We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
1、作者提供的网盘数据集中JPEGImages要检查所有图片后缀都是jpg,把JGP的改为jpg要不然会在数据转换时运行报错 2、在yolo.py里面
for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) with torch.no_grad(): # 在原有代码基础上添加这行代码 b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) # 缩进 b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls # 缩进 mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
3、在output_to_target中进行修改,将以下行: return np.array(targets)修改为:return np.array(torch.tensor(targets).cpu())
return np.array(targets)
以上代表我个人观点,大佬轻喷哈哈哈哈哈!
The text was updated successfully, but these errors were encountered:
1、作者提供的网盘数据集中JPEGImages要检查所有图片后缀都是jpg,把JGP的改为jpg要不然会在数据转换时运行报错 2、在yolo.py里面 for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) with torch.no_grad(): # 在原有代码基础上添加这行代码 b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) # 缩进 b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls # 缩进 mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) 3、在output_to_target中进行修改,将以下行: return np.array(targets)修改为:return np.array(torch.tensor(targets).cpu()) 以上代表我个人观点,大佬轻喷哈哈哈哈哈!
牛的,完美预判!
Sorry, something went wrong.
No branches or pull requests
1、作者提供的网盘数据集中JPEGImages要检查所有图片后缀都是jpg,把JGP的改为jpg要不然会在数据转换时运行报错
2、在yolo.py里面
3、在output_to_target中进行修改,将以下行:
return np.array(targets)
修改为:return np.array(torch.tensor(targets).cpu())以上代表我个人观点,大佬轻喷哈哈哈哈哈!
The text was updated successfully, but these errors were encountered: