances. Finally, it should be noted that QBRICKS manipulates circuits as objects (as
in qPCF [40]) rather than as functions (as in Quipper [14]). In particular, qubits are not addressable objects. However,
this is not a problem if one only considers circuits: quantum circuits are in general described as sequences of blocks.

That said, we present the first non trivial, scale-invariant proofs of significant quantum programs – where prior works
were limited to toy examples. It proves by fact that applying formal verification to real quantum programs is possible
and should be further developed. From a formal methods point of view, our results show that the general methodologies
and tools developed for the classical case can be reused to a large extent to the quantum case, if properly tuned – setting
the ground for further developments.

We want also to clarify the novelty of the development of deductive verification for quantum computation. Instead of
a settled, off-the-shelf utility, deductive verification is a general framework. The fact that it could indeed be tamed for
proving properties related to linear algebra over complex numbers was not clear up front. The fact that it was possible
to shape it to play along so well with automated theorem provers was even a surprise to some of us. We believe it is
clearly a novel result worth broadcasting.

2 Quantum Algorithms and Programs

In classical computing, the smallest piece of information lives in a discrete set consisting of one of two possible states
(usually represented as 0 and 1). The equivalent in quantum computation [16] is the so-called quantum bit (or qubit),
denoted in the Dirac notation with |0〉 and |1〉. However, unlike the conventional case, the state of a quantum bit is
described by amplitudes over the two elementary states, i.e. linear combinations α0|0〉 + α1|1〉 where α0 and α1 are
any complex values satisfying |α0|2 + |α1|2 = 1. In general, a piece of quantum data is represented with a normalized
vector in a finite-dimensional Hilbert space.

When joining classical data together, the state of the resulting system lives in the product space of the original state
spaces. In quantum computation, it instead lives in the Kronecker product (or tensor product) of the original state
spaces. In the case of two qubits, the tensor space is generated by the basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉 and |1〉 ⊗ |1〉,
usually represented as |00〉, |01〉, |10〉 and |11〉, or as |0〉2, |1〉2, |2〉2 and |3〉2.

Thus, while a classical register of n bits is in one of the 2n possible combinations of n states in {|0〉, |1〉}, the state
of a quantum register of n qubits is in any superposition of these 2n combinations, that is any |u〉n =

∑2n−1
k=0 αk|k〉n

such that
∑2n−1
k=0 |αk|2 = 1. Such a vector is called a ket and integer n is its length, written lu.

2.1 Quantum operations

The core of a quantum algorithm consists in the manipulation of a register of qubits. Two main kinds of operations
are used. The first kind consists in quantum gates: local operations on a fixed number of qubits, whose action consists
in the application of a unitary map to the corresponding Hilbert space, i.e. a linear, bijective operation preserving
the tensor product (i.e. preserving norm and orthogonality). The fact that unitary maps are bijective ensures that
every unitary gate admits an inverse. Unitary maps are usually represented as matrices as the spaces are finite-
dimensional. The other main kind of operations is measurement: the retrieval of classical information out of the
quantum memory. This operation is probabilistic and modifies the global state of the system: measuring the n-qubit
system

∑2n−1
k=0 αk|k〉n returns n bits in state k with probability |αk|2.

Quantum gates might be applied in sequence or in parallel: sequence application corresponds to map composition
(or, equivalently, matrix multiplication), while parallel application corresponds to the Kronecker product, or tensor
product, of the original maps – or, equivalently, the Kronecker product of their matrix representations.
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2.2 Quantum circuits

In a similar way to classical Boolean functions, the application of quantum gates can be written in a diagrammatic
notation: the quantum circuits. Qubits are represented with horizontal wires and gates with boxes. Circuits are built
compositionally, from a given set of atomic gates and by a small set of circuit combinators, including: parallel and
sequential compositions, circuit inversing, controlling, iteration, etc.

|0〉 . . .H

...

...

. . .

|0〉 . . .H

. . .. . .

. . .. . .. . .

U20

U21

U2n−1

inverse(QFT (n))

•

•

•

|v〉

|0〉 . . .H

. . .. . .

. . .. . .. . .

U20

U21

U2n−1

inverse(QFT (n))

•

•

•

|v〉

Figure 5: The circuit for QPE

As an example of a quantum circuit, we show in Figure 5 the bird-eye view of the circuit of the phase-estimation
algorithm. Parametrized by n (size) and U (unitary), it is made of several parts. First, a register of n qubits is
initialized in state |0〉, while another one is initialized in state |v〉. Then comes the circuit itself: a structured sequence
of quantum gates. It uses the elementary unary Hadamard gate H and the circuits U2i and inverse(QFT (n))
(the reversed Quantum Fourier Transform). Both are defined as sub-circuits in a similar way. For the purpose of the
current discussion, one should simply note two things. First, the circuit is made of parallel compositions of Hadamard
gates and of sequential compositions of controlled U2i (the controlled operation is depicted with vertical lines and the
symbol •). Second, the circuit is parametrized by n and by U . This is very common: in general, a quantum algorithm
constructs a circuit whose size and shape depend on the parameters of the problem. It therefore describes a family of
quantum circuits.

2.3 Quantum algorithms

Quantum algorithms intend to solve classical problems in a probabilistic way. For example, the phase estimation algo-
rithm (QPE) [36,37] takes as parameter a matrix U , an eigenvector |v〉 and answers the eigenvalue of U corresponding
to |v〉. If it is possible for the algorithm to answer in a deterministic way (we call this case QPE-core in the rest of the
paper), in general it only answers it up to some probability. Another example that we study in this paper is Grover’s
search algorithm [39]: given a sparse non-zero function f : {0 . . . 2n − 1} → {0, 1}, Grover’s algorithm outputs one
value x such that f(x) = 1 with a probability high-enough to beat brute-force search. This is true in general: a quan-
tum algorithm is usually designed in such a way that it solves the (classical) problem more efficiently than existing
classical algorithms.

A quantum algorithm consists in the generation of a quantum circuit based on the parameters to the problem (e.g. the
size of the instance), usually followed by an iteration of the following three steps: memory initialization, run of the
quantum circuit, measure of the memory to retrieve a classical piece of data.

The quantum circuit is seen as a predictive tool that probabilistically gives some (classical) information from which one
can infer the targeted result. The fact that the probability is high enough is a direct consequence of the mathematical
properties of the unitary map described by the quantum circuit. The essence of the quantum algorithm —and the
reason for its efficiency— consists in describing an efficient circuit realizing this unitary map.

Obtaining guarantees on the families of circuits realized by quantum programs is therefore of uttermost importance.

2.4 Path-Sum Semantics

Historically the semantics for quantum circuits has been given in term of unitary matrices [16] acting on Hilbert
spaces, that is, the canonical mathematical formalism for quantum computation. If this semantics is well-adapted for

6



Toward certified quantum programming A PREPRINT

PS(x) ::=
1
√

2
n

2n−1∑
k=0

e
2·π·i·Pk(x)

2m |φk(x)〉

Pk(x) ::= xi | n | P1(x) · P2(x) | P1(x) + P2(x)

|φk(x)〉 ::= |b1(x)〉 ⊗ . . .⊗ |bn(x)〉
bi(x) ::= xi | ¬b(x) | b1(x) ∧ b2(x) | b1(x)⊕ b2(x) | true | false

Figure 6: Syntax for regular path-sums [33, 34]

representing simple high-level circuit combinators such as the action of control or inversion, it is cumbersome for
specifying the semantics of general circuits.

