forked from rstudio/shiny-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
server.R
136 lines (73 loc) · 2.84 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
library(rsconnect)
library(shiny)
shinyServer(function(input, output) {
inputData<-reactive({
inFile <- input$data
if (is.null(inFile))
return(NULL)
file <- read.csv(inFile$datapath, header = input$header,
sep = input$sep, quote = input$quote)
})
output$table <- renderTable({
inFile <- input$data
if(is.null(input$data)) {
h5("No any data")
return(NULL)
}
file <- read.csv(inFile$datapath, header = input$header,
sep = input$sep, quote = input$quote)
file<- file[1:input$obs,]
})
output$plot <- renderPlot({
inFile <- input$data
if(is.null(input$data))
return(NULL)
file <- read.csv(inFile$datapath, header = input$header,
sep = input$sep, quote = input$quote)
file<- file[1:input$obs,]
x<- file[,1]
y<- file[,2]
a<- input$intercept
b<-input$slope
#
# yhat <- input$intercept + x * input$slope
regression <- lm(y~x)
intercept1<- coef(regression)["(Intercept)"]
slope<- coef(regression)["y"]
#
plot(x, y, cex = 1, font = 3)
points(x, y, pch = 16, cex = 0.8, col = "red",,xlab = "Explanatory Variable",ylab = "Outcome Variable")
title("Linear Regression")
#abline(a = coef(ckd_model)[1], b = coef(intercept1)[2], lty = 2, lwd = 2, col = "red")
abline(intercept = intercept1, slope = slope, colour = "red", size = 2)
})
output$LinearPlot <- renderPlot({
inFile <- input$data
file <- read.csv(inFile$datapath, header = input$header,
sep = input$sep, quote = input$quote)
file<- file[1:input$obs,]
x<- file[,1]
y<- file[,2]
# par(mfrow=c(2,2))
plot(y ~ x, col = rep(c("red", "blue"), each = 50), pch = 16, xlab = "x (Predictor variable)",
ylab = "y (output variable) ")
ckd_model <- lm(y ~ x )
abline(a = coef(ckd_model)[1], b = coef(ckd_model)[2], lty = 2, lwd = 2, col = "red")
})
output$summary <-renderPrint({
inFile <- input$data
file <- read.csv(inFile$datapath, header = input$header,
sep = input$sep, quote = input$quote)
file<- file[1:input$obs,]
summary(file)
})
output$Linearsummary <-renderPrint({
inFile <- input$data
file <- read.csv(inFile$datapath, header = input$header,
sep = input$sep, quote = input$quote)
file<- file[1:input$obs,]
x<- file[,1]
y<- file[,2]
summary(lm(y~x))
})
})