-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
gpu.py
134 lines (110 loc) · 4.5 KB
/
gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import shutil
import subprocess
from typing import Any, Dict, List, Union
import torch
import pytorch_lightning as pl
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_8
_log = logging.getLogger(__name__)
class GPUAccelerator(Accelerator):
"""Accelerator for GPU devices."""
def setup_environment(self, root_device: torch.device) -> None:
"""
Raises:
MisconfigurationException:
If the selected device is not GPU.
"""
if "cuda" not in str(root_device):
raise MisconfigurationException(f"Device should be GPU, got {self.root_device} instead")
torch.cuda.set_device(root_device)
def setup(self, trainer: "pl.Trainer") -> None:
# TODO refactor input from trainer to local_rank @four4fish
self.set_nvidia_flags(trainer.local_rank)
# clear cache before training
torch.cuda.empty_cache()
@staticmethod
def set_nvidia_flags(local_rank: int) -> None:
# set the correct cuda visible devices (using pci order)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
all_gpu_ids = ",".join(str(x) for x in range(torch.cuda.device_count()))
devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids)
_log.info(f"LOCAL_RANK: {local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]")
def get_device_stats(self, device: Union[str, torch.device]) -> Dict[str, Any]:
"""Gets stats for the given GPU device.
Args:
device: GPU device for which to get stats
Returns:
A dictionary mapping the metrics to their values.
Raises:
FileNotFoundError:
If nvidia-smi installation not found
"""
if _TORCH_GREATER_EQUAL_1_8:
return torch.cuda.memory_stats(device)
return get_nvidia_gpu_stats(device)
@staticmethod
def auto_device_count() -> int:
"""Get the devices when set to auto."""
return torch.cuda.device_count()
def get_nvidia_gpu_stats(device: torch.device) -> Dict[str, float]:
"""Get GPU stats including memory, fan speed, and temperature from nvidia-smi.
Args:
device: GPU device for which to get stats
Returns:
A dictionary mapping the metrics to their values.
Raises:
FileNotFoundError:
If nvidia-smi installation not found
"""
nvidia_smi_path = shutil.which("nvidia-smi")
if nvidia_smi_path is None:
raise FileNotFoundError("nvidia-smi: command not found")
gpu_stat_metrics = [
("utilization.gpu", "%"),
("memory.used", "MB"),
("memory.free", "MB"),
("utilization.memory", "%"),
("fan.speed", "%"),
("temperature.gpu", "°C"),
("temperature.memory", "°C"),
]
gpu_stat_keys = [k for k, _ in gpu_stat_metrics]
gpu_query = ",".join(gpu_stat_keys)
gpu_id = _get_gpu_id(device.index)
result = subprocess.run(
[nvidia_smi_path, f"--query-gpu={gpu_query}", "--format=csv,nounits,noheader", f"--id={gpu_id}"],
encoding="utf-8",
capture_output=True,
check=True,
)
def _to_float(x: str) -> float:
try:
return float(x)
except ValueError:
return 0.0
s = result.stdout.strip()
stats = [_to_float(x) for x in s.split(", ")]
gpu_stats = {f"{x} ({unit})": stat for (x, unit), stat in zip(gpu_stat_metrics, stats)}
return gpu_stats
def _get_gpu_id(device_id: int) -> str:
"""Get the unmasked real GPU IDs."""
# All devices if `CUDA_VISIBLE_DEVICES` unset
default = ",".join(str(i) for i in range(torch.cuda.device_count()))
cuda_visible_devices: List[str] = os.getenv("CUDA_VISIBLE_DEVICES", default=default).split(",")
return cuda_visible_devices[device_id].strip()