Quantum circuits make great use of complex values of modulus 1, which are values e2πiθ for a given real parameter θ,
which is itself a value in [0, 1[ (we call it a phase, or angle). Angles are invariant through translation: any such angle
θ is equal to θ + 1.

A recent semantics is building on this notion of angle and has been shown successful as a medium for proving equiv-
alence of general quantum circuits: the so-called path-sum semantics [33, 34]. Its strength is to formalize the notation
used in e.g. Figure 2. The path-sum of a unitary matrix U is then written as U : |x〉 7→ PS(x) where x is a list of
booleans. PS(x) is defined with the syntax of Figure 6. The Pk(x) are called phase polynomials while the |φk(x)〉
basis-kets.

This semantics is closed under functional composition and Kronecker product. For instance, if V sends y to PS′(y) =
1√
2
n′
∑2n

′
−1

k=0 exp
(

2·π·i·P ′k(y)

2m′

)
|φ′k(y)〉, then U ⊗ V sends |x〉 ⊗ |y〉 to

1
√

2
n+n′

2n+n′−1∑
j=0

e
2·π·i(2m

′
·Pj/2n (x)+2m·P ′

j%2n
(y))

2m+m′ |φj/2n(x)〉 ⊗ |φ′j%2n(y)〉

that is in the form shown in Figure 6.

However, if it has been shown successful to prove the equivalence of large circuit instances [34], its main limitation
stands in the fact that each path-sum only address fixed-size circuit. Albeit a useful, compositional tool, as it stands it
therefore cannot be used for proving properties of general, parametrized quantum programs.

This paper proposes an extension of path-sum semantics to address the certification of general quantum programs.

3 Our Proposal for Certification

A common way to describe quantum algorithms in the literature is to declare, or describe, either semi-formally or
in natural language, a sequence of unitary operations to be implemented, inter-crossed with a sequence of formal
assertions describing the evolution of the state of the system along the performance of these functions.

The example in Figure 2 illustrates this case: it corresponds to the exact description of the phase estimation algorithm
(QPE) at it is written in [16, p. 225]. The formal description of state, left column in Figure 2, is interpretable as
specifications for the operations declared in the right column. For example, operation create superposition is declared
on the right column, line 1. We interpret the formal expression of line 1, left (framed in blue), as its precondition and
the one of line 2, left (framed in red), as its post-condition.

The problem solved with QBRICKS is to be able to insert — and prove — the formal assertions given in a program
description such as Figure 2 in a concrete implementation. In particular, we target a scalable solution, where one can
certify quantum algorithms seen as describing families of circuits of arbitrary size.

We want to emphasize the scope of the problem: QBRICKS is aimed at certifying families of circuits, representing
unitary gates. In particular, QBRICKS is not designed for the classical and probabilistic interaction with the classical
computer.

Our key observation here is that standard quantum algorithm descriptions match perfectly with the process of deductive
program verification [23, 24], a well established formal method. .
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3.1 Deductive verification for quantum programs

Deductive program verification [23–26] is probably the oldest formal method technique, dating back to 1969 [23]. In
this approach, programs are annotated with logical assertions, such as pre- and post-conditions for operations or loop
invariants, then so-called proof obligations are automatically generated (e.g., by the weakest precondition algorithm)
in such a way that proving (a.k.a. discharging) them ensures that the logical assertions hold along any execution of the
program. These proof obligations are commonly proven by help of proof assistants or automatic solvers.

In more details, for any function f , annotations by precondition pre and postcondition post are to be understood as a
contract for the implementation: the programmer commits to ensuring that the output of f satisfies post for any input
satisfying pre, which, in essence, translates into

∀x.pre(x)→ post(f(x))

Suppose that the function f is defined, specified and verified. And suppose one defines and specifies a further function
g, using a call f(a) to f . This generates a new proof obligation . To fulfill it, the already verified proof obligation for
f is assumed as an hypothesis.

Thanks to the computational structure of circuits, we can define them through functions systematically calling their
subcircuits. The specification of a circuit can be derived through the specifications of its sub-circuits.

3.2 Rational for the design of QBRICKS

We adopt the methodology presented in Section 3.1 for the development of QBRICKS: it is equipped with a domain
specific language (DSL) for describing circuits, a target datastructure for concretely representing circuits, and a set of
specific logical constructs for expressing constraints.

Circuit representation The language QBRICKS is only aimed at implementing algorithms and specifications pro-
vided in the form of Figure 2. The circuits used in quantum algorithms act in general on contiguous blocks of memory
registers and consist of simple compositions and hierarchical descriptions. Thus, unlike existing quantum program-
ming languages such as Quipper [14] or QWIRE [30], for QBRICKS there is no need for complex wire manipulation.

Following this analysis, the low-level circuit-representation we choose as a target QBRICKS is akin to the one of
qPCF [40]: a circuit is a simple compositional structure consisting of base gates and circuit combinators such as
sequential and parallel composition, control, inversion, etc. These constructions are packaged withing a domain-
specific language (DSL) aimed at describing families of circuits.

Semantics of quantum circuits As mentioned in Section 2.4, if path-sums offer a compositional specification frame-
work, they address the case of fixed-size circuits. In particular, one cannot give specification to general, parametrized
programs describing families of circuits.

QBRICKS proposes a solution to this limitation, by unifying what can be done with the matrix and the path-sum
semantics. Our proposal is a higher-order path-sum semantics (HOPS). One one hand, we keep the functional view on
the action of circuits on quantum registers, making it suitable for deductive verification. On the other hand, we extend
its syntax to support parametric circuit construction, high-level circuit combinators and reference to QBRICKS-DSL
constructs.

Implementation We implement QBRICKS as a domain-specific language embedded in the Why3 deductive verifi-
cation tool [26, 35], allowing to take advantage of its advanced programming, specification and verification features
for classical programs. We add all quantum-related features on top of it.

3.3 Key elements behind QBRICKS

QBRICKS is structured as a domain-specific language (DSL), called QBRICKS-DSL, and a domain-specific logical
specification language, called QBRICKS-SPEC.

Domain-specific language The DSL QBRICKS-DSL is an ML-style language with an (opaque) datatype circ as
the medium to build and manipulate circuits. The core of QBRICKS-DSL can be presented as a simply-typed lambda-
calculus, presented in Figure 7. On top of circ, the type system of QBRICKS-DSL features the type of integers int
and the arrow-type. This type system is not exhaustive and is meant to be extended with usual constructs such as
booleans, pairs, lists, and other user-defined inductive datatypes: its embedding into WhyML makes it easy to use
such types.

8
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Types A,B ::= circ | int | A→ B | · · ·
Circuit Terms C ::= Ph(θ) | H | CNOT | Rz(θ) | parallel(M,N) | sequence(M,N)

invert(M) | control(M) | ancilla(M) | size(M) |
Terms M,N ::= C | n | θ | x | λx.M |MN | let rec f x = M inN | · · ·

Figure 7: Syntax for QBRICKS-DSL

Ph(n)

H

Rz(n)

CNOT

parallel(M,N)

sequence(M,N)

M

N

M N
ancilla(M)

M
|0〉

M1
M3

M2

M4

M5

M6

M7

M5

M6

M7

M3

M4

M1

M2

invert

M1
M3

M2

M4

M5

M6

M7

control

Figure 8: Circuit combinators

The core language constructs of QBRICKS-DSL consists of two main parts

• Circuit Terms, for the construction and manipulation of circuits (in blue). They consists of basic elemen-
tary gates and high-level combinators. See Figure 8 for a graphical presentation of the semantics of the
combinators in term of circuit.

