This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathstochastic.xml
892 lines (830 loc) · 41.4 KB
/
stochastic.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<section xml:id="stochastic-matrices" number="6">
<title>Stochastic Matrices</title>
<objectives>
<ol>
<li>Learn examples of stochastic matrices and applications to difference equations.</li>
<li>Understand Google's PageRank algorithm.</li>
<li><em>Recipe:</em> find the steady state of a positive stochastic matrix.</li>
<li><em>Picture:</em> dynamics of a positive stochastic matrix.</li>
<li><em>Theorem:</em> the Perron<ndash/>Frobenius theorem.</li>
<li><em>Vocabulary words:</em> <term>difference equation</term>, <term>(positive) stochastic matrix</term>, <term>steady state</term>, <term>importance matrix</term>, <term>Google matrix</term>.</li>
</ol>
</objectives>
<introduction>
<p>
This section is devoted to one common kind of application of eigenvalues: to the study of difference equations, in particular to Markov chains. We will introduce stochastic matrices, which encode this type of difference equation, and will cover in detail the most famous example of a stochastic matrix: the Google Matrix.
</p>
</introduction>
<subsection>
<title>Difference Equations</title>
<p>
Suppose that we are studying a system whose state at any given time can be described by a list of numbers: for instance, the numbers of rabbits aged <m>0,1,</m> and <m>2</m> years, respectively, or the number of copies of <url href="https://en.wikipedia.org/wiki/The_Dog_(Seinfeld)">Prognosis Negative</url> in each of the <url href="https://www.redbox.com/">Red Box</url> kiosks in Atlanta. In each case, we can represent the state at time <m>t</m> by a vector <m>v_t</m>. We assume that <m>t</m> represents a discrete time quantity: in other words, <m>v_t</m> is the state <q>on day <m>t</m></q> or <q>at year <m>t</m></q>. Suppose in addition that the state at time <m>t+1</m> is related to the state at time <m>t</m> in a linear way: <m>v_{t+1}=Av_t</m> for some matrix <m>A</m>. This is the situation we will consider in this subsection.
</p>
<definition>
<idx><h>Difference equation</h></idx>
<statement>
<p>
A <term>difference equation</term> is an equation of the form
<me>v_{t+1} = Av_t</me>
for an <m>n\times n</m> matrix <m>A</m> and vectors <m>v_0,v_1,v_2,\ldots</m> in <m>\R^n</m>.
</p>
</statement>
</definition>
<p>
In other words:
<ul>
<li><m>v_t</m> is the <q>state at time <m>t</m>,</q></li>
<li><m>v_{t+1}</m> is the <q>state at time <m>t+1</m>,</q> and</li>
<li><m>v_{t+1}=Av_t</m> means that <m>A</m> is the <q>change of state matrix.</q></li>
</ul>
Note that
<me>v_t = Av_{t-1} = A^2v_{t-2} = \cdots = A^tv_0,</me>
which should hint to you that the long-term behavior of a difference equation is an eigenvalue problem.
</p>
<p>
We will use the following example in this subsection and the next. Understanding this section amounts to understanding this example.
</p>
<specialcase xml:id="stochastic-redbox-eg1">
<idx><h>Red Box</h></idx>
<p>
Red Box has kiosks all over Atlanta where you can rent movies. You can return them to any other kiosk. For simplicity, pretend that there are three kiosks in Atlanta, and that every customer returns their movie the next day. Let <m>v_t</m> be the vector whose entries <m>x_t,y_t,z_t</m> are the number of copies of Prognosis Negative at kiosks <m>1,2,</m> and <m>3</m>, respectively. Let <m>A</m> be the matrix whose <m>i,j</m>-entry is the probability that a customer renting Prognosis Negative from kiosk <m>j</m> returns it to kiosk <m>i</m>. For example, the matrix
<me>
A = \mat{.3 .4 .5; .3 .4 \color{seq-red}.3; \color{seq-green}.4 .2 .2}
</me>
encodes a <m>\color{seq-red}30\%</m> probability that a customer renting from kiosk 3 returns the movie to kiosk 2, and a <m>\color{seq-green}40\%</m> probability that a movie rented from kiosk <m>1</m> gets returned to kiosk <m>3</m>. The second row (for instance) of the matrix <m>A</m> says:
</p>
<blockquote>
<p>
The number of movies returned to kiosk <m>2</m> will be (on average):
<me>
\begin{split}
30\% \amp\text{ of the movies from kiosk } 1 \\
40\% \amp\text{ of the movies from kiosk } 2 \\
30\% \amp\text{ of the movies from kiosk } 3 \\
\end{split}
</me>
</p>
</blockquote>
<p>
Applying this to all three rows, this means
<me>
A\vec{x_t y_t z_t} = \vec{.3x_t+.4y_t+.5z_t .3x_t+.4y_t+.3z_t .4x_t+.2y_t+.2z_t}.
</me>
Therefore, <m>Av_t</m> represents the number of movies in each kiosk the next day:
<me>Av_t = v_{t+1}.</me>
This system is modeled by a difference equation.
</p>
</specialcase>
<p>
An important question to ask about a difference equation is: what is its long-term behavior? How many movies will be in each kiosk after 100 days? In the next subsection, we will answer this question for a particular type of difference equation.
</p>
<example>
<title>Rabbit population</title>
<p>
In a population of rabbits,
<ol>
<li>half of the newborn rabbits survive their first year;</li>
<li>of those, half survive their second year;</li>
<li>the maximum life span is three years;</li>
<li>rabbits produce 0, 6, 8 rabbits in their first, second, and third years, respectively.</li>
</ol>
Let <m>v_t</m> be the vector whose entries <m>x_t,y_t,z_t</m> are the number of rabbits aged <m>0, 1</m>, and <m>2</m>, respectively. The rules above can be written as a system of equations:
<me>
\spalignsysdelims..\syseq{
x_{t+1} = \. \+ 6y_t + 8z_t;
y_{t+1} = \frac 12x_t;
z_{t+1} = \. \+ \frac 12y_t\rlap.
