-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathinteraction.py
93 lines (79 loc) · 4.21 KB
/
interaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, Sequence, Union
import numpy as np
import torch
from monai.data import decollate_batch, list_data_collate
from monai.engines import SupervisedEvaluator, SupervisedTrainer
from monai.engines.utils import IterationEvents
from monai.transforms import Compose
from monai.utils.enums import CommonKeys
class Interaction:
"""
Ignite process_function used to introduce interactions (simulation of clicks) for DeepEdit Training/Evaluation.
More details about this can be found at:
Diaz-Pinto et al., MONAI Label: A framework for AI-assisted Interactive
Labeling of 3D Medical Images. (2022) https://arxiv.org/abs/2203.12362
Args:
deepgrow_probability: probability of simulating clicks in an iteration
transforms: execute additional transformation during every iteration (before train).
Typically, several Tensor based transforms composed by `Compose`.
train: True for training mode or False for evaluation mode
click_probability_key: key to click/interaction probability
max_interactions: maximum number of interactions per iteration
"""
def __init__(
self,
deepgrow_probability: float,
transforms: Union[Sequence[Callable], Callable],
train: bool,
click_probability_key: str = "probability",
max_interactions: int = 1,
) -> None:
self.deepgrow_probability = deepgrow_probability
self.transforms = Compose(transforms) if not isinstance(transforms, Compose) else transforms
self.train = train
self.click_probability_key = click_probability_key
self.max_interactions = max_interactions
def __call__(self, engine: Union[SupervisedTrainer, SupervisedEvaluator], batchdata: Dict[str, torch.Tensor]):
if batchdata is None:
raise ValueError("Must provide batch data for current iteration.")
if np.random.choice([True, False], p=[self.deepgrow_probability, 1 - self.deepgrow_probability]):
for j in range(self.max_interactions):
inputs, _ = engine.prepare_batch(batchdata)
inputs = inputs.to(engine.state.device)
engine.fire_event(IterationEvents.INNER_ITERATION_STARTED)
engine.network.eval()
with torch.no_grad():
if engine.amp:
with torch.cuda.amp.autocast():
predictions = engine.inferer(inputs, engine.network)
else:
predictions = engine.inferer(inputs, engine.network)
batchdata.update({CommonKeys.PRED: predictions})
# decollate/collate batchdata to execute click transforms
batchdata_list = decollate_batch(batchdata, detach=True)
for i in range(len(batchdata_list)):
batchdata_list[i][self.click_probability_key] = (
(1.0 - ((1.0 / self.max_interactions) * j)) if self.train else 1.0
)
batchdata_list[i] = self.transforms(batchdata_list[i])
batchdata = list_data_collate(batchdata_list)
engine.fire_event(IterationEvents.INNER_ITERATION_COMPLETED)
else:
# zero out input guidance channels
batchdata_list = decollate_batch(batchdata, detach=True)
for i in range(1, len(batchdata_list[0][CommonKeys.IMAGE])):
batchdata_list[0][CommonKeys.IMAGE][i] *= 0
batchdata = list_data_collate(batchdata_list)
# first item in batch only
engine.state.batch = batchdata
return engine._iteration(engine, batchdata)