forked from google/gemma.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.cc
309 lines (270 loc) · 9.98 KB
/
run.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Command line text interface to gemma.
#include <ctime>
#include <iostream>
#include <random>
#include <string>
#include <thread> // NOLINT
#include <vector>
// Placeholder for internal header, do not modify.
// copybara:import_next_line:gemma_cpp
#include "compression/compress.h"
// copybara:import_next_line:gemma_cpp
#include "gemma.h" // Gemma
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/highway.h"
#include "hwy/per_target.h"
#include "hwy/profiler.h"
#include "hwy/timer.h"
// copybara:import_next_line:gemma_cpp
#include "util/app.h"
// copybara:import_next_line:gemma_cpp
#include "util/args.h" // HasHelp
static constexpr bool kVerboseLogTokens = false;
namespace gcpp {
static constexpr std::string_view kAsciiArtBanner = R""(
__ _ ___ _ __ ___ _ __ ___ __ _ ___ _ __ _ __
/ _` |/ _ \ '_ ` _ \| '_ ` _ \ / _` | / __| '_ \| '_ \
| (_| | __/ | | | | | | | | | | (_| || (__| |_) | |_) |
\__, |\___|_| |_| |_|_| |_| |_|\__,_(_)___| .__/| .__/
__/ | | | | |
|___/ |_| |_|
)"";
void ShowConfig(LoaderArgs& loader, InferenceArgs& inference, AppArgs& app) {
loader.Print(app.verbosity);
inference.Print(app.verbosity);
app.Print(app.verbosity);
if (app.verbosity >= 2) {
time_t now = time(nullptr);
char* dt = ctime(&now); // NOLINT
std::cout << "Date & Time : " << dt
<< "Prefill Token Batch Size : " << gcpp::kPrefillBatchSize
<< "\n"
<< "Hardware concurrency : "
<< std::thread::hardware_concurrency() << "\n"
<< "Instruction set : "
<< hwy::TargetName(hwy::DispatchedTarget()) << " ("
<< hwy::VectorBytes() * 8 << " bits)" << "\n"
<< "Compiled config : " << CompiledConfig() << "\n"
<< "Weight Type : "
<< gcpp::TypeName(gcpp::GemmaWeightT()) << "\n"
<< "EmbedderInput Type : "
<< gcpp::TypeName(gcpp::EmbedderInputT()) << "\n";
}
}
void ShowHelp(gcpp::LoaderArgs& loader, gcpp::InferenceArgs& inference,
gcpp::AppArgs& app) {
std::cerr
<< kAsciiArtBanner
<< "\n\ngemma.cpp : a lightweight, standalone C++ inference engine\n"
"==========================================================\n\n"
"To run gemma.cpp, you need to "
"specify 3 required model loading arguments:\n --tokenizer\n "
"--compressed_weights\n"
" --model.\n";
std::cerr << "\n*Example Usage*\n\n./gemma --tokenizer tokenizer.spm "
"--compressed_weights 2b-it-sfp.sbs --model 2b-it\n";
std::cerr << "\n*Model Loading Arguments*\n\n";
loader.Help();
std::cerr << "\n*Inference Arguments*\n\n";
inference.Help();
std::cerr << "\n*Application Arguments*\n\n";
app.Help();
std::cerr << "\n";
}
void ReplGemma(gcpp::Gemma& model, ModelTraining training,
gcpp::KVCache& kv_cache, hwy::ThreadPool& pool,
hwy::ThreadPool& inner_pool, const InferenceArgs& args,
int verbosity, const gcpp::AcceptFunc& accept_token,
std::string& eot_line) {
PROFILER_ZONE("Gen.misc");
int abs_pos = 0; // absolute token index over all turns
int current_pos = 0; // token index within the current turn
int prompt_size{};
std::mt19937 gen;
if (args.deterministic) {
gen.seed(42);
} else {
std::random_device rd;
gen.seed(rd());
}
// callback function invoked for each generated token.
auto stream_token = [&abs_pos, ¤t_pos, &args, &gen, &prompt_size,
tokenizer = model.Tokenizer(),
verbosity](int token, float) {
++abs_pos;
++current_pos;
// <= since position is incremented before
if (current_pos <= prompt_size) {
std::cerr << "." << std::flush;
} else if (token == gcpp::EOS_ID) {
if (!args.multiturn) {
abs_pos = 0;
if (args.deterministic) {
gen.seed(42);
}
}
if (verbosity >= 2) {
std::cout << "\n[ End ]\n";
}
} else {
std::string token_text;
HWY_ASSERT(tokenizer->Decode(std::vector<int>{token}, &token_text));
// +1 since position is incremented above
if (current_pos == prompt_size + 1) {
// first token of response
token_text.erase(0, token_text.find_first_not_of(" \t\n"));
if (verbosity >= 1) {
std::cout << "\n\n";
}
}
std::cout << token_text << std::flush;
}
return true;
};
while (abs_pos < args.max_tokens) {
std::string prompt_string;
std::vector<int> prompt;
current_pos = 0;
{
PROFILER_ZONE("Gen.input");
if (verbosity >= 1) {
std::cout << "> " << std::flush;
}
if (eot_line.size() == 0) {
std::getline(std::cin, prompt_string);
} else {
std::string line;
while (std::getline(std::cin, line)) {
if (line == eot_line) {
break;
}
prompt_string += line + "\n";
}
}
}
if (std::cin.fail() || prompt_string == "%q" || prompt_string == "%Q") {
return;
}
if (prompt_string == "%c" || prompt_string == "%C") {
abs_pos = 0;
continue;
}
if (training == ModelTraining::GEMMA_IT) {
// For instruction-tuned models: add control tokens.