}
</me>
In matrix form, this says:
<me>\mat{0 6 8; \frac12 0 0; 0 \frac12 0} v_t = v_{t+1}.</me>
This system is modeled by a difference equation.
</p>
<p>
Define
<me>A = \mat{0 6 8; \frac12 0 0; 0 \frac12 0}.</me>
We compute <m>A</m> has eigenvalues <m>2</m> and <m>-1</m>, and that an eigenvector with eigenvalue <m>2</m> is
<me>v = \vec{16 4 1}.</me>
This partially explains why the ratio <m>x_t:y_t:z_t</m> approaches <m>16:4:1</m> and why all three quantities eventually double each year in this demo:
</p>
<figure>
<caption>Left: the population of rabbits in a given year. Right: the proportions of rabbits in that year. Choose any values you like for the starting population, and click <q>Advance 1 year</q> several times. Notice that the ratio <m>x_t:y_t:z_t</m> approaches <m>16:4:1</m>, and that all three quantities eventually double each year.</caption>
<mathbox source="demos/rabbits/book_demo.html" height="300px"/>
</figure>
</example>
</subsection>
<subsection>
<title>Stochastic Matrices and the Steady State</title>
<p>
In this subsection, we discuss difference equations representing <em>probabilities</em>, like the <xref ref="stochastic-redbox-eg1">Red Box example</xref>. Such systems are called <em>Markov chains</em>. The most important result in this section is the Perron<ndash/>Frobenius theorem, which describes the long-term behavior of a Markov chain.
</p>
<definition>
<idx><h>Stochastic matrix</h><h>definition of</h></idx>
<idx><h>Matrix</h><h>stochastic</h><see>Stochastic matrix</see></idx>
<statement>
<p>
A square matrix <m>A</m> is <term>stochastic</term> if all of its entries are nonnegative, and the entries of each column sum to <m>1</m>.
</p>
<p>
A matrix is <em>positive</em> if all of its entries are positive numbers.
</p>
</statement>
</definition>
<bluebox>
<p>
A positive stochastic matrix is a stochastic matrix whose entries are all positive numbers. In particular, no entry is equal to zero. For instance, the first matrix below is a positive stochastic matrix, and the second is not:
<me>
\mat{.3 .4 .5; .3 .4 .3; .4 .2 .2}
\qquad
\mat{1 0 0; 0 1 0; 0 0 1}.
</me>
</p>
</bluebox>
<remark>
<p>
More generally, a <term>regular</term> stochastic matrix is a stochastic matrix <m>A</m> such that <m>A^n</m> is positive for some <m>n \geq 1</m>. The Perron<ndash/>Frobenius theorem below also applies to regular stochastic matrices.
</p>
</remark>
<specialcase xml:id="stochastic-redbox-eg2">
<idx><h>Red Box</h></idx>
<p>
Continuing with the <xref ref="stochastic-redbox-eg1">Red Box example</xref>, the matrix
<me>
A = \mat{.3 .4 .5; .3 .4 .3; .4 .2 .2}
</me>
is a positive stochastic matrix. The fact that the columns sum to <m>1</m> says that all of the movies rented from a particular kiosk must be returned to <em>some</em> other kiosk (remember that every customer returns their movie the next day). For instance, the first column says:
</p>
<blockquote>
<p>
Of the movies rented from kiosk <m>1</m>,
<me>
\begin{split}
30\% \amp\text{ will be returned to kiosk } 1 \\
30\% \amp\text{ will be returned to kiosk } 2 \\
40\% \amp\text{ will be returned to kiosk } 3. \\
\end{split}
</me>
The sum is <m>100\%</m>, as all of the movies are returned to one of the three kiosks.
</p>
</blockquote>
<p>
The matrix <m>A</m> represents the change of state from one day to the next:
<me>
\vec{x_{t+1} y_{t+1} z_{t+1}} = A\vec{x_t y_t z_t} = \vec{.3x_t+.4y_t+.5z_t .3x_t+.4y_t+.3z_t .4x_t+.2y_t+.2z_t}.
</me>
If we sum the entries of <m>v_{t+1}</m>, we obtain
<me>
\begin{split}
\amp(.3x_t+.4y_t+.5z_t)+ (.3x_t+.4y_t+.3z_t)+ (.4x_t+.2y_t+.2z_t) \\
\amp\qquad=(.3+.3+.4)x_t + (.4+.4+.2)y_t + (.5+.3+.2)z_t \\
\amp\qquad= x_t + y_t + z_t.
\end{split}
</me>
This says that the <em>total</em> number of copies of Prognosis Negative in the three kiosks does not change from day to day, as we expect.
</p>
</specialcase>
<p>
The fact that the entries of the vectors <m>v_t</m> and <m>v_{t+1}</m> sum to the same number is a consequence of the fact that the columns of a stochastic matrix sum to <m>1</m>.
</p>
<bluebox>
<idx><h>Stochastic matrix</h><h>sum of entries of vector</h></idx>
<p>
Let <m>A</m> be a stochastic matrix, let <m>v_t</m> be a vector, and let <m>v_{t+1} = Av_t</m>. Then the sum of the entries of <m>v_t</m> equals the sum of the entries of <m>v_{t+1}</m>.
</p>
</bluebox>
<p>
Computing the long-term behavior of a difference equation turns out to be an eigenvalue problem. The eigenvalues of stochastic matrices have very special properties.
