Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

这里给大家提几个小建议! #83

Open
xs-web-lhdd opened this issue Aug 18, 2023 · 1 comment
Open

这里给大家提几个小建议! #83

xs-web-lhdd opened this issue Aug 18, 2023 · 1 comment

Comments

@xs-web-lhdd
Copy link

1、作者提供的网盘数据集中JPEGImages要检查所有图片后缀都是jpg,把JGP的改为jpg要不然会在数据转换时运行报错
2、在yolo.py里面

        for mi, s in zip(m.m, m.stride):  #  from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            with torch.no_grad(): # 在原有代码基础上添加这行代码
                b[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image) # 缩进
                b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())  # cls # 缩进
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

3、在output_to_target中进行修改,将以下行:
return np.array(targets)修改为:return np.array(torch.tensor(targets).cpu())

以上代表我个人观点,大佬轻喷哈哈哈哈哈!

@daqiudi
Copy link

daqiudi commented Apr 17, 2024

1、作者提供的网盘数据集中JPEGImages要检查所有图片后缀都是jpg,把JGP的改为jpg要不然会在数据转换时运行报错 2、在yolo.py里面

        for mi, s in zip(m.m, m.stride):  #  from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            with torch.no_grad(): # 在原有代码基础上添加这行代码
                b[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image) # 缩进
                b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())  # cls # 缩进
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

3、在output_to_target中进行修改,将以下行: return np.array(targets)修改为:return np.array(torch.tensor(targets).cpu())

以上代表我个人观点,大佬轻喷哈哈哈哈哈!

牛的,完美预判!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants