diff --git a/generative/networks/nets/vqvae.py b/generative/networks/nets/vqvae.py index 361d92ec..07c7aeba 100644 --- a/generative/networks/nets/vqvae.py +++ b/generative/networks/nets/vqvae.py @@ -100,26 +100,24 @@ class VQVAE(nn.Module): spatial_dims: number of spatial spatial_dims. in_channels: number of input channels. out_channels: number of output channels. - num_levels: number of levels that the network has. Defaults to 3. + num_levels: number of levels that the network has. downsample_parameters: A Tuple of Tuples for defining the downsampling convolutions. Each Tuple should hold the - following information stride (int), kernel_size (int), dilation(int) and padding (int). - Defaults to ((2,4,1,1),(2,4,1,1),(2,4,1,1)). + following information stride (int), kernel_size (int), dilation (int) and padding (int). upsample_parameters: A Tuple of Tuples for defining the upsampling convolutions. Each Tuple should hold the - following information stride (int), kernel_size (int), dilation(int), padding (int), output_padding (int). + following information stride (int), kernel_size (int), dilation (int), padding (int), output_padding (int). If use_subpixel_conv is True, only the stride will be used for the last conv as the scale_factor. - Defaults to ((2,4,1,1,0),(2,4,1,1,0),(2,4,1,1,0)). - num_res_layers: number of sequential residual layers at each level. Defaults to 3. - num_channels: number of channels at the deepest level, besides that is num_channels//2 . Defaults to 192. - num_res_channels: number of channels in the residual layers. Defaults to 64. - num_embeddings: VectorQuantization number of atomic elements in the codebook. Defaults to 32. - embedding_dim: VectorQuantization number of channels of the input and atomic elements. Defaults to 64. - commitment_cost: VectorQuantization commitment_cost. Defaults to 0.25. - decay: VectorQuantization decay. Defaults to 0.5. - epsilon: VectorQuantization epsilon. Defaults to 1e-5 as. - adn_ordering: a string representing the ordering of activation, normalization, and dropout. Defaults to "NDA". - act: activation type and arguments. Defaults to Relu. - dropout: dropout ratio. Defaults to 0.1. - ddp_sync: whether to synchronize the codebook across processes. Defaults to True. + num_res_layers: number of sequential residual layers at each level. + num_channels: number of channels at each level. + num_res_channels: number of channels in the residual layers at each level. + num_embeddings: VectorQuantization number of atomic elements in the codebook. + embedding_dim: VectorQuantization number of channels of the input and atomic elements. + commitment_cost: VectorQuantization commitment_cost. + decay: VectorQuantization decay. + epsilon: VectorQuantization epsilon. + adn_ordering: a string representing the ordering of activation, normalization, and dropout, e.g. "NDA". + act: activation type and arguments. + dropout: dropout ratio. + ddp_sync: whether to synchronize the codebook across processes. """ # < Python 3.9 TorchScript requirement for ModuleList @@ -166,7 +164,7 @@ def __init__( ), ( f"downsample_parameters, upsample_parameters, num_channels and num_res_channels must have the same number of" f" elements as num_levels. But got {len(downsample_parameters)}, {len(upsample_parameters)}, " - f"{len(num_res_channels)} and {len(num_res_channels)} instead of {num_levels}." + f"{len(num_channels)} and {len(num_res_channels)} instead of {num_levels}." ) self.num_levels = num_levels