</p>
<fact>
<idx><h>Stochastic matrix</h><h>eigenvalues of</h></idx>
<idx><h>Eigenvalue</h><h>and stochastic matrices</h></idx>
<statement>
<p>
Let <m>A</m> be a stochastic matrix. Then:
<ol>
<li><m>1</m> is an eigenvalue of <m>A.</m></li>
<li>If <m>\lambda</m> is a (real or complex) eigenvalue of <m>A</m>, then <m>|\lambda|\leq 1.</m></li>
</ol>
</p>
</statement>
<proof>
<p>
If <m>A</m> is stochastic, then the <em>rows</em> of <m>A^T</m> sum to <m>1</m>. But multiplying a matrix by the vector <m>(1,1,\ldots,1)</m> sums the rows:
<me>
\mat{.3 .3 .4; .4 .4 .2; .5 .3 .2}\vec{1 1 1}
= \vec{.3+.3+.4 .4+.4+.2 .5+.3+.2}
= \vec{1 1 1}.
</me>
Therefore, <m>1</m> is an eigenvalue of <m>A^T</m>. But <m>A</m> and <m>A^T</m> have the same characteristic polynomial:
<me>
\det(A-\lambda I_n) = \det\bigl((A-\lambda I_n)^T\bigr)
= \det(A^T - \lambda I_n).
</me>
Therefore, <m>1</m> is an eigenvalue of <m>A</m>.
</p>
<p>
Now let <m>\lambda</m> be any eigenvalue of <m>A</m>, so it is also an eigenvalue of <m>A^T</m>. Let <m>x = (x_1,x_2,\ldots,x_n)</m> be an eigenvector of <m>A^T</m> with eigenvalue <m>\lambda</m>, so <m>\lambda x = A^Tx</m>. The <m>j</m>th entry of this vector equation is
<me>
\lambda x_j = \sum_{i=1}^n a_{ij} x_i.
</me>
Choose <m>x_j</m> with the largest absolute value, so <m>|x_i|\leq|x_j|</m> for all <m>i</m>. Then
<me>
|\lambda|\cdot|x_j| = \left\vert \sum_{i=1}^n a_{ij} x_i \right\vert
\leq \sum_{i=1}^n a_{ij}\cdot |x_i|
\leq \sum_{i=1}^n a_{ij}\cdot |x_j|
= 1\cdot|x_j|,
</me>
where the last equality holds because <m>\sum_{i=1}^n a_{ij}=1</m>. This implies <m>|\lambda|\leq 1.</m>
</p>
</proof>
</fact>
<p>
In fact, for a <em>positive</em> stochastic matrix <m>A</m>, one can show that if <m>\lambda\neq 1</m> is a (real or complex) eigenvalue of <m>A</m>, then <m>|\lambda|\lt 1.</m> The <m>1</m>-eigenspace of a stochastic matrix is very important.
</p>
<definition>
<idx><h>Stochastic matrix</h><h>steady state of</h></idx>
<idx><h>Steady state</h><see>Stochastic matrix</see></idx>
<idx><h>Eigenvector</h><h>and stochastic matrices</h></idx>
<statement>
<p>
A <em>steady state</em> of a stochastic matrix <m>A</m> is an eigenvector <m>w</m> with eigenvalue <m>1</m>, such that the entries are <em>positive</em> and sum to <m>1</m>.
</p>
</statement>
</definition>
<p>
The Perron<ndash/>Frobenius theorem describes the long-term behavior of a difference equation represented by a stochastic matrix. Its proof is beyond the scope of this text.
</p>
<theorem hide-type="true">
<title>Perron<ndash/>Frobenius Theorem</title>
<idx><h>Stochastic matrix</h><h>long-term behavior of</h></idx>
<idx><h>Perron<ndash/>Frobenius theorem</h></idx>
<statement>
<p>
Let <m>A</m> be a positive stochastic matrix. Then <m>A</m> admits a unique steady state vector <m>w</m>, which spans the <m>1</m>-eigenspace.
</p>
<p>
Moreover, for any vector <m>v_0</m> with entries summing to some number <m>c</m>, the iterates
<me>v_1 = Av_0,\; v_2 = Av_1,\; \ldots,\; v_t = Av_{t-1},\; \ldots</me>
approach <m>cw</m> as <m>t</m> gets large.
</p>
</statement>
</theorem>
<p>
<em>Translation:</em> The Perron<ndash/>Frobenius theorem makes the following assertions:
<ul>
<li>
The <m>1</m>-eigenspace of a positive stochastic matrix is a line.
</li>
<li>
The <m>1</m>-eigenspace contains a vector with positive entries.
</li>
<li>
All vectors approach the <m>1</m>-eigenspace upon repeated multiplication by <m>A</m>.
</li>
</ul>
One should think of a steady state vector <m>w</m> as a vector of <em>percentages.</em> For example, if the movies are distributed according to these percentages today, then they will be have the same distribution tomorrow, since <m>Aw=w</m>. And no matter the starting distribution of movies, the long-term distribution will always be the steady state vector.
</p>
<p>
The sum <m>c</m> of the entries of <m>v_0</m> is the <em>total number</em> of things in the system being modeled. The total number does not change, so the long-term state of the system must approach <m>cw</m>: it is a multiple of <m>w</m> because it is contained in the <m>1</m>-eigenspace, and the entries of <m>cw</m> sum to <m>c</m>.
</p>
<bluebox>
<title>Recipe 1: Compute the steady state vector</title>
<idx><h>Stochastic matrix</h><h>steady state of</h><h>computing</h></idx>
<p>
Let <m>A</m> be a positive stochastic matrix. Here is how to compute the steady-state vector of <m>A.</m>
<ol>
<li>
Find any eigenvector <m>v</m> of <m>A</m> with eigenvalue <m>1</m> by solving <m>(A-I_n)v = 0</m>.
</li>
<li>
Divide <m>v</m> by the sum of the entries of <m>v</m> to obtain a vector <m>w</m> whose entries sum to <m>1.</m>
</li>
<li>
This vector automatically has positive entries. It is the unique steady-state vector.
</li>
</ol>
</p>
</bluebox>
<p>
The above recipe is suitable for calculations by hand, but it does not take advantage of the fact that <m>A</m> is a stochastic matrix. In practice, it is generally faster to compute a steady state vector by computer as follows:
</p>
<bluebox>
<title>Recipe 2: Approximate the steady state vector by computer</title>
<idx><h>Stochastic matrix</h><h>steady state of</h><h>computing</h></idx>
<p>
Let <m>A</m> be a positive stochastic matrix. Here is how to approximate the steady-state vector of <m>A</m> with a computer.
<ol>
<li>
Choose any vector <m>v_0</m> whose entries sum to <m>1</m> (e.g., a standard coordinate vector).
</li>
<li>
Compute <m>v_1 = Av_0,\,v_2 = Av_1,\,v_3=Av_2,\,</m> etc.
</li>
<li>
These converge to the steady state vector <m>w</m>.
</li>
</ol>
</p>
</bluebox>
<example>
<title>A <m>2\times 2</m> stochastic matrix</title>
<p>
Consider the positive stochastic matrix
<me>A = \mat{3/4 1/4; 1/4 3/4}.</me>
This matrix has characteristic polynomial
<me>
f(\lambda) = \lambda^2 - \Tr(A)\lambda + \det(\lambda)
= \lambda^2 - \frac32\lambda + \frac12 \\
= (\lambda - 1)(\lambda-1/2).
</me>
Notice that <m>1</m> is strictly greater than the other eigenvalue, and that it has algebraic (hence, geometric) multiplicity <m>1</m>. We compute eigenvectors for the eigenvalues <m>1,1/2</m> to be, respectively,
<me>u_1 = \vec{1 1} \qquad u_2 = \vec{1 -1}.</me>
The eigenvector <m>u_1</m> necessarily has positive entries; the steady-state vector is
<me>
w = \frac 1{1+1}\vec{1 1} = \frac 12\vec{1 1} = \vec{50\% 50\%}.
</me>
The Perron<ndash/>Frobenius theorem asserts that, for any vector <m>v_0</m>, the vectors <m>v_1 = Av_0,\,v_2=Av_1,\,\ldots</m> approach a vector whose entries are the same: <m>50\%</m> of the sum will be in the first entry, and <m>50\%</m> will be in the second.
</p>
<p>
We can see this explicitly, as follows. The eigenvectors <m>u_1,u_2</m> form a basis <m>\cB</m> for <m>\R^2</m>; for any vector <m>x = a_1u_1 + a_2u_2</m> in <m>\R^2</m>, we have
<me>
Ax = A(a_1u_1+a_2u_2) = a_1Au_1 + a_2Au_2 = a_1u_1 + \frac{a_2}2u_2.
</me>
Iterating multiplication by <m>A</m> in this way, we have
<me>
A^tx = a_1u_1 + \frac{a_2}{2^t}u_2 \;\To\; a_1u_1
</me>
as <m>t\to\infty</m>. This shows that <m>A^tx</m> approaches
<me>
a_1u_1 = \vec{a_1 a_1}.
</me>
Note that the sum of the entries of <m>a_1u_1</m> is equal to the sum of the entries of <m>a_1u_1+a_2u_2</m>, since the entries of <m>u_2</m> sum to <m>0</m>.
</p>
<p>
To illustrate the theorem with numbers, let us choose a particular value for <m>u_0</m>, say <m>u_0={1\choose 0}</m>. We compute the values for <m>u_t = {x_t\choose y_t}</m> in this table:
<me>
\begin{array}{c|c|c|c}
t & x_t & y_t \\\hline
0 & 1.000 & 0.000 \\
1 & 0.750 & 0.250 \\
2 & 0.625 & 0.375 \\
3 & 0.563 & 0.438 \\
4 & 0.531 & 0.469 \\
5 & 0.516 & 0.484 \\
6 & 0.508 & 0.492 \\
7 & 0.504 & 0.496 \\
8 & 0.502 & 0.498 \\
9 & 0.501 & 0.499 \\
10& 0.500 & 0.500 \\
\end{array}
</me>
We see that <m>u_t</m> does indeed approach <m>{0.5\choose0.5}</m>.
</p>
<p>
Now we turn to visualizing the dynamics of (i.e., repeated multiplication by) the matrix <m>A</m>. This matrix is diagonalizable; we have <m>A=CDC\inv</m> for
<me>
C = \mat{1 1; 1 -1} \qquad D = \mat{1 0 ; 0 1/2}.
</me>
The matrix <m>D</m> leaves the <m>x</m>-coordinate unchanged and scales the <m>y</m>-coordinate by <m>1/2</m>. Repeated multiplication by <m>D</m> makes the <m>y</m>-coordinate very small, so it <q>sucks all vectors into the <m>x</m>-axis.</q>
</p>
<p>
The matrix <m>A</m> does the same thing as <m>D</m>, but with respect to the coordinate system defined by the columns <m>u_1,u_2</m> of <m>C</m>. This means that <m>A</m> <q>sucks all vectors into the <m>1</m>-eigenspace</q>, without changing the sum of the entries of the vectors.
</p>
<figure>
<caption>Dynamics of the stochastic matrix <m>A</m>. Click <q>multiply</q> to multiply the colored points by <m>D</m> on the left and <m>A</m> on the right. Note that on both sides, all vectors are <q>sucked into the <m>1</m>-eigenspace</q> (the red line).</caption>
<idx><h>Stochastic matrix</h><h>picture of</h></idx>
<mathbox source="demos/dynamics2.html?mat=1,0:0,1/2&v1=1,1&v2=1,-1&vec=false&path=false" height="600px"/>
</figure>
</example>
<specialcase xml:id="stochastic-redbox-eg3">
<idx><h>Red Box</h></idx>
<p>
Continuing with the <xref ref="stochastic-redbox-eg2">Red Box example</xref>, we can illustrate the Perron<ndash/>Frobenius theorem explicitly. The matrix
<me>
A = \mat{.3 .4 .5; .3 .4 .3; .4 .2 .2}
</me>
has characteristic polynomial
<me>
f(\lambda) = -\lambda^3 + 0.12\lambda - 0.02 =
-(\lambda-1)(\lambda+0.2)(\lambda-0.1).
</me>
Notice that <m>1</m> is strictly greater in absolute value than the other eigenvalues, and that it has algebraic (hence, geometric) multiplicity <m>1</m>. We compute eigenvectors for the eigenvalues <m>1,-0.2,0.1</m> to be, respectively,
<me>
u_1 = \vec{7 6 5} \qquad u_2 = \vec{-1 0 1} \qquad u_3 = \vec{1 -3 2}.
</me>
The eigenvector <m>u_1</m> necessarily has positive entries; the steady-state vector is
<me>
w = \frac 1{7+6+5}u_1 = \frac 1{18}\vec{7 6 5}.
</me>
The eigenvectors <m>u_1,u_2,u_3</m> form a basis <m>\cB</m> for <m>\R^3</m>; for any vector <m>x = a_1u_1+a_2u_2+a_3u_3</m> in <m>\R^3</m>, we have
<me>
\begin{split}
Ax \amp= A(a_1u_1+a_2u_2+a_3u_3) \\
\amp= a_1Au_1 + a_2Au_2 + a_3Au_3 \\
\amp= a_1u_1 - 0.2a_2u_2 + 0.1a_3u_3.
\end{split}
</me>
Iterating multiplication by <m>A</m> in this way, we have
<me>
A^tx = a_1u_1 - (0.2)^ta_2u_2 + (0.1)^ta_3u_3 \;\To\; a_1u_1
</me>
as <m>t\to\infty</m>. This shows that <m>A^tx</m> approaches <m>a_1u_1</m>, which is an <em>eigenvector with eigenvalue <m>1</m></em>, as guaranteed by the Perron<ndash/>Frobenius theorem.
</p>
<p>
What do the above calculations say about the number of copies of Prognosis Negative in the Atlanta Red Box kiosks? Suppose that the kiosks start with 100 copies of the movie, with <m>30</m> copies at kiosk 1, <m>50</m> copies at kiosk <m>2</m>, and <m>20</m> copies at kiosk <m>3</m>. Let <m>v_0 = (30,50,20)</m> be the vector describing this state. Then there will be <m>v_1 = Av_0</m> movies in the kiosks the next day, <m>v_2 = Av_1</m> the day after that, and so on. We let <m>v_t = (x_t,y_t,z_t).</m>
<me>
\begin{array}{c|c|c|c}
t & x_t & y_t & z_t \\\hline
0 & 30.000000 & 50.000000 & 20.000000 \\
1 & 39.000000 & 35.000000 & 26.000000 \\
2 & 38.700000 & 33.500000 & 27.800000 \\
3 & 38.910000 & 33.350000 & 27.740000 \\
4 & 38.883000 & 33.335000 & 27.782000 \\
5 & 38.889900 & 33.333500 & 27.776600 \\
6 & 38.888670 & 33.333350 & 27.777980 \\
7 & 38.888931 & 33.333335 & 27.777734 \\
8 & 38.888880 & 33.333333 & 27.777786 \\
9 & 38.888891 & 33.333333 & 27.777776 \\
10& 38.888889 & 33.333333 & 27.777778 \\
\end{array}
</me>
(Of course it does not make sense to have a fractional number of movies; the decimals are included here to illustrate the convergence.) The steady-state vector says that eventually, the movies will be distributed in the kiosks according to the percentages
<me>
w = \frac 1{18}\vec{7 6 5} = \vec{38.888888\% 33.333333\% 27.777778\%},
</me>
which agrees with the above table. Moreover, this distribution is <em>independent</em> of the beginning distribution of movies in the kiosks.
</p>
<p>
Now we turn to visualizing the dynamics of (i.e., repeated multiplication by) the matrix <m>A</m>. This matrix is diagonalizable; we have <m>A=CDC\inv</m> for
<me>
C = \mat{7 -1 1; 6 0 -3; 5 1 2} \qquad D = \mat{1 0 0 ; 0 -.2 0; 0 0 .1}.
</me>
The matrix <m>D</m> leaves the <m>x</m>-coordinate unchanged, scales the <m>y</m>-coordinate by <m>-1/5</m>, and scales the <m>z</m>-coordinate by <m>1/10</m>. Repeated multiplication by <m>D</m> makes the <m>y</m>- and <m>z</m>-coordinates very small, so it <q>sucks all vectors into the <m>x</m>-axis.</q>
</p>
<p>
The matrix <m>A</m> does the same thing as <m>D</m>, but with respect to the coordinate system defined by the columns <m>u_1,u_2,u_3</m> of <m>C</m>. This means that <m>A</m> <q>sucks all vectors into the <m>1</m>-eigenspace</q>, without changing the sum of the entries of the vectors.
