-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhouse.py
177 lines (122 loc) · 5.88 KB
/
house.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 20 10:46:23 2018
@author: Sascha Birk
"""
import pandas as pd
import heatpump as hp
import bev as bev
def import_loadshape(filepath, index = 0):
df = pd.DataFrame()
df = pd.read_csv(filepath, delimiter = ';')
#If index is needed:
if index:
df.set_index(df.Time, inplace = True)
del df['Time']
return df
# In[Starting DataFrame]:
def new_scenario(start = '2017-01-01 00:00:00',
end = '2017-12-31 23:45:00',
periods = None, freq = "15 min", column = 'Demand'):
df_main = pd.DataFrame(pd.date_range(start, end, periods, freq, name ='Time'))
df_main[column] = 0
return df_main
# In[Photovoltaik]:
def pv_generation(pv, pv_size, df = new_scenario(column = "pv_generation")):
if not "pv_generation" in df:
df["pv_generation"] = pv.Generation * pv_size
if "pv_generation" in df:
df["pv_generation"] = df.pv_generation + (pv.Generation * pv_size)
return df
# In[Battery electric vehicle]:
def bev_loadshape(work_start, work_end, weekend_trip_start, weekend_trip_end, battery_min, battery_max, charging_power, efficiency, battery_usage, time_base, df = new_scenario()):
df = bev.split_time(df)
df = bev.at_home(df, work_start, work_end, weekend_trip_start, weekend_trip_end)
df = bev.charge(df, battery_min, battery_max, charging_power, efficiency, battery_usage, time_base )
return df
# In[Heatpump]:
def hp_loadshape(building_type, SigLinDe, mean_temp_days, t_0, demand_daily, mean_temp_hours, heatpump_type, water_temp, hours_year, heatpump_power, df):
#calculate the building parameters
b_params = [] #[A, B, C, D, m_H, b_H, m_W, b_W]
b_params = hp.building_parameters(building_type, SigLinDe)
h_del = hp.h_del(mean_temp_days, b_params, t_0)
heat_demand_daily = hp.daily_demand(h_del, mean_temp_days.Mean_Temp, demand_daily)
df_cop = hp.cop(mean_temp_hours, heatpump_type, water_temp)
Q_N = hp.demandfactor(hours_year, heatpump_power)
K_w = hp.consumerfactor(Q_N, h_del)
heat_demand_h = hp.hourly_heat_demand(heat_demand_daily, K_w)
el_demand_h = hp.hourly_el_demand(heat_demand_h, df_cop)
el_demand_h.dropna(inplace = True)
df_h = new_scenario(freq = "H")
df_h["Demand"] = el_demand_h
df_h.dropna(inplace = True)
temp = hp.hour_to_qarter(df_h)
temp.reset_index(inplace = True)
df["hp_demand"] = temp.Demand
return df
# In[Calculate overall house loadshape]:
def combine_loadshapes(df):
#Handle exeption in case not all loadshapes exist
if 'hp_demand' not in df:
df['hp_demand'] = 0
if 'car_charger' not in df:
df['car_charger'] = 0
if 'pv_generation' not in df:
df['pv_generation'] = 0
df['house_demand'] = df.baseload + df.hp_demand + df.car_charger - df.pv_generation
return df
# In[El home storage]:
def el_storage(df, init_storage_charge, storage_max, charger_power, time_base):
#add data to processing data frame. Battery model handels generation positive, demand negative
df['house_demand'] *= -1
lst_storage = []
lst_demand = []
storage_charge = init_storage_charge
rest = 0 #reset
for i, d in df.iterrows():
#If the house would feed electricity into the grid, charge the storage first.
#No electricity exchange with grid as long as charger power is not ecxeeded
if (d.house_demand > 0) & (storage_charge < storage_max):
#Check if energy produced exceeds charger power
if (d.house_demand < charger_power):
storage_charge = storage_charge + (d.house_demand * 0.98 * time_base)
rest = 0
#If it does, feed the rest to the grid
else:
storage_charge = storage_charge + (charger_power * 0.98 * time_base)
rest = d.house_demand - charger_power
#If the storage would be overcharged, feed the 'rest' to the grid
if (storage_charge > storage_max):
rest = ((storage_charge - storage_max)/ time_base)
storage_charge = storage_max
#If the house needs electricity from the grid, discharge the storage first.
#In this case d.house_demand is negative!
#No electricity exchange with grid as long as demand does not exceed charger power
elif (d.house_demand < 0) & (storage_charge > 0):
#Check if energy demand exceeds charger power
if (d.house_demand < (charger_power * -1)):
storage_charge = (storage_charge) - (charger_power * 1.02 * time_base)
rest = d.house_demand + charger_power
else:
storage_charge = (storage_charge) + (d.house_demand * 1.02 * time_base)
rest = 0
#If the storage would be undercharged, take the 'rest' from the grid
if (storage_charge < 0):
#since storage_charge is negative in this case it can be taken as demand
rest = (storage_charge / time_base) #kWh / h = kW
storage_charge = 0
#If the storage is full or empty, the demand is not affected
#elif(storage_charge == 0) | (storage_charge == storage_max):
else:
rest = d.house_demand
lst_storage.append(storage_charge)
lst_demand.append(rest*-1)
df["house_demand"] = lst_demand
df["storage_charge"] = lst_storage
return df
# df_storage = pd.DataFrame(lst_storage)
# df_Storage_Charge[column] = df_storage[0]
# df_main[column] = lst_demand
# df_Storage_Charge.set_index(df_Storage_Charge.Time, inplace = True)
# del df_Storage_Charge['Time']
# df_Storage_Charge.to_pickle(OUTPUT + SZENARIO +'/df_Storage_Charge.pkl')