– Basic elementary gates. Ph(θ) standing for the global phase e2·i·θ( 1 0
0 1 ) on one qubit, H for the

Hadamard gate 1√
2
( 1 1

1 −1 ), CNOT for the control-not gate, and Rz(θ) for the phase shift around the

Z-axis
(
e−2·i·π·θ 0

0 e2·i·π·θ

)
. All of these constructs have type circ.

– High-level circuit combinators. parallel stands for parallel composition of circuits, sequence for
sequential composition, invert for the inversion, control for the controlling of circuits: control(M)
takes the circuit built by M and control it using one additional line on top of it. Finally, ancilla(M)
stands for the circuit built by M and where the last wire of M is initialized at |0〉 before the circuit M
and discarded after. Finally, size(M) return the number of wires of M . Provided that their input is of
type circ, the output of all combinators is circ, except size for which it is int.

• Regular ML-like constructs such as: integer constants (n, k, . . . ), term variables (x, f , . . . ), lambda terms
(λx.M ), application (MN ), and let-rec construction to permit recursion. As for types, this is not meant to
be exhaustive, and the language can be equipped in the standard way with constructs to manipulate integers,
booleans, lists, etc.

The typing rules are the usual ones for simply-typed lambda-calculus, and the semantics of QBRICKS-DSL is the usual
operational semantics for the lambda-calculus part, and a standard circuit-building semantics for circ objects. The
target low-level representation for a program of type circ is a circuit datastructure. It will be formalized in Section 4:
for the purpose of this discussion it is enough to consider a circ type with constructors parallel, sequence, together
with the constant gates.

Universality and usability of the chosen circuit constructs In QBRICKS-DSL, we use a restricted, small set of
elementary circuit building blocks. For instance, we have not included the NOT-gate ( 0 1

1 0 ) nor the SWAP gate sending
|xy〉 to |yx〉. This is a design choice: the chosen elementary gates are not meant to be convenient but simple to specify
yet forming a universal set of gates: A universal (resp. pseudo-universal) set of elementary gates is such that they can
be composed thanks to sequence or parallelism so as to perform (resp. approach arbitrarily close) any quantum unitary
matrix.

Other, more convenient gates (such as the swap operation) can then be defined as macros on top of them. If one aims at
using QBRICKS inside a verification compilation toolchain, these macros can for instance be the gates of the targeted
architecture.
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Validity of circuits A circuit is represented as a rigid rectangular shape with a fixed number of input and output
wires. In particular, there is a notion of validity: a circ object only makes sense provided two constraints:

• in sequence(C1, C2), the two circuits C1 and C2 should have the same number of wires (i.e. the same size).
This is a simple syntactic constraint;

• in ancilla(C1), the circuit C1 should have n+ 1 wires. Moreover, if given as input a vector where the last
qubit is in state |0〉, its output should also leave this qubit in state |0〉. This condition is on the other hand a
semantic constraint.

Note that even the syntactic constraints cannot be checked by a simple typing procedure, because of the higher-order
reasoning involved here: the constraints must hold for any value of the parameters. All these syntactic and semantic
constraints are thus expressed in QBRICKS-SPEC, our domain-specific logical specification language, and then sent as
proof obligation to the proof engine.

Logical specification language QBRICKS-SPEC consists of a set of dedicated relations and functions, together with
a language of algebraic expressions on top of a first-order logic, together with the otherwise standard logical libraries
to express constraints coming from e.g. arithmetic, complex or real theories.

The formulas expressing semantical constraints used in QBRICKS-SPEC are of the form

∀~x : ~A · P (~x) −→ (M : Exp1 7→ Exp2)

meaning “For all typed variables x1 : A1, . . . , xn : An of QBRICKS-DSL, provided that the property P (~x) is satisfied,
then the circuit corresponding to the term M (of type circ) maps the algebraic expression Exp1 to Exp2”.

In particular, M is an open term of QBRICKS-DSL (of type circ) with free variables contained in ~x; P (~x) is a logical
property that should be satisfied by a substitution of ~x; finally, Exp1 and Exp2 are algebraic expressions parametrized
with ~x. This is the main novelty compared with existing approaches: the logical specification language QBRICKS-
SPEC is tightly integrated with the domain-specific, circuit description language QBRICKS-DSL, in the sense that
QBRICKS-SPEC can natively invoke program parameters. This makes it possible to specify general programs describ-
ing families of circuits. The syntax of these algebraic expression is the so-called higher-order path-sums (HOPS),
defined below.

Note how ~x has two roles: it is there both for the parameter describing the shape of the circuit and the input to the
circuit.

Higher-order path-sum semantics (HOPS) In term of semantics of quantum programs, the main novelty of
QBRICKS is to be able to reason on open terms seen as circuit description, parametrized programs. To do so, we build
upon the recent proposal of path-sums [33,34]. We define the notion of higher-order path-sums (HOPS) in Figure 9. In
the table, Pk(~x) is called the phase polynomial, range(~x) the range and |φk(x)〉 the basis ket. In QBRICKS-SPEC our
syntax for phase polynomials extends the standard definition by allowing general, open terms of type int in place of
polynomial variable or constant, with free variables ranging in ~x. In the original path-sum semantics, basis kets were
defined as simple boolean polynomials. In QBRICKS-SPEC, we extend this syntax with the possibility to introduce an
arbitrary open term N with free variables ranging in ~x. This is useful e.g. when using oracles. This integration with
QBRICKS-DSL brings two decisive advantages compared to the original path-sums:

• Parametricity and compositionality. Because of the sharing of term variables between QBRICKS-DSL
terms and HOPS, QBRICKS-SPEC gives the ability to give specification to general programs describing fam-
ilies of circuits instead of fixed-size circuits. QBRICKS-SPEC opens path-sums to higher-order specification
and verification while retaining the vertical and horizontal compositional properties;

• Versatility. Thanks to the integration within a logical framework, QBRICKS-SPEC gives the ability to define
—and reason— upon logical macros asserting useful constraints related to probabilities, eigenvalues, etc (See
Section 3.4).

3.4 Specifying quantum programs with QBRICKS

It is possible in QBRICKS to give to functions pre- and post-conditions that are, respectively, requiring conditions on
function arguments and ensuring properties for the results of functions. Along composition of functions, the pre- and
post-conditions are chained as sketched in Section 3.1 to generate proof-obligations sent to the proof engine. We show
the specifications for the native circuit combinators in Table 10 (we omit the one for size as it is trivial).
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HOPS(~x) ::=
1

√
2

range(~x)

2range(~x)−1∑
k=0

exp(
2 · π · i · Pk(~x)

2n(~x)
)|φk(~x)〉

Pk(~x) ::= N | P1(~x) · P2(~x) | P1(~x) + P2(~x) |
|φ(~x)〉 ::= |N〉 | |φ1(~x)〉 ⊗ |φ2(~x)〉

Figure 9: Syntax for Higher-Order Path-Sum (HOPS)

result = parallel(M1,M2)
pre: size(M1) = n1

size(M2) = n2

∀~x · (M1 · |~x〉 7→ HOPS1(~x))
∀~y · (M2 · |~x〉 7→ HOPS2(~y))

post: size(result) = n1 + n2

∀~x · ∀~y · (result · |~x〉 ⊗ |~y〉 7→ HOPS1(~x)⊗ HOPS2(~y))

result = sequence(M1,M2)
pre: size(M1) = n

size(M2) = n
∀~x · (M1 · HOPS1(~x) 7→ HOPS2(~x))
∀~x · (M2 · HOPS2(~x) 7→ HOPS3(~x))

post: size(result) = n

∀~x · (result · HOPS1(~x) 7→ HOPS3(~~x))

result = control(M)
pre: size(M) = n, m = 2n,

∀~x ·
(
M · |~x〉m 7→ 1√

2
m

∑2m−1
k=0 exp( 2·π·i·Pk(~x)