</p>
<figure>
<caption>Dynamics of the stochastic matrix <m>A</m>. Click <q>multiply</q> to multiply the colored points by <m>D</m> on the left and <m>A</m> on the right. Note that on both sides, all vectors are <q>sucked into the <m>1</m>-eigenspace</q> (the green line). (We have scaled <m>C</m> by <m>1/4</m> so that vectors have roughly the same size on the right and the left. The <q>jump</q> that happens when you press <q>multiply</q> is a negation of the <m>-.2</m>-eigenspace, which is not animated.)</caption>
<idx><h>Stochastic matrix</h><h>picture of</h></idx>
<mathbox source="demos/dynamics2.html?mat=1,0:0,-1/5&eigenz=1/10&v1=7/4,6/4,5/4&v2=-1/4,0,1/4&v3=1/4,-3/4,2/4&vec=false&path=false" height="600px"/>
</figure>
</specialcase>
<p>
The picture of a positive stochastic matrix is always the same, whether or not it is diagonalizable: <em>all vectors are <q>sucked into the <m>1</m>-eigenspace,</q></em> which is a line, without changing the sum of the entries of the vectors. This is the geometric content of the Perron<ndash/>Frobenius theorem.
</p>
</subsection>
<subsection>
<title>Google<rsq/>s PageRank Algorithm</title>
<p>
Internet searching in the 1990s was very inefficient. Yahoo or AltaVista would scan pages for your search text, and simply list the results with the most occurrences of those words. Not surprisingly, the more unsavory websites soon learned that by putting the words <q>Alanis Morissette</q> a million times in their pages, they could show up first every time an angsty teenager tried to find <em>Jagged Little Pill</em> on Napster.
</p>
<p>
Larry Page and Sergey Brin invented a way to rank pages by <em>importance</em>. They founded Google based on their algorithm. Here is roughly how it works.
</p>
<p>
Each web page has an associated importance, or <term>rank</term>. This is a positive number. This rank is determined by the following rule.
</p>
<definition hide-type="true">
<title>The Importance Rule</title>
<idx><h>Google PageRank</h><h>importance rule</h></idx>
<statement>
<p>
If a page <m>P</m> links to <m>n</m> other pages <m>Q_1,Q_2,\ldots,Q_n</m>, then each page <m>Q_i</m> inherits <m>\frac 1n</m> of <m>P</m><rsq/>s importance.
</p>
</statement>
</definition>
<p>
In practice, this means:
<ul>
<li>
If a very important page links to your page (and not to a zillion other ones as well), then your page is considered important.
</li>
<li>
If a zillion unimportant pages link to your page, then your page is still important.
</li>
<li>
If only one unknown page links to yours, your page is not important.
</li>
</ul>
Alternatively, there is the <em>random surfer interpretation.</em> A <q>random surfer</q> just sits at his computer all day, randomly clicking on links. The pages he spends the most time on should be the most important. So, the important (high-ranked) pages are those where a random surfer will end up most often. This measure turns out to be equivalent to the rank.
</p>
<definition hide-type="true">
<title>The Importance Matrix</title>
<idx><h>Google PageRank</h><h>importance matrix</h></idx>
<statement>
<p>
Consider an internet with <m>n</m> pages. The <term>importance matrix</term> is the <m>n\times n</m> matrix <m>A</m> whose <m>i,j</m>-entry is the importance that page <m>j</m> passes to page <m>i.</m>
</p>
</statement>
</definition>
<p>
Observe that the importance matrix is a stochastic matrix, assuming every page contains a link: if page <m>i</m> has <m>m</m> links, then the <m>i</m>th column contains the number <m>1/m</m>, <m>m</m> times, and the number zero in the other entries.
</p>
<specialcase>
<p>
Consider the following internet with only four pages. Links are indicated by arrows.
<latex-code><![CDATA[
\begin{tikzpicture}
\matrix[matrix of nodes,
nodes={draw, circle, thick, anchor=center, font=\large},
row sep={3cm,between origins}, column sep={5cm,between origins}]
(pages)
{
|[seq1] (A)| A \& |[seq2] (B)| B \\
|[seq3] (C)| C \& |[seq4] (D)| D \\
};
\begin{scope}[->, shorten=2pt,
every node/.style={midway, auto, thin border},
every to/.style={bend left=10}]
\draw[seq1] (A) to node {${\frac 13}$} (B);
\draw[seq1] (A) to node {${\frac 13}$} (C);
\draw[seq1] (A) to node[near start] {${\frac 13}$} (D);
\draw[seq2] (B) to node[near end] {${\frac 12}$} (C);
\draw[seq2] (B) to node {${\frac 12}$} (D);
\draw[seq3] (C) to node {${1}$} (A);
\draw[seq4] (D) to node[near end] {${\frac 12}$} (A);
\draw[seq4] (D) to node {${\frac 12}$} (C);
\end{scope}
\end{tikzpicture}
]]></latex-code>
The importance rule says:
<ul>
<li>
Page <m>\color{seq1}A</m> has <m>3</m> links, so it passes <m>\frac 13</m> of its importance to pages
<m>B,C,D</m>.
</li>
<li>
Page <m>\color{seq2}B</m> has <m>2</m> links, so it passes <m>\frac 12</m> of its importance to pages <m>C,D</m>.
</li>
<li>
Page <m>\color{seq3}C</m> has one link, so it passes all of its importance to page <m>A</m>.
</li>
<li>
Page <m>\color{seq4}D</m> has <m>2</m> links, so it passes <m>\frac 12</m> of its importance to pages <m>A,C</m>.
