-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
96 lines (79 loc) · 3.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import PIL
import torch
import torch.nn as nn
import cv2
from skimage.color import lab2rgb, rgb2lab, rgb2gray
from skimage import io
import matplotlib.pyplot as plt
import numpy as np
class ColorizationNet(nn.Module):
def __init__(self, input_size=128):
super(ColorizationNet, self).__init__()
MIDLEVEL_FEATURE_SIZE = 128
resnet=models.resnet18(pretrained=True)
resnet.conv1.weight=nn.Parameter(resnet.conv1.weight.sum(dim=1).unsqueeze(1))
self.midlevel_resnet =nn.Sequential(*list(resnet.children())[0:6])
self.upsample = nn.Sequential(
nn.Conv2d(MIDLEVEL_FEATURE_SIZE, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Upsample(scale_factor=2),
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1),
nn.Upsample(scale_factor=2)
)
def forward(self, input):
# Pass input through ResNet-gray to extract features
midlevel_features = self.midlevel_resnet(input)
# Upsample to get colors
output = self.upsample(midlevel_features)
return output
def show_output(grayscale_input, ab_input):
'''Show/save rgb image from grayscale and ab channels
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}'''
color_image = torch.cat((grayscale_input, ab_input), 0).detach().numpy() # combine channels
color_image = color_image.transpose((1, 2, 0)) # rescale for matplotlib
color_image[:, :, 0:1] = color_image[:, :, 0:1] * 100
color_image[:, :, 1:3] = color_image[:, :, 1:3] * 255 - 128
color_image = lab2rgb(color_image.astype(np.float64))
grayscale_input = grayscale_input.squeeze().numpy()
# plt.imshow(grayscale_input)
# plt.imshow(color_image)
return color_image
def colorize(img,print_img=True):
# img=cv2.imread(img)
img=cv2.resize(img,(224,224))
grayscale_input= torch.Tensor(rgb2gray(img))
ab_input=model(grayscale_input.unsqueeze(0).unsqueeze(0)).squeeze(0)
predicted=show_output(grayscale_input.unsqueeze(0), ab_input)
if print_img:
plt.imshow(predicted)
return predicted
# device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
# torch.load with map_location=torch.device('cpu')
model=torch.load("model-final.pth",map_location ='cpu')
import streamlit as st
st.title("Image Colorizer")
st.write('\n')
st.write('Find more info at: https://github.com/Pranav082001/Neural-Image-Colorizer or at https://medium.com/@pranav.kushare2001/colorize-your-black-and-white-photos-using-ai-4652a34e967.')
# Sidebar
st.sidebar.title("Upload Image")
file=st.sidebar.file_uploader("Please upload a Black and White image",type=["jpg","jpeg","png"])
if st.sidebar.button("Colorize image"):
with st.spinner('Colorizing...'):
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
opencv_image = cv2.imdecode(file_bytes, 1)
im=colorize(opencv_image)
st.text("Original")
st.image(file)
st.text("Colorized!!")
st.image(im)