From f6e74361f909b5921f79c621fe0e6dd2aca96fc2 Mon Sep 17 00:00:00 2001 From: LuEdRaMo <73906617+LuEdRaMo@users.noreply.github.com> Date: Thu, 13 Jul 2023 11:44:45 -0600 Subject: [PATCH] Deprecate `taylorinteg_threads` (#25) --- Project.toml | 2 +- src/PlanetaryEphemeris.jl | 3 +- src/dynamical_model.jl | 921 +------ src/interpolation.jl | 10 +- src/jetcoeffs.jl | 4773 ------------------------------------- src/plephinteg.jl | 303 --- src/propagation.jl | 39 +- 7 files changed, 21 insertions(+), 6030 deletions(-) delete mode 100644 src/plephinteg.jl diff --git a/Project.toml b/Project.toml index 0e4f421..a598452 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "PlanetaryEphemeris" uuid = "d83715d0-7e5f-11e9-1a59-4137b20d8363" authors = ["Jorge A. Pérez Hernández", "Luis Benet", "Luis Eduardo Ramírez Montoya"] -version = "0.7.2" +version = "0.7.3" [deps] ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63" diff --git a/src/PlanetaryEphemeris.jl b/src/PlanetaryEphemeris.jl index e3f58ec..5beae4b 100644 --- a/src/PlanetaryEphemeris.jl +++ b/src/PlanetaryEphemeris.jl @@ -2,7 +2,7 @@ module PlanetaryEphemeris # __precompile__(false) -export PE, au, yr, sundofs, earthdofs, c_au_per_day, μ, NBP_pN_A_J23E_J23M_J2S!, NBP_pN_A_J23E_J23M_J2S_threads!, DE430!, +export PE, au, yr, sundofs, earthdofs, c_au_per_day, μ, NBP_pN_A_J23E_J23M_J2S_threads!, DE430!, semimajoraxis, eccentricity, inclination, longascnode, argperi, longperi, trueanomaly, ecanomaly, meananomaly, timeperipass, lrlvec, eccentricanomaly, meanan2truean, meanmotion, time2truean, su, ea, mo, au, yr, daysec, clightkms, c_au_per_day, c_au_per_sec, c_cm_per_sec, J2000, R_sun, α_p_sun, δ_p_sun, au, UJ_interaction, de430_343ast_ids, Rx, Ry, @@ -29,7 +29,6 @@ include("initial_conditions.jl") include("dynamical_model.jl") include("jetcoeffs.jl") include("interpolation.jl") -include("plephinteg.jl") include("propagation.jl") include("osculating.jl") include("barycenter.jl") diff --git a/src/dynamical_model.jl b/src/dynamical_model.jl index 95ea98f..2eb94c6 100644 --- a/src/dynamical_model.jl +++ b/src/dynamical_model.jl @@ -40,11 +40,11 @@ function special_eval(x::Vector{Taylor1{T}}, t::Taylor1{T}) where {T <: Number} return res end - @doc raw""" - NBP_pN_A_J23E_J23M_J2S!(dq, q, params, t) -Solar System (JPL DE430/431) dynamical model. Bodies considered in the model are: the Sun, + NBP_pN_A_J23E_J23M_J2S_threads!(dq, q, params, t) + +Multi-threaded Solar System (JPL DE430/431) dynamical model. Bodies considered in the model are: the Sun, the eight planets, the Moon and the 343 main-belt asteroids included in the JPL DE430 ephemeris. Effects considered are: @@ -153,917 +153,6 @@ inertial ``XY`` plane, ``\mathbf{I}_c`` is the core moment of inertia; ``\mathbf are the mantle and core angular velocities in the mantle frame; and ``\mathbf{N}_{cmb}`` is the torque due to interaction between the mantle and core. -""" NBP_pN_A_J23E_J23M_J2S! - -function NBP_pN_A_J23E_J23M_J2S!