2m′(~x)
)|φk(~x)〉m

)
post: size(result) = n+ 1

∀~x ·
(
result · |b〉1 ⊗ |~x〉m 7→ 1√

2
m

∑2m−1
k=0 exp(

2·π·i·P ′k(~x)

2m′(~x)
)|b〉1 ⊗ |φ′k(~x)〉m

)
where P ′k(~x) = if b thenPk(~x) else 0
and φ′k(~x) = if b thenφk(~x) else ~x

result = ancilla(M)
pre: size(M) = n+ 1, m = 2n,

∀~x ·
(
M · |0〉1 ⊗ |x〉m 7→ 1√

2
m

∑2m−1
k=0 exp( 2·π·i·Pk(~x)

2m′(~x)
)|0〉1 ⊗ |φk(~x)〉m

)
post: size(result) = n

∀~x ·
(
result · |x〉m 7→ 1√

2
m

∑2m−1
k=0 exp( 2·π·i·Pk(~x)

2m′(~x)
)|φk(~x)〉m

)
result = invert(M)
pre: ∀~x · (M · HOPS1(~x) 7→ HOPS2(~x))
post: ∀~x · ((M · HOPS2(~x) 7→ HOPS1(~x))

Table 10: Pre- and Post-conditions for the native circuit combinators

Extending the logical specification language The logical framework of QBRICKS-SPEC provided by HOPS gives
the possibility to define many useful macros for expressing desired constraints such as probability, eigenvalues, and
even algebraic operations on operators.

Eigenvectors and eigenvalues. One of the common need in the specification of quantum programs (and in particular
in the case of QPE) is the need for asserting that a particular vector Exp1 is a eigenvector of the unitary map
described by some program M , with eigenvalue Exp2. In QBRICKS-SPEC we define a macro Eigen(M ·
Exp1) = Exp2 being valid whenever Exp2 is a complex number of norm 1 and (M : Exp1 7→ Exp2 · Exp1)

Probabilities. A quantum program is usually a probabilistic program: it returns the desired result with a probability
that depends on the problem parameters (number of iteration, structure of the problem, etc). If one aims at
fully specifying such programs, this probability therefore needs to be expressible as post-condition.

As recalled in Section 2.1, the probability of obtaining a result by a measurement is correlated with the
amplitudes of the corresponding ket-basis vectors in the quantum state of the memory. In QBRICKS-SPEC
we define a macro ProbMeas(M ·Exp1 _/ |N〉m⊗|?〉n) = Exp2 meaning that whenever measuringM ·Exp1,
a basis-ket vector of the form |N〉m ⊗ |?〉n is reached with probability Exp2. One can define a similar macro
to specify that the probability is at least Exp2.
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result = QPE(C : circ, k : nat, n : nat)
pre: n = k + size(C)

0 ≤ θ < 1

Eigen(C · |y〉n−k) = e
2·π·i·θ

2n

post: dyadick(θ) = z −→
ProbMeas(result · |0〉k ⊗ |y〉n−k _/ |z〉k ⊗ |?〉) = 1

approxk(θ) = z −→
ProbMeas(result · |0〉k ⊗ |y〉n−k _/ |z〉k ⊗ |?〉) ≥ 4

π2

result = Grover(f : {0 . . . 2n − 1} → {0, 1}, k : nat)
pre: ∃x · f(x) = 1
post: size(result) = n

ProbMeas(result · |0〉n _/ |x〉k) =

sin2
(

arcsin
(

card(f−1(1))√
2n

)
· (1 + 2 · k)

)
Table 11: Specifications for QPE and Grover

The instance with an equal sign can be defined as the logical formulaM : Exp1 7→
1

√
2

range(~x)

2range(~x)−1∑
k=0

e
2·π·i·Pk(~x)

2f(~x) |φk(~x)〉m+n

 −→

∀K · partitionrange(~x)(K) −→ Exp2 =
1

2range(~x)

∑
I∈K

∣∣∣∣∣∑
k∈I

e
2·π·i·Pk(~x)

2f(~x)

∣∣∣∣∣
2

is valid, where partitionn(K) means that K is a partition of {0 . . . 2n − 1} (also expressible as a logical
formula in QBRICKS-SPEC).
Note how this formula is completely parametrized by the free variables ~x: these can appear without restriction
in the HOPS and in both the input ket-vector Exp1 and the resulting measure Exp2.

Algebraic operations on operators. In the course of the proof of quantum specification, it is sometimes useful to
be able to manipulate algebraic expressions containing building blocks such as rotations or projectors. In
QBRICKS-SPEC, with the use of HOPS it is possible to define such objects as macros, and then prove algebraic
equalities between them. The use of HOPS gives us the possibility to specify —and prove— equalities
parametrized by problem instances. This is used extensively in the proof of the Grover specification.

Using these macros, it is then possible to give the specification of an implementation of QPE as shown in Table 11. The
property dyadick(θ) = z states that z is the exact dyadic representation of θ on k bits, while approxk(θ) = z states
that z is the best one on k bits. The first post-condition corresponds to QPE-core, when the algorithm is deterministic,
while the second post-condition is the general case. Similarly, as shown in Table 11 one can specify an implementation
of Grover’s algorithm as follows. Here, k is the number of iterations.

3.5 QBRICKS’s proof engine

QBRICKS, through its host language Why3, provides means to validate proof obligations, either by sending them to a
herd of automatic SMT-solvers (CVC4, Alt-Ergo, Z3, etc.), or to proof assistants (Coq, Isabelle/HOL). We also benefit
from the interactive proof simplification mechanism from Why3.

Statistics about QBRICKS implementation are given in Table 12. Notice the volume of mathematical libraries in the
overall development. The line Generic functions corresponds to definitions for derivated (families of) circuits that are
recurrent patterns in quantum algorithmic (e.g. controlled operations, inverting circuits functions, etc.).

4 Building circuits in QBRICKS

In this Section we focus on the recursive building of quantum circuits and their mathematical interpretation in
QBRICKS.

4.1 Conventions for circuit construction

QBRICKS provides various means to build and manipulate circuits and families of circuits. Three approaches can be
followed. A first approach consists in progressively assembling elementary gates into more complex ones, just as
bricks in a wall or a construction game (hence the name QBRICKS). A more generic method is to construct families of
circuits: circuit parametrized by a size, a subcircuit, or a combination of both (cf. circuit of Figure 5). Providing such
means is crucial in order to fit the (almost always parametrized) description of algorithms from the literature. Finally,
QBRICKS allows one to build and use functional circuit combinators, such as controlling, iterating, inverting circuits
(see Section 7.2), etc.
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Lines of code Lemmas Modules Definitions
Mathematics libraries 14695 1614 77 328
Sets 532 59 4 14
Algebra 2091 190 10 37
Arithmetics 538 77 4 7
Binary arithmetics 1778 189 8 42
Complex numbers 2226 344 15 57
Quantum data 3335 310 12 68
Exponentiation 843 100 4 4
Iterators 861 72 6 30
Functions 259 33 3 8
Kronecker product 420 41 2 8
Unity circle 1812 199 9 53

Qbricks core 1357 50 5 35
Semantics reasoning 744 55 3 35
Generic functions 517 12 5 34

TOTAL 17313 1731 78 410

Table 12: Statistical data about QBRICKS implementation

4.2 The circuit type

As briefly mentioned in Section 3.3, in QBRICKS a quantum circuit is an object generated by sequential and parallel
composition of elementary gates, consisting here of H, Cnot, Ph(θ) and Rz(θ). Internally, the angles θ are typed with
a custom-type to enforce the fact that its value is within [0, 1[. A circuit has to respect a constraint: each occurrence
of sequence in its structural decomposition links two sub-circuits acting on the same number of qubits (i.e. wires).
The internal definition of the datastructure for quantum circuits then relies on an algebraic type preCircuit, with one
constructor per elementary gate and constructors for both sequential and parallel composition:

type preCircuit =
Phase(angle) | Rz(angle) | H | Cnot
| Sequence(preCircuit, preCircuit)
| Parallel(preCircuit, preCircuit)

On these preCircuits we recursively define function size as the number of qubits a preCircuit acts on and predicate
sequenceCorrect, which assesses that any occurrence of a ‘Sequence’ composition links preCircuits of the same size.

