-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcifar10.py
71 lines (59 loc) · 2.54 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from __future__ import print_function
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import np_utils
from keras.callbacks import ReduceLROnPlateau, CSVLogger, EarlyStopping
import numpy as np
import resnet
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6)
early_stopper = EarlyStopping(min_delta=0.001, patience=10)
csv_logger = CSVLogger('resnet18_cifar10.csv')
batch_size = 32
nb_classes = 10
nb_epoch = 100
data_augmentation = False
img_rows, img_cols = 32, 32
img_channels = 3
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
# Convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_test -= mean_image
X_train /= 128.
X_test /= 128.
model = resnet.ResnetBuilder.build_resnet_18((img_channels, img_rows, img_cols), nb_classes)
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
if not data_augmentation:
print('Not using data augmentation.')
model.fit(X_train, Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(X_test, Y_test),
shuffle=True,
callbacks=[lr_reducer, early_stopper, csv_logger])
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True,
vertical_flip=False)
datagen.fit(X_train)
model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
steps_per_epoch=X_train.shape[0] // batch_size,
validation_data=(X_test, Y_test),
epochs=nb_epoch, verbose=1, max_q_size=100,
callbacks=[lr_reducer, early_stopper, csv_logger])