prompt_string = "<start_of_turn>user\n" + prompt_string +
"<end_of_turn>\n<start_of_turn>model\n";
if (abs_pos > 0) {
// Prepend "<end_of_turn>" token if this is a multi-turn dialogue
// continuation.
prompt_string = "<end_of_turn>\n" + prompt_string;
}
}
HWY_ASSERT(model.Tokenizer()->Encode(prompt_string, &prompt));
// For both pre-trained and instruction-tuned models: prepend "<bos>" token
// if needed.
if (abs_pos == 0) {
prompt.insert(prompt.begin(), 2);
}
prompt_size = prompt.size();
std::cerr << "\n"
<< "[ Reading prompt ] " << std::flush;
if constexpr (kVerboseLogTokens) {
for (int i = 0; i < static_cast<int>(prompt.size()); ++i) {
fprintf(stderr, "DDD TOKEN %3d: %6d\n", i, prompt[i]);
}
}
const double time_start = hwy::platform::Now();
GenerateGemma(model, args.max_tokens, args.max_generated_tokens,
args.temperature, prompt, abs_pos, kv_cache, pool, inner_pool,
stream_token, accept_token, gen, verbosity);
const double time_end = hwy::platform::Now();
const double tok_sec = current_pos / (time_end - time_start);
if (verbosity >= 2) {
std::cout << current_pos << " tokens (" << abs_pos << " total tokens)"
<< "\n"
<< tok_sec << " tokens / sec" << "\n";
}
std::cout << "\n\n";
}
std::cout
<< "max_tokens (" << args.max_tokens
<< ") exceeded. Use a larger value if desired using the --max_tokens "
<< "command line flag.\n";
}
void Run(LoaderArgs& loader, InferenceArgs& inference, AppArgs& app) {
PROFILER_ZONE("Run.misc");
hwy::ThreadPool inner_pool(0);
hwy::ThreadPool pool(app.num_threads);
// For many-core, pinning threads to cores helps.
if (app.num_threads > 10) {
PinThreadToCore(app.num_threads - 1); // Main thread
pool.Run(0, pool.NumThreads(),
[](uint64_t /*task*/, size_t thread) { PinThreadToCore(thread); });
}
gcpp::Gemma model(loader.tokenizer, loader.weights, loader.ModelType(), pool);
auto kv_cache = CreateKVCache(loader.ModelType());
if (const char* error = inference.Validate()) {
ShowHelp(loader, inference, app);
HWY_ABORT("\nInvalid args: %s", error);
}
if (app.verbosity >= 1) {
const std::string instructions =
"*Usage*\n"
" Enter an instruction and press enter (%C resets conversation, "
"%Q quits).\n" +
(inference.multiturn == 0
? std::string(" Since multiturn is set to 0, conversation will "
"automatically reset every turn.\n\n")
: "\n") +
"*Examples*\n"
" - Write an email to grandma thanking her for the cookies.\n"
" - What are some historical attractions to visit around "
"Massachusetts?\n"
" - Compute the nth fibonacci number in javascript.\n"
" - Write a standup comedy bit about GPU programming.\n";
std::cout << "\033[2J\033[1;1H" // clear screen
<< kAsciiArtBanner << "\n\n";
ShowConfig(loader, inference, app);
std::cout << "\n" << instructions << "\n";
}
ReplGemma(
model, loader.ModelTraining(), kv_cache, pool, inner_pool, inference,
app.verbosity,
/*accept_token=*/[](int) { return true; }, app.eot_line);
}
} // namespace gcpp
int main(int argc, char** argv) {
{
PROFILER_ZONE("Startup.misc");
// Placeholder for internal init, do not modify.
gcpp::LoaderArgs loader(argc, argv);
gcpp::InferenceArgs inference(argc, argv);
gcpp::AppArgs app(argc, argv);
if (gcpp::HasHelp(argc, argv)) {
ShowHelp(loader, inference, app);
return 0;
}
if (const char* error = loader.Validate()) {
ShowHelp(loader, inference, app);
HWY_ABORT("\nInvalid args: %s", error);
}
gcpp::Run(loader, inference, app);
}
PROFILER_PRINT_RESULTS(); // Must call outside the zone above.
return 0;
}