The type circuit is then introduced as a record type with parameter a preCircuit respecting sequenceCorrect:

type circuit = {Pre : preCircuit}
in variant {sequenceCorrect(Pre)}
by{Pre = H}

It allows to define lifted versions of each quantum circuit constructors. As an example below is the definition for
function sequence, lifting the constructor Sequence.

Listing 1: Definition for the pseudo constructor sequence
1 let function sequence(d, e : circuit )
2 requires {size(d) = size(e)}
3 = {Pre = Sequence(Pre(d), Pre(e))}}

In this definition the bracketed syntax of line 3 enables to define a record object by its parameters: the result of applying
sequence to d and e is the circuit whose preCircuit is Sequence(Pre(d),Pre(e)). In this paper we shall identify the
constructors with their lifting counterpart

Thanks to these lifted constructors, while automatically guaranteeing the well-formedness of the construction we can
recursively build quantum circuits by composing smaller quantum circuits, starting from elementary gates built by the
lifted constructor for their preCircuits: this solves most of the syntactic constraints mentioned in Section 3.3. The
recursive nature of the construction makes it possible to then define recursive semantics functions and predicates on
circuits.
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5 Higher-order path-sums and matrix semantics

As discussed in Section 3.2, the Why3 instantiation of QBRICKS implements the HOPS semantics of QBRICKS-
SPEC. Nonetheless, in order to ensure the soundness of the presentation (and that, for instance, HOPS expressions
indeed corresponds to unitary maps). QBRICKS contains an alternative, internal representation for circuits in terms of
matrices. Considering its spread and consensual trust, we use the second one as the ground reference against which
the correctness of HOPS is proved.

5.1 Matrix semantics

To any quantum circuit acting on n qubits, the matrix semantics associates a square matrix of size 2n. The action of
this circuit on a quantum register is then given by the matrix product of this matrix to the ket for this register.

Circuit matrices Matrices for circuits are built inductively: Parallel composition is interpreted by Kronecker product
and sequential composition by matrix product: for any circuits d and e, the matrix Mat(parallel(d, e)) is defined
as Mat(d) ⊗ Mat(e) , and, if size(Pre(d)) = size(Pre(e)) then the matrix Mat(sequence(d, e)) is defined as
Mat(d) · Mat(e) .

Discussion We want to interpret quantum circuits as operators upon quantum kets. Matrix semantics provides a
way to do so by multiplying the matrix for a circuit with a ket vector. This interpretation is correct but building these
matrices and applying matrix product appear as a detour in comparison to directly dealing with ket transformation
functions: this was the reason for the introducing of path-sum semantics [33, 34].

HOPS semantics also enables to simplify the management of indices bounds from matrices and to factorize intertwined
sums of terms resulting from repeated sequence compositions. These aspects are of great interest when we come to
formal proofs (see, e.g., the comparison in complexity data for certified implementation of QFT using each of these
semantics, in Table 15).

5.2 Privileged HOPS

Higher-order path-sums (HOPS), as introduced in Figure 9 offers a very versatile specification environment, enabling
both specifications and proofs for parametrized families of circuit and oracle manipulation.

Note that from the formalism of HOPS, a quantum circuits may be characterized by many different equivalent HOPS
expressions. Quantum algorithm design also contains very low level steps, in which one describes the composition of
a quantum circuit by assembling elementary gates. In such development steps (such as, in our case studies, designing
the Quantum Fourier Transform), proof support may benefit from the compositionality of circuits and their semantics.

To ease the specification and proof in such cases, in the internal Why3 implementation of QBRICKS we propose
a recursive definition assigning, for each circuit c, a unique HOPS expression, written Ps (c) called the privileged
HOPS, that is proved correct and is determined by the algebraic structure of c. To do so, we separately implemented
recursive definitions for three functions, which assemble together as a HOPS and fully characterize the action of a
given circuit c over any quantum register:

• sRc (the sum range) is an integer parameter,
• sCc(j, k) is the angle, determining a scalar value,
• bKc(j, k) is an integer in J0, 2nJ determining a basis ket of size n

Then, for any For any basis ket vector |j〉sc and circuit c,

(c : |j〉sc 7→ Ps (c, |j〉sc) =
1√
2sRc

2sRc−1∑
k=0

e2πi(sCc(j,k))|bKc(j, k)〉sc) (1)

Specified circuit building functions Functions sR, sC and bK being defined recursively, we use them decorate our
preCircuit lifted constructor with adequate postconditions referring to each of these functions. As example below is
the definition for sequence from Listing 1 enriched with these postconditions. For the sake of place and readability,
in the listing we did not figure postconditions for the basis ket (bK) and scalar (sC) parameters. They depend only
on the specifications for the privileged HOPS of the sub-circuits d an e, so that the specifications for the semantics
of a sequence is completely determined by the semantics of its parameters. The same observation holds for parallel
composition.
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Listing 2: Specified definition for function sequence
1let function sequence(d, e : circuit ) : circuit
2 requires {sd = sd}
3 ensures{sresult = sd}
4 ensures{sRresult = sRd + sRe

5 ensures{ (* a specification for bKresult*)}
6 ensures{ (* a specification for sCresult*)}
7 = {pre = Sequence (pre d) (pre e)}

Once pseudo constructors are decorated with semantic postconditions, this decoration can be extended to circuit build-
ing functions using these primitives.

Compositionality and proof support One of the major interests in using such a compositional semantics for quan-
tum circuits is that the proof for the specification of a circuit can rely on a recursive structure isomorphic to that of the
specified circuit.

Indeed, at compilation within Why3, a QBRICKS function specification spec generates a proof obligations PO for-
malizing that spec is true in the current logical context. This logical context is made of both results established in
dedicated modules (for QBRICKS in our Mathematical libraries : algebra, complex number theory, angle theory,
binary arithmetic, etc.) and specifications for called functions, that are supposed fulfilled.

For example, in Listing 3, let us consider two circuits d and e. They are specified such as to have respective sum ranges
n and m. Consider also circuit f , defined as sequence(d, e) and specified so as to have sum range l.

Listing 3: Illustration for compositional semantics
1 let function d : circuit
2 ensures{sRresult = n} (* further spec. *) = (* function d*)
3

4 let function e : circuit
5 ensures{sRresult = m} (* further spec. *) = (* function e*)
6

7 let function f : circuit
8 ensures{sRresult = l}
9 (* further spec . *) = sequence(d, e)

At compilation, the postconditions for d, e and function sequence are assumed in the current context, so that the proof
obligation for postcondition in Line 9 of Listing 3 is

PO : T, sRd = n, sRe = m, sRsequence(d,e) = sRd + sRe, result = sequence(d, e) |= sRresult = l

where T designates the rest of the logical context. More generally, the recursive composition of circuits brings, by the
specifications of their components, the hypothesis that are required for proving the satisfaction of their specifications.

