-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathsegmentation.py
127 lines (111 loc) · 4.62 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any, Dict, Optional, Union
import lib.infers
import lib.trainers
from monai.networks.nets import SegResNet
from monai.utils import optional_import
from monailabel.interfaces.config import TaskConfig
from monailabel.interfaces.tasks.infer_v2 import InferTask
from monailabel.interfaces.tasks.train import TrainTask
from monailabel.utils.others.generic import download_file, remove_file, strtobool
_, has_cp = optional_import("cupy")
_, has_cucim = optional_import("cucim")
logger = logging.getLogger(__name__)
class Segmentation(TaskConfig):
def init(self, name: str, model_dir: str, conf: Dict[str, str], planner: Any, **kwargs):
super().init(name, model_dir, conf, planner, **kwargs)
# Labels
conf_labels = self.conf.get("labels")
self.labels = (
{label: idx for idx, label in enumerate(conf_labels.split(","), start=1)}
if conf_labels
else {
"spleen": 1,
"kidney_right": 2,
"kidney_left": 3,
"gallbladder": 4,
"liver": 5,
"stomach": 6,
"aorta": 7,
"inferior_vena_cava": 8,
"portal_vein_and_splenic_vein": 9,
"pancreas": 10,
"adrenal_gland_right": 11,
"adrenal_gland_left": 12,
"lung_upper_lobe_left": 13,
"lung_lower_lobe_left": 14,
"lung_upper_lobe_right": 15,
"lung_middle_lobe_right": 16,
"lung_lower_lobe_right": 17,
"esophagus": 42,
"trachea": 43,
"heart_myocardium": 44,
"heart_atrium_left": 45,
"heart_ventricle_left": 46,
"heart_atrium_right": 47,
"heart_ventricle_right": 48,
"pulmonary_artery": 49,
}
)
# Model Files
self.path = [
os.path.join(self.model_dir, f"pretrained_{name}.pt"), # pretrained
os.path.join(self.model_dir, f"{name}.pt"), # published
]
# Download PreTrained Model
if not conf_labels and strtobool(self.conf.get("use_pretrained_model", "true")):
url = f"{self.conf.get('pretrained_path', self.PRE_TRAINED_PATH)}"
url = f"{url}/radiology_segmentation_segresnet_multilabel.pt"
download_file(url, self.path[0])
# Remove pre-trained pt if user is using his/her custom labels.
if conf_labels:
remove_file(self.path[0])
self.target_spacing = (1.5, 1.5, 1.5) # target space for image
# Setting ROI size - This is for the image padding
self.roi_size = (96, 96, 96)
# Network
self.network = SegResNet(
spatial_dims=3,
in_channels=1,
out_channels=len(self.labels) + 1, # labels plus background,
init_filters=32,
blocks_down=(1, 2, 2, 4),
blocks_up=(1, 1, 1),
dropout_prob=0.2,
)
def infer(self) -> Union[InferTask, Dict[str, InferTask]]:
task: InferTask = lib.infers.Segmentation(
path=self.path,
network=self.network,
roi_size=self.roi_size,
target_spacing=self.target_spacing,
labels=self.labels,
preload=strtobool(self.conf.get("preload", "false")),
config={"largest_cc": True if has_cp and has_cucim else False},
)
return task
def trainer(self) -> Optional[TrainTask]:
output_dir = os.path.join(self.model_dir, self.name)
load_path = self.path[0] if os.path.exists(self.path[0]) else self.path[1]
task: TrainTask = lib.trainers.Segmentation(
model_dir=output_dir,
network=self.network,
roi_size=self.roi_size,
target_spacing=self.target_spacing,
load_path=load_path,
publish_path=self.path[1],
description="Train Segmentation Model",
labels=self.labels,
)
return task