-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_critique_lookback.py
164 lines (133 loc) · 6.16 KB
/
infer_critique_lookback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import json
import os
import google.generativeai as genai
import tqdm
import utils
from evaluate import evaluate_critique
from infer_critique import format_response
from utils import launch_locally, func, get_pool
prompt_dir = os.path.join(os.path.dirname(__file__), 'prompts/')
PROMPT_PROBLEM_SOLVER = "{{{QUESTION}}}\nThink step by step, and then provide your final answer."
with open(os.path.join(prompt_dir, 'lookback_visual-query.txt')) as f:
PROMPT_SCHEDULE_VISUAL_QUERY = f.read()
with open(os.path.join(prompt_dir, 'lookback_synthesize.txt')) as f:
PROMPT_SYNTHESIZE = f.read()
def func_agent(obj):
item, image = obj
# problem solver
ref_answer = func((image, item['question']))
def format_prompt(prompt, item):
prompts = []
for i in range(len(item['response']['reasoning'])):
reasoning = "\n".join(["{:d}. {:s}".format(j + 1, x)
for j, x in enumerate(item['response']['reasoning'][:i + 1])])
which_step = {1: "first", 2: "second", 3: "third", 4: "fourth", 5: "fifth"}[i + 1]
prompts.append(
prompt.replace("{{{QUESTION}}}", item['question']). \
replace("{{{ANSWER}}}", str(item['response']['answer'])).replace("{{{REASONING}}}", reasoning).
replace("{{{WHICH_STEP}}}", which_step)
)
return prompts
def extract_verify_questions(text):
if 'N/A' in text.strip():
return []
text = "\n" + text.strip()
text = "\n1.".join(text.split("\n1.")[1:])
lines = text.splitlines()
for i, line in enumerate(lines):
if line.startswith("{:d}.".format(i + 1)):
lines[i] = ".".join(line.split('.')[1:])
lines[i] = lines[i].strip()
return lines
# visual verification
prompt = format_prompt(PROMPT_SCHEDULE_VISUAL_QUERY, item)
visual_questions = [func((image, p)) for p in prompt]
visual_questions = [extract_verify_questions(q) for q in visual_questions]
visual_answers = [[func((image, pp + ' Answer briefly.')) for pp in p] for p in visual_questions]
def format_prompt_synthesize(prompt_base):
reasoning = []
for i, (r, q, a) in enumerate(zip(item['response']['reasoning'], visual_questions, visual_answers)):
reasoning.append("{:d}. {:s}".format(i + 1, r))
reasoning = "\n".join(reasoning)
visual_info = []
for q, a in zip(visual_questions, visual_answers):
for qq, aa in zip(q, a):
visual_info.append("* {} - {}".format(qq, aa))
visual_info = "\n".join(visual_info)
if visual_info.strip() == '':
visual_info = "N/A"
prompt = prompt_base.replace("{{{QUESTION}}}", item['question']). \
replace("{{{ANSWER}}}", str(item['response']['answer'])).replace("{{{REASONING}}}", reasoning). \
replace("{{{REFERNCE_ANSWER}}}", ref_answer).replace("{{{VISUAL_INFO}}}", visual_info)
prompt_lines = prompt.splitlines()
final_prompt_lines = []
for line in prompt_lines:
if '{{{REPEAT_BY_N_STEP}}}' in line:
for i in range(len(item['response']['reasoning'])):
final_prompt_lines.append(line.replace('{{{REPEAT_BY_N_STEP}}}', str(i + 1)))
else:
final_prompt_lines.append(line)
prompt = "\n".join(final_prompt_lines)
return prompt
# synthesize
prompt = format_prompt_synthesize(PROMPT_SYNTHESIZE)
ret = func((image, prompt))
return ret, {
'ref_answer': ref_answer, 'visual_questions': visual_questions, 'visual_answers': visual_answers,
}
def infer(data, images):
utils.args = args
if args.model == "gemini-1.5-pro":
genai.configure(api_key=args.api_key)
responses = []
assert len(data) == len(images)
with get_pool(args.n_proc) as p:
for response, additional_info in tqdm.tqdm(p.imap(func_agent, zip(data, images)), total=len(images)):
responses.append((response, additional_info))
if len(responses) <= 5:
print("\n\n------------------------- Example output:", len(responses))
print(responses[-1][0])
print("\n--- Additional info:")
print(json.dumps(additional_info, indent=2))
return responses
data = []
def main(args):
images = [item['image'] for item in data]
responses_raw = infer(data, images)
responses = []
for (response, additional_info), item in zip(responses_raw, data):
response = format_response(response, len(item['response']['reasoning']))
response['additional_info'] = additional_info
responses.append(response)
if args.output is not None:
print("Save outputs to", args.output)
os.makedirs(os.path.dirname(args.output), exist_ok=True)
with open(args.output, 'w') as f:
for r in responses:
f.write(json.dumps(r) + '\n')
evaluate_critique(data, responses)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# model and inference parameters
parser.add_argument('--model', default="gpt-4o-2024-08-06") # auto if we're using a locally served model
# openai api-based
parser.add_argument('--api_key', default='YOUR_API_KEY')
parser.add_argument('--base_url', default=None)
parser.add_argument('--n_proc', default=16, type=int)
parser.add_argument('--launch_locally', default=None, choices=['lmdeploy', 'vllm', 'sglang'])
# input output
parser.add_argument('--input', default='test.jsonl')
parser.add_argument('--output', default=None)
args = parser.parse_args()
if args.launch_locally:
process, port = launch_locally(args.launch_locally, args.model)
args.model = 'auto'
args.base_url = f'http://0.0.0.0:{port}/v1'
with open(args.input) as f:
data = [json.loads(line) for line in f]
try:
main(args)
finally:
if args.launch_locally:
process.kill()