</li>
</ul>
In terms of matrices, if <m>v = (a,b,c,d)</m> is the vector containing the ranks <m>a,b,c,d</m> of the pages <m>A,B,C,D</m>, then
<me>
\def\r{\color{seq1}}\def\b{\color{seq2}}\def\g{\color{seq3}}\def\p{\color{seq4}}
\mat{
\r0 \b0 \g1 \p\frac 12;
\r\frac 13 \b0 \g0 \p0;
\r\frac 13 \b\frac 12 \g0 \p\frac 12;
\r\frac 13 \b\frac 12 \g0 \p0}
\vec{a b c d}
= \spalignsysdelims()\syseq{
\. \+ \. \+ c + \frac 12d;
\frac 13a;
\frac 13a + \frac 12b \+ \. + \frac 12d;
\frac 13a + \frac 12b}
= \vec{a b c d}.
</me>
The matrix on the left is the <term>importance matrix</term>, and the final equality expresses the importance rule.
</p>
</specialcase>
<p>
The above example illustrates the key observation.
</p>
<bluebox>
<title>Key Observation</title>
<idx><h>Google PageRank</h><h>importance matrix</h><h>eigenvector of</h></idx>
<p>
The rank vector is an eigenvector of the importance matrix with eigenvalue <m>1</m>.
</p>
</bluebox>
<p>
In light of the key observation, we would like to use the Perron<ndash/>Frobenius theorem to find the rank vector. Unfortunately, the importance matrix is not always a <em>positive</em> stochastic matrix.
</p>
<example>
<title>A page with no links</title>
<p>
Consider the following internet with three pages:
<latex-code><![CDATA[
\begin{tikzpicture}
\matrix[matrix of nodes,
nodes={draw, circle, thick, anchor=center, font=\large},
row sep={1.5cm,between origins}, column sep={5cm,between origins}]
{
|[seq1] (A)| A \\ \& |[seq3] (C)| C \\
|[seq2] (B)| B \\
};
\begin{scope}[->, shorten=2pt,
every node/.style={midway, auto, thin border}]
\draw[seq1] (A) to node {$1$} (C);
\draw[seq2] (B) to[swap] node {$1$} (C);
\end{scope}
\end{tikzpicture}
]]></latex-code>
The importance matrix is
<me>
\def\r{\color{seq1}}\def\b{\color{seq2}}\def\g{\color{seq3}}
\mat{\r0 \b0 \g0; \r0 \b0 \g0; \r1 \b1 \g0}.
</me>
This has characteristic polynomial
<me>f(\lambda) = \det\mat{-\lambda, 0 0; 0 -\lambda, 0; 1 1 -\lambda}
= -\lambda^3.</me>
So <m>1</m> is not an eigenvalue at all: there is no rank vector! The importance matrix is not stochastic because the page <m>C</m> has no links.
</p>
</example>
<example>
<title>Disconnected Internet</title>
<p>
Consider the following internet:
<latex-code><![CDATA[
\begin{tikzpicture}
\matrix[matrix of nodes,
nodes={draw, circle, thick, anchor=center, font=\large},
row sep={1.5cm,between origins}, column sep={3cm,between origins}]
{
\& \& \& |[seq4] (D)| D \\
|[seq1] (A)| A \& |[seq2] (B)| B \& |[seq3] (C)| C \\
\& \& \& |[seq5] (E)| E \\
};
\begin{scope}[->, shorten=2pt,
every node/.style={midway, auto, thin border},
every to/.style={bend left=10}]
\draw[seq1] (A) to node {$1$} (B);
\draw[seq2] (B) to node {$1$} (A);
\draw[seq3] (C) to node {$\frac 12$} (D);
\draw[seq4] (D) to node[pos=.3] {$\frac 12$} (C);
\draw[seq3] (C) to node[pos=.5] {$\frac 12$} (E);
\draw[seq5] (E) to node {$\frac 12$} (C);
\draw[seq4] (D) to node {$\frac 12$} (E);
\draw[seq5] (E) to node {$\frac 12$} (D);
\end{scope}
\end{tikzpicture}
]]></latex-code>
The importance matrix is
<me>
\def\r{\color{seq1}}\def\b{\color{seq2}}\def\g{\color{seq3}}
\def\p{\color{seq4}}\def\o{\color{seq5}}
\mat{\r0 \b1 0 0 0; \r1 \b0 0 0 0;
0 0 \g0 \p\frac 12 \o\frac 12;
0 0 \g\frac 12 \p0 \o\frac 12;
0 0 \g\frac 12 \p\frac 12 \o0}.
</me>
This has linearly independent eigenvectors
<me>
\vec{1 1 0 0 0} \sptxt{and}
\vec{0 0 1 1 1},
</me>
both with eigenvalue <m>1</m>. So there is more than one rank vector in this case. Here the importance matrix is stochastic, but not positive.
</p>
</example>
<p>
Here is Page and Brin<rsq/>s solution. First we fix the importance matrix by replacing each zero column with a column of <m>1/n</m>s, where <m>n</m> is the number of pages:
<me>
A = \mat{0 0 0; 0 0 0; 1 1 0}
\sptxt{becomes}
A' = \mat{0 0 1/3; 0 0 1/3; 1 1 1/3}.
</me>
The <term>modified importance matrix</term> <m>A'</m> is always stochastic.
</p>
<p>
Now we choose a number <m>p</m> in <m>(0,1)</m>, called the <term>damping factor</term>. (A typical value is <m>p=0.15</m>.)
</p>
<definition hide-type="true">
<title>The Google Matrix</title>
<idx><h>Google PageRank</h><h>Google Matrix</h></idx>
<statement>
<p>
Let <m>A</m> be the importance matrix for an internet with <m>n</m> pages, and let <m>A'</m> be the modified importance matrix. The <term>Google Matrix</term> is the matrix
<me>
M = (1-p)\cdot A' + p\cdot B
\sptxt{where}
B = \frac 1n\mat{1 1 \cdots, 1; 1 1 \cdots, 1;
\vdots, \vdots, \ddots, \vdots; 1 1 \cdots, 1}.