5.3 Matrix and HOPS semantics

In QBRICKS both matrix and HOPS semantics are proved equivalent, in the sense that for any circuit c and ket |u〉
of length sc, building matrix Mat(c) and multiplying it with |u〉 is the same as straightly computing the privileged
HOPS Ps (c, |u〉).
Theorem 1. For any circuit c and ket |u〉 of length sc, we have Mat(c) · |u〉 = Ps (c, |u〉).

In other words, the following diagram commutes:

c, |u〉

Mat(c) , |u〉

Ps (c, |u〉)

matrix semantics matrix product

HOPS semantics

This equivalence is mainly used for assessing, in the universally known matrix semantics formalism, results that are
proved in the better proof fitted HOPS semantics.

15



Toward certified quantum programming A PREPRINT

6 Simplifying semantic reasoning

We present now the different proof automation mechanisms we have developed in order to ease formal proofs and
avoid interactive proof finalization as much as possible.

These mechanisms are of two kinds:

Composition rules. The relation between a circuit c and two kets |u〉lu and |v〉 such that sc = lu and (c : |u〉 7→ |v〉)
satisfies nice composition properties, enabling easy handling specifications (Section 6.1);

Efficient circuit subclasses. Some subclasses of circuits (structural constraints) admit simplified HOPS expressions.
We give the examples of diagonal and flat circuits (Section 6.2).

6.1 Composition rules

It translates sequence into function composition: for any circuits d, e having the same size and for any kets |u〉, |v〉
and |w〉, if (d : |u〉 7→ |v〉) and (e : |v〉 7→ |w〉), then

(sequence(d, e) : |u〉 7→ |w〉)

HOPS furthermore commute with parallel composition and preserves linearity, enabling reasoning with ket basis
decompositions.

These properties are particularly useful for dealing with semantic specifications that are stable through composition.
In the following paragraphs we illustrate its use with eigenvalue reasoning and schemes to plug circuits within larger
quantum registers.

Reasoning on eigenvalues and eigenvectors As discussed in Section 3.4, it is common in quantum circuit designing
to reason about eigenvectors and eigenvalues for unitary operators (see, e.g., Section 7).

Specifications on eigenvalues enable to reason with circuits that are not entirely known. As an example, QPE (Sec-
tion 7) takes as input a circuit c and a ket |u〉, such that there exists a value v such that eigen(c · |u〉) = v. Then
the algorithm outputs v. The circuit for this algorithm is built by specifying its output over |0〉n ⊗ |u〉, based on the
assumption that eigen(c · |u〉) = v is satisfied. It satisfies the following composition lemma:

Lemma 1 (Composition of eigenvalues). Let c, c′ be quantum circuits, let |u〉 be a ket and let v, v′ be complex values.
Then:

• If eigen(c · |u〉) = v and eigen(c′ · |u〉) = v′ then eigen(sequence(c, c′) · |u〉) = v ∗ v′

• If eigen(c · |u〉) = v then for any k ≥ 0, eigen(ck · |u〉) = vk.

Placing circuits So far, we built QBRICKS circuits by composition of sub-circuits. Languages such as Quipper,
Q#, LIQui|〉, etc, have wire identifiers and build circuits by applying sub-circuits on these wires. In QBRICKS, such
operation as applying circuit c on wire x is writable as a derived function, defined by help of parallel composition and
identity operator Id⊗k (which is itself defined, for any k ≥ 0 by k parallel iterations of ph(0)):

Definition 1 (Function place.). Let c be a quantum circuit and let k and n be positive integers such that k + sc < n.
Then place(c, k, n) =def parallel(parallel(Id⊗k), c), Id⊗(n−k−(s c)))

Note that this function requires the overall size n of the circuit as a parameter. In QBRICKS, place is defined with
postcondition ensuring the satisfaction of the following lemma:

Lemma 2 (Place specification). For all quantum circuit c and for all positive integers n, k such that k + sc < n, for
all kets |x〉k, |y〉n−k−sc , |u〉, |v〉, if (c : |u〉 7→ |v〉) then

(place(c, k, n) : |x〉k ⊗ |u〉 ⊗ |y〉n−k−sc 7→ |x〉k ⊗ |u〉 ⊗ |y〉n−k−sc)

6.2 Efficient circuit subclasses

We present now some sub-classes of quantum circuits with simplified HOPS semantics. These classes comes with a
set of dedicated lemmas easing automation.
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Diagonal circuits A diagonal circuit c of size n transforms any basis ket |j〉n into e2πidScc(j)|j〉n, where dScc(j) is
an angle. In other words it admit a correct HOPS without sum and with identity basis ket:

∀j.j ∈ J0, 2nJ→ (C : |j〉n 7→ exp(
2 · π · i · P (j)

2n
)|j〉n)

A diagonal circuit is completely specified by its size and function dSc. Diagonally it composes with sequence and
parallel by a simple addition of parameter dSc. For example, if two diagonal circuits have the same size c, then for all
j ∈ J0, 2sd+seJ,

dScsequence(d,e)(j) = dScd(j) +a dSce(j)

Since rz and ph gates are diagonal, they generate a fragment of QBRICKS that is entirely diagonal. We also formally
proved that property diag is preserved through application of functions place and controlled operations. Therefore it
enables local specifications and verifications taking goods of these facilities: using diagonal HOPS, one does not have
to care for sum range and basis kets in the specifications and proofs, which eases the practice (see, for example, the
implementation data comparison for QFT in Table 15).

Flat circuits QBRICKS contains another similar simplified fragment, made of circuits with sum range equals to 0
(called flat circuits). This fragment is syntactically generated by gates rz, ph and cnot. Being less restrictive than diag,
this condition offers an intermediate HOPS treatment (there is still no sum to deal with but there is a ket basis function)
on a strictly larger fragment (since it includes gate cnot). The general HOPS for flat circuit is as follows:

∀j.j ∈ J0, 2nJ→ (C : |j〉n 7→ exp(
2 · π · i · P (j)

2n
)|φ(j)〉n)

Note that, unlike for diagonal circuit, flat circuit specifications requires a basis ket function φ. Still, the expression is
simplified from the general case since there is no sum and therefore functions P and φ do not depend on the summed
parameter k.

Integration in QBRICKS Being flat or diagonal are predicates over circuits expressed in the HOPS language. Flat-
ness and diagonalness can then be explicitly specified by the developer, allowing to take advantage of more powerful
deduction rules.

7 Certifying QPE

In this section we illustrate QBRICKS usage together with its specification framework. To do so, we detail the writing
and certification for our case study, the QPE algorithm. Experimental evaluation per se is presented in Section 8.

7.1 Introduction to QPE

All the eigenvalues of a unitary operator U are equal to e2πiΦ for a given real Φ such that 0 ≤ Φ < 1. Phase estimation
(QPE) [36,37] is a procedure that, given a unitary operator U and an eigenvector |v〉 of U , finds the eigenvalue e2πiΦv

associated with |v〉. Since for any unitary operator U , any ket vector |v〉 is a weighted sum of eigenvectors for U ,
QPE enables to derives U ’s spectral decomposition. It is a central piece in many emblematic algorithms, such as
quantum simulation [38] or HHL algorithm [6] – resolution of linear systems of equations in time POLYLOG. QPE is
also the central procedure in Shor’s integer prime factor decomposition algorithm [2]. It consists in: (1) a reduction
of the prime factor decomposition problem for integer N to the order-finding problem for exponentiation, modulo
N , of an integer x co-prime to N , and (2) a solution to this problem, given by applying QPE to the unitary operator
U : |y〉 → |x · y mod N〉.
We implemented two different versions of QPE:

• In the first case (core case) we assume that Φv admits a binary writing with n bits. Then there is ϕv ∈ J0, 2nJ
such that Φv = ϕv

2n , and the eigenvalue associated with |v〉 is e2πiΦv (also written ωϕvn ). The goal is to seek
this value ϕv and the algorithm deterministically outputs this value.