</me>
</p>
</statement>
</definition>
<p>
In the random surfer interpretation, this matrix <m>M</m> says: with probability <m>p</m>, our surfer will surf to a completely random page; otherwise, he'll click a random link on the current page, unless the current page has no links, in which case he'll surf to a completely random page in either case.
</p>
<p>
The reader can verify the following important fact.
</p>
<fact>
<p>
The Google Matrix is a positive stochastic matrix.
</p>
</fact>
<p>
If we declare that the ranks of all of the pages must sum to <m>1</m>, then we find:
</p>
<bluebox>
<title>The 25 Billion Dollar Eigenvector</title>
<idx><h>Google PageRank</h><h>Google Matrix</h><h>eigenvector of</h></idx>
<p>
The PageRank vector is the steady state of the Google Matrix.
</p>
</bluebox>
<p>
This exists and has positive entries by the Perron<ndash/>Frobenius theorem. The hard part is calculating it: in real life, the Google Matrix has zillions of rows.
</p>
<example>
<statement>
<p>
What is the PageRank vector for the following internet? (Use the damping factor <m>p = 0.15</m>.)
<latex-code><![CDATA[
\begin{tikzpicture}
\matrix[matrix of nodes,
nodes={draw, circle, thick, anchor=center, font=\large},
row sep={3cm,between origins}, column sep={5cm,between origins}]
(pages)
{
|[seq1] (A)| A \& |[seq2] (B)| B \\
|[seq3] (C)| C \& |[seq4] (D)| D \\
};
\begin{scope}[->, shorten=2pt,
every node/.style={midway, auto, thin border},
every to/.style={bend left=10}]
\draw[seq1] (A) to node {${\frac 13}$} (B);
\draw[seq1] (A) to[bend right=10] node {${\frac 13}$} (C);
\draw[seq1] (A) to node[near start] {${\frac 13}$} (D);
\draw[seq2] (B) to node[near end] {${\frac 12}$} (C);
\draw[seq2] (B) to node {${\frac 12}$} (D);
\draw[seq4] (D) to node[near end] {${\frac 12}$} (A);
\draw[seq4] (D) to node {${\frac 12}$} (C);
\end{scope}
\end{tikzpicture}
]]></latex-code>
Which page is the most important? Which is the least important?
</p>
</statement>
<solution>
<p>
First we compute the modified importance matrix:
<me>
\def\r{\color{seq1}}\def\b{\color{seq2}}\def\g{\color{seq3}}\def\p{\color{seq4}}
A = \mat{
\r0 \b0 \g0 \p\frac 12;
\r\frac 13 \b0 \g0 \p0;
\r\frac 13 \b\frac 12 \g0 \p\frac 12;
\r\frac 13 \b\frac 12 \g0 \p0}
\quad\xrightarrow{\text{modify}}\quad
A' = \mat{
\r0 \b0 \g\frac14 \p\frac 12;
\r\frac 13 \b0 \g\frac14 \p0;
\r\frac 13 \b\frac 12 \g\frac14 \p\frac 12;
\r\frac 13 \b\frac 12 \g\frac14 \p0}
</me>
Choosing the damping factor <m>p=0.15</m>, the Google Matrix is
<me>
\def\r{\color{seq1}}\def\b{\color{seq2}}\def\g{\color{seq3}}\def\p{\color{seq4}}
\begin{split}
M = \amp0.85\cdot\mat{
\r0 \b0 \g\frac14 \p\frac 12;
\r\frac 13 \b0 \g\frac14 \p0;
\r\frac 13 \b\frac 12 \g\frac14 \p\frac 12;
\r\frac 13 \b\frac 12 \g\frac14 \p0}
+ 0.15\cdot\mat{1/4 1/4 1/4 1/4; 1/4 1/4 1/4 1/4; 1/4 1/4 1/4 1/4; 1/4 1/4 1/4 1/4} \\
\amp\qquad\approx \mat{0.0375 0.0375 0.2500 0.4625;
0.3208 0.0375 0.2500 0.0375;
0.3208 0.4625 0.2500 0.4625;
0.3208 0.4625 0.2500 0.0375}.
\end{split}
</me>
The PageRank vector is the steady state:
<me>
w \approx \vec{0.2192, 0.1752 0.3558 0.2498}
</me>
This is the PageRank:
<latex-code><![CDATA[
\begin{tikzpicture}
\matrix[matrix of nodes,
nodes={draw, circle, thick, anchor=center, font=\large},
row sep={3cm,between origins}, column sep={5cm,between origins}]
(pages)
{
|[seq1] (A)| .22 \& |[seq2] (B)| .18 \\
|[seq3] (C)| .35 \& |[seq4] (D)| .25 \\
};
\begin{scope}[->, shorten=2pt,
every node/.style={midway, auto, thin border},
every to/.style={bend left=10}]
\draw[seq1] (A) to node {${\frac 13}$} (B);
\draw[seq1] (A) to[bend right=10] node {${\frac 13}$} (C);
\draw[seq1] (A) to node[near start] {${\frac 13}$} (D);
\draw[seq2] (B) to node[near end] {${\frac 12}$} (C);
\draw[seq2] (B) to node {${\frac 12}$} (D);
\draw[seq4] (D) to node[near end] {${\frac 12}$} (A);
\draw[seq4] (D) to node {${\frac 12}$} (C);
\end{scope}
\end{tikzpicture}
]]></latex-code>
Page <m>C</m> is the most important, with a rank of <m>0.558</m>, and page <m>B</m> is the least important, with a rank of <m>0.1752.</m>
</p>
</solution>
</example>
</subsection>
</section>