• In the second version (general case), no assumption is made over Φv which can take any real value such that
0 ≤ Φ < 1. The goal is to seek the value k ∈ J0, 2nJ that minimizes the distance Φ − k

2n (modulo 1). The
output of the algorithm is non deterministic. The proved specification is that it outputs k with probability at
least 4

π2 .
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7.2 Walk-through

An overall view on the circuit for QPE was given on Figure 5. In Figure 13 we annotate the circuit and discuss its
construction in the remainder of the section. The circuit uses two registers, one of size n and initialized to |0〉n and

I(0) . . .H

. . .
I(0) . . .H

. . .

. . .
. . .

. . .. . .. . .

(h)⊗n
superposition inverse_Fourier_transform

control (U20

, etc)

apply_black_box

U20

U21

U2n−1

QFT −1(n)

inverse(QFT (n))
•

•

•

|v〉

I(0) . . .H

. . .

. . .
. . .

. . .. . .. . .

(h)⊗n
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, etc)

apply_black_box

U20

U21

U2n−1

QFT −1(n)

inverse(QFT (n))
•

•

•

|v〉

|s0〉 |s1〉 |s2〉 |s3〉

Figure 13: Modular structure of the circuit for QPE

one of size s and initially in state |v〉s: s0 = |0〉n ⊗ |v〉s. We read this circuit from left to right, as follows.

Create superposition First, the superposition transformation is applied to the first register. It results in state

s1 =

(
1√
2n

2n−1∑
k=0

|k〉n

)
⊗ |v〉s

The corresponding circuit is built as place((h)⊗n, 0, n+ s) where (h)⊗n is the result of iterating parallel composition
of the (lifted) Hadamard gate n times and place is the function from Definition 1, positioning the sub-circuit at the
right vertical place.

Apply black box Then we perform, on the second register, a sequence of U gates elevated to the successive powers
of 2 and controlled by qubits from the first register, written control (U2c , c, n, n+ s). Each of them transforms any
ket |j〉n⊗|v〉s into |j〉n⊗|v〉s if jc = 0 and into |j〉n⊗(e2πi 1

2cΦv · |v〉s) otherwise. By linearity of Kronecker product,
in both cases;

(control (U2c, c, n, n+ s) : |j〉n ⊗ |v〉s 7→ ω
jc

1
2c ϕv

n |j〉n ⊗ |v〉) (2)

Thus the whole series of controlled U2k operations (called circuit apply_black_box) applied to |j〉n ⊗ |v〉s results in
state

n−1∏
c=0

ω
jc

1
2c ϕv

n |j〉n ⊗ |v〉 (3)

which rewrites into ω
←→
j ϕv
n |j〉n ⊗ |v〉. By linearity, apply apply_black_box to s1 outputs state s2 = s′2 ⊗ |v〉, where

s′2 =
1√
2n

2n−1∑
j=0

ω
←→
j ϕv
n |j〉n (4)

Equation 2 comes by applying the second item of Lemma 1 and specifications of function control . Circuit
apply_black_box is then built recursively over n by sequentially iterating circuits control (U2k , n+ s, n, k) compo-
sition iterations, with invariant

(result : |j〉n ⊗ |v〉s 7→ ω
∑k
c=0 jc

1
2c ϕv

n |j〉n ⊗ |v〉) (5)

for k ranging from 0 to n − 1. Rewriting the ket expression in (5) as expression (2) is enabled by our mathematical
libraries. Then, equality 4 is a straight application of the semantic linearity.
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Apply inverse Fourier transform For any n > 0, QFT transforms any basis ket |i〉n into
∑2n−1
j=0 ω

←→
j ∗k
n . In parti-

cular, if applied to the first register of state |ϕv〉n ⊗ |v〉, it outputs state s2.

The circuit for QFT (n) is drawn in Figure 14, with the structure we used for our implementation: it is a recursive
sequential composition of QFT_lines sub-circuits. Each QFT_line is a sequence of an Hadamard gate and a recursive
sequential composition S − CRkn of gates CRk,tn = cont(Rt, (k + t − 1), k, n), t ranging from 2 to n − k. For the
sake of place we do not detail the specifications for this construction. For each positive integer t, R t is a diagonal gate
obtained by sequencing ph( 1

2k+1 ) and rz( 1
2k+1 ). Hence, gates CRk,tn are specified using diagonal specifications from

Section 6.2.

Function invert transforms any quantum circuit c into a circuit uncomputing any computation of c. It is introduced
as a derived constructor in QBRICKS, defined by induction: it transforms, respectively, gates ph(θ) and ry(θ) into
ph(−a(θ)) and ry(−a(θ)), it leaves gates h and cnot unchanged and it commutes with both sequential and parallel
compositions. We proved that this construction ensures the correction of the semantics given in Table 10, that for a
circuit c and for any kets |u〉 and |v〉, we have

(c : |u〉 7→ |v〉)↔ (inverse(c) : |v〉 7→ |u〉)
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Figure 14: Quantum Fourier Transform

The final post-condition Applying inverse(QFT n) on the first register in s2 results:

• In the core case, in state |ϕv〉n⊗|v〉, which enable to measures state |ϕv〉n on the first register with probability
one,

• In the general case, in state

s3 =

(
1

2n

2n−1∑
j=0

2n−1∑
i=0

ωvj∗(ϕ−i)n |i〉n
)
⊗ |v〉

Some numerical calculus and rewritings then derive the postcondition from Table 11 from this expression.

8 Experimental evaluation

We want to assess the practical relevance of our methodology and QBRICKS. More precisely, we consider the following
Research Questions:

(RQ1) Efficiency: Does our approach work in practice on significant quantum programs, especially is it feasible to
implement and verify (in a scale-invariant manner) QPE, and what is the cost in terms of annotations and
proofs?

(RQ2) Impact of automation support: Is the technique automated enough (cf. Section 6), and how does it compare
to other state of the art approaches from the automation point of view?

(RQ3) Genericity: Does the approach enable easy extensions? What is the price to pay for introducing new features,
further developments?

Experiments were run on Linux, on a PC equipped with an Intel(R) Core(TM) i7-7820HQ 2.90GHz and 15 GB RAM.
We used Why3 version 1.2.0 with solvers Alt-Ergo-2.2.0, CVC 3-2.4.1, CVC4-1.0, Z3-4.4.1.
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8.1 Verification of QPE (RQ1)

Following the methodology described in Section 7, we indeed manage to implement and verify QPE with QBRICKS.
Statistics are presented in Table 15, where lines figure the main steps of the implementation. We report several
complexity criteria: numbers of lines of code, required definitions and lemmas, proofs obligations (POs) generated at
compilation, POs automatically discharged by the underlying automated solvers (within time limit 5 seconds) and the
number of interactive commands we entered to discharge the remaining POs and finalize the proof.

#Lines #Def. #Lem #POs #Aut. #Cmd
create_superposition 42 2 1 11 6 36
apply_black_box 57 3 1 50 44 46
QFT 75 3 0 57 51 30
QPE 63 4 0 72 65 51
Total 237 12 2 190 166 163

#Aut.: automatically proven POs — #Cmd: interactive commands
Table 15: Implementation & verification of QPE (Core case)

Conclusion (RQ1) QBRICKS did allow us to implement and verify in a scale-invariant manner the QPE algorithm,
at a rather smooth cost. Tables 15 and give implementation for the core case: 237 lines of code, only 24 POs left for
manual proof – we discharged them with 2 lemmas and 163 interactive commands (mainly calls for deduction rules –
79 – or hypotheses – 47–). Interestingly, around 87% of proof obligations were automatically discharged. In Table 16
we give corresponding data for the general case. Apart from dealing with angles having real numbers measures instead
of dyadic fractions, it adds a series of rewritings for the output of the circuit (line Measure and output rewritings). Note
that the rate of automatized proof obligation comes above 93% in this part.

#Lines #Def. #Lem #POs #Aut. #Cmd
Inverse QFT 75 3 0 57 51 30
QPE circuit 171 8 2 131 111 107
Measure and output rewritings 202 6 6 249 235 64
Total 448 18 8 437 397 201

#Aut.: automatically proven POs — #Cmd: interactive commands
Table 16: Implementation & verification of QPE (General case)

8.2 Impact of automation features (RQ2)

We implement the QFT module in three different manners: (1) with full QBRICKS abilities (especially, the automation
features such as flat and diagonal HOPS), (2) only with basic HOPS and (3) only with the standard matrix seman-
tics [30–32]. Note that we restrict ourselves to QFT because specifying the whole algorithm with matrix or basic
HOPS semantics only would have been extremely painful. Results are given in Table 17.

#Lines #Def. #Lem #POs #Aut. #Cmd
QFT (full QBRICKS) 75 3 0 57 51 30
QFT (HOPS only) 87 3 0 73 64 49
QFT (matrix only) 200 8 15 306 285 106

#Aut.: automatically proven POs — #Cmd: interactive commands
Table 17: Comparison of several approaches, QFT algorithm

Conclusion (RQ2) The impact of our simplification mechanisms is clear: our method allows much smaller speci-
fications and more automated proofs than the standard matrix semantic (lines: 75 vs. 200, remaining POs: 6 vs. 21).
Moreover, our automation abilities allows a clear improvement against HPOS only (lines: 75 vs. 87, remaining POs:
6 vs. 9).
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8.3 Genericity: verification of Grover algorithm (RQ3)

We also verified an implementation of the Grover algorithm, whose data are given in Table 18. Concretely, given a
predicate p over integers, it takes as oracle an unitary operator outputting

• |i〉n if p(i) is true,
• −|i〉n otherwise.

Then the specification shows that the circuit outputs, with high probability, an i such that p(i) is true after a number of
iterations that is linear in

√
2n (see the formal specifications in Table 11). The proof mainly consists in algebraic inter-

pretation of HOPS: embeddings of HOPS into sub-vectorial space, projection, composition of reflections as rotation,
composition of rotations, etc. This development highly relies on HOPS versatility and the possibility to manipulate
all the main algebraic constructs in this formalism. In Table 11), line Diffusion operator corresponds to building the
circuit for Grover diffusion operator, line Rotations concerns the algebraic interpretation of both the oracle and the
diffusion operator, and line Grover iterations builds the sequential iteration of i occurences of the oracle followed by
the diffusion operator. Note that the rate of automation is higher than in our QPE implementation (96 % – 660 out
of 696 – of proof obligations are automatically discharged). This is mainly due to the proof being largely made of
algebraic reasonning.

#Lines #Def. #Lem #POs #Aut. #Cmd
Diffusion operator 149 8 2 157 144 63
Rotations 208 10 7 248 241 69
Grover iterations 97 4 0 281 275 37
Total 454 22 9 686 660 169

#Aut.: automatically proven POs — #Cmd: interactive commands
Table 18: Implementation & verification of Grover algorithm

Interestingly, it should be noted that while Grover relies on mechanisms and arguments significantly different from
those of QPE, we were able to implement, specify and prove it without adding anything new to Qbricks – demonstrat-
ing the versatility of the platform and the deep interest of HOPS, for both specification and reasoning automation.

8.4 Efforts (RQ3)

The implementation of the core case of QPE was led along with the design and development of QBRICKS itself.
Altogether it took us over 1.5 person.year. Interestingly, once this initial effort done, implementing both the general
case of QPE and the Grover case study have been done within ten person.days each – with no modification of the
framework. We thus have good reasons to believe that QBRICKS provides a generic and convenient environment for
specifying, developing and proving quantum programs in a reasonably fast and easy way.

9 Related works

Formal verification of quantum circuits In the last couple of years, efforts have been led for introducing formal
methods in quantum programming. Prior efforts regarding quantum circuit verification [27–34] have been described
throughout the paper, especially in Section 1.

We build on top of these seminal works and propose the first certified development environment for quantum programs
featuring clear separation between code & proof, scale-invariance specification and proof and high degree of proof
automation.

Quantum Hoare logic Another explored direction tackles the formalization of quantum programs with classical
control, where the input/outputs from the quantum co-processor are taken as oracles. It uses an extension of Hoare
Logic, called Quantum Hoare Logic [41] and designed for the specification of quantum programs with classical con-
trol. Recently, the authors focused on the definition, automatic generation [42] and proof support [43, 44] for loop
invariants in quantum programs invariants. In these works, quantum circuits are used as oracles, so that their verifica-
tion is not addressed.

This approach may be complementary with the one presented here, for further developments of QBRICKS including
probabilistic measures and the control flow of classical data.
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Optimized compilation of circuits Formal methods and other program analysis techniques are also used in quantum
compilation, in order to build highly optimized circuits [45–51]. This is a crucial current research area. Indeed, the
quantum hardware available in the near future is expected to be highly constrained in terms of qubits, connectivity and
quality: the so-called NISQ era [52–54].

ZX-calculus [55] represents quantum circuits by diagrams, to which one can apply a number of rewriting rules. This
framework leads to a graphical proof assistant [56], certifying the semantic equivalence between circuit diagrams, with
application to circuit equivalence checking and certified circuit compilation and optimization [57–59].

Other quantum applications of formal methods Huang et al. [60, 61] proposes a “runtime-monitoring like” veri-
fication method for quantum circuits, with an annotation language restricted to structural properties of interest (e.g.,
superposition or entanglement). Verification of these assertions is led by statistical testing instead of formal proofs.

Another more fundamental line of research is concerned with the development of specialized type systems for quantum
programming languages. In particular, frameworks based on linear logic [62–64] and dependent types [30, 40] have
been developed to tackle the non-duplicability of qubits and the constraints on the structure of circuits.

Finally, formal methods are also at stake for the verification of protocols using quantum information, such as crypto-
graphic protocols [65–69].

10 Conclusion

In this article we presented QBRICKS, the first development environment for certified quantum programs featuring
clear separation between code and proof, scale-invariance specification and proof, high degree of proof automation
and allowing to encode quantum programs in a natural way. QBRICKS builds on best practice of formal verification for
the classic case and tailor them to the quantum case. Especially, it introduces and intensively builds upon higher-order
path sums, for both specification (parametrized, versatile) and automation (closure properties).

We implement the first scale-invariant verified implementations of non-trivial quantum algorithms, namely QPE – the
purely quantum part of Shor algorithm – and Grover search, proving by fact that applying formal verification to real
quantum programs is possible and should be further developed.
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