(dq, q, params, t) - # N: number of bodies - # jd0: initial Julian date - local N, jd0 = params - local S = eltype(q) # Type of positions/velocities components - - local zero_q_1 = zero(q[1]) # Zero of type S - local one_t = one(t) # One of the same type as time t - local dsj2k = t+(jd0-J2000) # Days since J2000.0 (TDB) - # Matrix elements of lunar mantle moment of inertia at time t-τ_M (without tidal distortion) - # See equations (36) to (41) in pages 16-17 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - # ITM(q_del_τ_M, eulang_del_τ_M) - local I_m_t = (ITM_und-I_c).*one_t # Undistorted moment of inertia of the mantle, see equation (40) - local dI_m_t = ordpres_differentiate.(I_m_t) # Time-derivative of lunar mantle I at time t-τ_M - local inv_I_m_t = inv(I_m_t) # Inverse of lunar mantle I matrix at time t-τ_M - local I_c_t = I_c.*one_t # Lunar core I matrix, see equation (39) - local inv_I_c_t = inv(I_c_t) # Inverse of lunar core I matrix - local I_M_t = I_m_t+I_c_t # Total I matrix (mantle + core) - - #= - Point-mass accelerations - See equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - =# - - # Note: All the following arrays are declared here in order to help @taylorize work - - # Difference between two positions (\mathbf{r}_i - \mathbf{r}_j) - X = Array{S}(undef, N, N) # X-axis component - Y = Array{S}(undef, N, N) # Y-axis component - Z = Array{S}(undef, N, N) # Z-axis component - - # Distance between two positions r_{ij} = ||\mathbf{r}_i - \mathbf{r}_j|| - r_p2 = Array{S}(undef, N, N) # r_{ij}^2 - r_p1d2 = Array{S}(undef, N, N) # sqrt(r_p2) <-> r_{ij} - r_p3d2 = Array{S}(undef, N, N) # r_p2^1.5 <-> r_{ij}^3 - r_p7d2 = Array{S}(undef, N, N) # r_p2^3.5 <-> r_{ij}^7 - - # Newtonian accelerations \mathbf{a}_{i} = \sum_{i\neq j} mu_i * (\mathbf{r_i} - \mathbf{r_j}) / r_{ij}^3 - newtonX = Array{S}(undef, N) # X-axis component - newtonY = Array{S}(undef, N) # Y-axis component - newtonZ = Array{S}(undef, N) # Z-axis component - # Newtonian coefficient, i.e., mass parameter / distance^3 -> \mu_i / r_{ij}^3 - newtonianCoeff = Array{S}(undef, N, N) - - # Post-Newtonian stuff - - # Difference between two velocities (\mathbf{v}_i - \mathbf{v}_j) - U = Array{S}(undef, N, N) # X-axis component - V = Array{S}(undef, N, N) # Y-axis component - W = Array{S}(undef, N, N) # Z-axis component - - # Weighted difference between two velocities (4\mathbf{v}_i - 3\mathbf{v}_j) - _4U_m_3X = Array{S}(undef, N, N) # X-axis component - _4V_m_3Y = Array{S}(undef, N, N) # Y-axis component - _4W_m_3Z = Array{S}(undef, N, N) # Z-axis component - - # Product of velocity components - UU = Array{S}(undef, N, N) # v_{ix}v_{jx} - VV = Array{S}(undef, N, N) # v_{iy}v_{jy} - WW = Array{S}(undef, N, N) # v_{iz}v_{jz} - - # Newtonian potential of 1 body \mu_i / r_{ij} - newtonian1b_Potential = Array{S}(undef, N, N) - # Newtonian potential of N bodies - # \sum_{i\neq l} \frac{\mu_i}{r_{il}} - newtonianNb_Potential = Array{S}(undef, N) - - # Newtonian coefficient * difference between two positions, i.e., - # \mu_i * (\mathbf{r_i} - \mathbf{r_j}) / r_{ij}^3 - newton_acc_X = Array{S}(undef, N, N) # X-axis component - newton_acc_Y = Array{S}(undef, N, N) # Y-axis component - newton_acc_Z = Array{S}(undef, N, N) # Z-axis component - - # Combinations of velocities - v2 = Array{S}(undef, N) # Velocity magnitude squared ||\mathbf{v}_i||^2 - _2v2 = Array{S}(undef, N, N) # 2 * ||\mathbf{v_i}||^2 - vi_dot_vj = Array{S}(undef, N, N) # Dot product of two velocities \mathbf{v}_i\cdot\mathbf{v}_j - - # Second term of equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - - # Second term without (\mathbf{v}_i - \mathbf{v}_j) - pn2 = Array{S}(undef, N, N) # \mu_i * [(\mathbf{r_i} - \mathbf{r_j})\cdot(4\mathbf{v_i} - 3\mathbf{v_j})] - # Full second term - U_t_pn2 = Array{S}(undef, N, N) # X-axis component - V_t_pn2 = Array{S}(undef, N, N) # Y-axis component - W_t_pn2 = Array{S}(undef, N, N) # Z-axis component - - # Third term of equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - - # Third term without newtonian accelerations \mathbf{a}_i - pn3 = Array{S}(undef, N, N) - # Full third term of equation (35) - pNX_t_pn3 = Array{S}(undef, N, N) # X-axis component - pNY_t_pn3 = Array{S}(undef, N, N) # Y-axis component - pNZ_t_pn3 = Array{S}(undef, N, N) # Z-axis component - - # First term of equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - - _4ϕj = Array{S}(undef, N, N) # 4*\sum term inside {} - ϕi_plus_4ϕj = Array{S}(undef, N, N) # 4*\sum + \sum terms inside {} - sj2_plus_2si2 = Array{S}(undef, N, N) # \dot{s}_j^2 + 2\dot{s}_i^2 inside {} - sj2_plus_2si2_minus_4vivj = Array{S}(undef, N, N) # \dot{s}_j^2 + 2\dot{s}_i^2 - 4<, > terms inside {} - ϕs_and_vs = Array{S}(undef, N, N) # -4\sum - \sum + \dot{s}_j^2 + 2\dot{s}_i^2 - 4<, > terms inside {} - pn1t1_7 = Array{S}(undef, N, N) # Everything inside the {} in the first term except for the term with accelerations (last) - # Last term inside the {} - pNX_t_X = Array{S}(undef, N, N) # X-axis component - pNY_t_Y = Array{S}(undef, N, N) # Y-axis component - pNZ_t_Z = Array{S}(undef, N, N) # Z-axis component - # Everything inside the {} in the first term - pn1 = Array{S}(undef, N, N) - # Full first term - X_t_pn1 = Array{S}(undef, N, N) # X-axis component - Y_t_pn1 = Array{S}(undef, N, N) # Y-axis component - Z_t_pn1 = Array{S}(undef, N, N) # Z-axis component - - # Temporary post-Newtonian accelerations - pntempX = Array{S}(undef, N) # X-axis component - pntempY = Array{S}(undef, N) # Y-axis component - pntempZ = Array{S}(undef, N) # Z-axis component - # Full post-Newtonian accelerations - postNewtonX = Array{S}(undef, N) # X-axis component - postNewtonY = Array{S}(undef, N) # Y-axis component - postNewtonZ = Array{S}(undef, N) # Z-axis component - - #= - Extended body accelerations - See equation (28) in page 13 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - and equations (173) and (174) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - =# - - # (J_n, C_{mn}, S_{mn}) acceleration auxiliaries - - # Auxiliaries to compute body-fixed frame coordinates - X_bf_1 = Array{S}(undef, N_ext, N_ext) - Y_bf_1 = Array{S}(undef, N_ext, N_ext) - Z_bf_1 = Array{S}(undef, N_ext, N_ext) - X_bf_2 = Array{S}(undef, N_ext, N_ext) - Y_bf_2 = Array{S}(undef, N_ext, N_ext) - Z_bf_2 = Array{S}(undef, N_ext, N_ext) - X_bf_3 = Array{S}(undef, N_ext, N_ext) - Y_bf_3 = Array{S}(undef, N_ext, N_ext) - Z_bf_3 = Array{S}(undef, N_ext, N_ext) - # Body-fixed frame coordinates - X_bf = Array{S}(undef, N_ext, N_ext) - Y_bf = Array{S}(undef, N_ext, N_ext) - Z_bf = Array{S}(undef, N_ext, N_ext) - - # Extended body accelerations (without mass parameter) in the inertial frame - F_JCS_x = Array{S}(undef, N_ext, N_ext) - F_JCS_y = Array{S}(undef, N_ext, N_ext) - F_JCS_z = Array{S}(undef, N_ext, N_ext) - # Temporary arrays for the sum of full extended body accelerations - temp_accX_j = Array{S}(undef, N_ext, N_ext) - temp_accY_j = Array{S}(undef, N_ext, N_ext) - temp_accZ_j = Array{S}(undef, N_ext, N_ext) - temp_accX_i = Array{S}(undef, N_ext, N_ext) - temp_accY_i = Array{S}(undef, N_ext, N_ext) - temp_accZ_i = Array{S}(undef, N_ext, N_ext) - - # Trigonometric functions of latitude ϕ and longitude λ in the body-fixed coordinate system - # See equations (165)-(168) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - sin_ϕ = Array{S}(undef, N_ext, N_ext) - cos_ϕ = Array{S}(undef, N_ext, N_ext) - sin_λ = Array{S}(undef, N_ext, N_ext) - cos_λ = Array{S}(undef, N_ext, N_ext) - - # Distances - r_xy = Array{S}(undef, N_ext, N_ext) # X-Y projection magnitude in body-fixed frame sqrt(x_b^2 + y_b^2) - r_p4 = Array{S}(undef, N_ext, N_ext) # r_{ij}^4 - # Legendre polynomials - P_n = Array{S}(undef, N_ext, N_ext, maximum(n1SEM)+1) # Vector of Legendre polynomials - dP_n = Array{S}(undef, N_ext, N_ext, maximum(n1SEM)+1) # Vector of d/d(sin ϕ) of Legendre polynomials - - # Temporary arrays for the sum of accelerations due to zonal harmonics J_n - temp_fjξ = Array{S}(undef, N_ext, N_ext, maximum(n1SEM)+1) # ξ-axis component - temp_fjζ = Array{S}(undef, N_ext, N_ext, maximum(n1SEM)+1) # ζ-axis component - temp_rn = Array{S}(undef, N_ext, N_ext, maximum(n1SEM)+1) # r_{ij}^{n+2} - # Temporary arrays for the vector sum in equation (173) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - temp_CS_ξ = Array{S}(undef, N_ext, N_ext, n1SEM[mo], n1SEM[mo]) # ξ-axis component - temp_CS_η = Array{S}(undef, N_ext, N_ext, n1SEM[mo], n1SEM[mo]) # η-axis component - temp_CS_ζ = Array{S}(undef, N_ext, N_ext, n1SEM[mo], n1SEM[mo]) # ζ-axis component - # Accelerations due to lunar tesseral harmonics beyond C_{21} and S_{21} - F_CS_ξ_36 = Array{S}(undef, N_ext, N_ext) # ξ-axis component - F_CS_η_36 = Array{S}(undef, N_ext, N_ext) # η-axis component - F_CS_ζ_36 = Array{S}(undef, N_ext, N_ext) # ζ-axis component - # Accelerations due to third zonal harmonic and beyond - F_J_ξ_36 = Array{S}(undef, N_ext, N_ext) # ξ-axis component - F_J_ζ_36 = Array{S}(undef, N_ext, N_ext) # ζ-axis component - - # Trigonometric functions of integer multiples the longitude λ in the body-fixed coordinate system - # See equations (165)-(168) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - sin_mλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]) - cos_mλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]) - # Lunar teseral harmonics C_{nm}/S_{nm} * trigonometric function of integer times the longitude λ - Cnm_cosmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]+1, n1SEM[mo]+1) - Cnm_sinmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]+1, n1SEM[mo]+1) - Snm_cosmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]+1, n1SEM[mo]+1) - Snm_sinmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]+1, n1SEM[mo]+1) - - # Associated Legendre functions - secϕ_P_nm = Array{S}(undef, N_ext, N_ext, n1SEM[mo]+1, n1SEM[mo]+1) # secϕ P_n^m - P_nm = Array{S}(undef, N_ext, N_ext, n1SEM[mo]+1, n1SEM[mo]+1) # Vector of associated Legendre functions - cosϕ_dP_nm = Array{S}(undef, N_ext, N_ext, n1SEM[mo]+1, n1SEM[mo]+1) # cosϕ d/d(sin ϕ)P_n^m - # Accelerations due to second zonal harmonic - F_J_ξ = Array{S}(undef, N_ext, N_ext) # ξ-axis component - F_J_η = Array{S}(undef, N_ext, N_ext) # η-axis component - F_J_ζ = Array{S}(undef, N_ext, N_ext) # ζ-axis component - # Accelerations due to lunar tesseral harmonics C_{21} and S_{21} - F_CS_ξ = Array{S}(undef, N_ext, N_ext) # ξ-axis component - F_CS_η = Array{S}(undef, N_ext, N_ext) # η-axis component - F_CS_ζ = Array{S}(undef, N_ext, N_ext) # ζ-axis component - # Sum of the zonal and tesseral (only for the moon) accelerations without mass parameter - # in body-fixed frame - F_JCS_ξ = Array{S}(undef, N_ext, N_ext) # ξ-axis component - F_JCS_η = Array{S}(undef, N_ext, N_ext) # η-axis component - F_JCS_ζ = Array{S}(undef, N_ext, N_ext) # ζ-axis component - - # Rotation matrices - - # R matrix body-fixed -> "primed" (ξ, η, ζ) frame - # See equation (161) in page 32 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - Rb2p = Array{S}(undef, N_ext, N_ext, 3, 3) - # G matrix "space-fixed" -> "primed" (ξ, η, ζ) frame - # See equation (163) in page 32 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - Gc2p = Array{S}(undef, N_ext, N_ext, 3, 3) - - # Full extended-body accelerations - accX = Array{S}(undef, N_ext) - accY = Array{S}(undef, N_ext) - accZ = Array{S}(undef, N_ext) - - # Lunar torques - # See equation (43) in page 18 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - # Vector of lunar torques - N_MfigM_pmA_x = Array{S}(undef, N_ext) # x-axis component - N_MfigM_pmA_y = Array{S}(undef, N_ext) # y-axis component - N_MfigM_pmA_z = Array{S}(undef, N_ext) # z-axis component - # Temporary array for the sum of lunar torques - temp_N_M_x = Array{S}(undef, N_ext) # x-axis component - temp_N_M_y = Array{S}(undef, N_ext) # y-axis component - temp_N_M_z = Array{S}(undef, N_ext) # z-axis component - # Total lunar torque - N_MfigM = Array{S}(undef, 3) - N_MfigM[1] = zero_q_1 # x-axis component - N_MfigM[2] = zero_q_1 # y-axis component - N_MfigM[3] = zero_q_1 # z-axis component - - # Rotations to and from Earth, Sun and Moon pole-oriented frames - local αs = deg2rad(α_p_sun*one_t) # Sun's rotation pole right ascension (radians) - local δs = deg2rad(δ_p_sun*one_t) # Sun's rotation pole right ascension (radians) - # Space-fixed -> body-fixed coordinate transformations - RotM = Array{S}(undef, 3, 3, 5) - local RotM[:,:,ea] = c2t_jpl_de430(dsj2k) # Earth - local RotM[:,:,su] = pole_rotation(αs, δs) # Sun - # Lunar mantle Euler angles - ϕ_m = q[6N+1] - θ_m = q[6N+2] - ψ_m = q[6N+3] - # Lunar mantle space-fixed -> body-fixed coodinate transformations - # See equations (10)-(13) in page 9 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - RotM[1,1,mo] = (cos(ϕ_m)*cos(ψ_m)) - (cos(θ_m)*(sin(ϕ_m)*sin(ψ_m))) - RotM[2,1,mo] = (-cos(θ_m)*(cos(ψ_m)*sin(ϕ_m))) - (cos(ϕ_m)*sin(ψ_m)) - RotM[3,1,mo] = sin(θ_m)*sin(ϕ_m) - RotM[1,2,mo] = (cos(ψ_m)*sin(ϕ_m)) + (cos(θ_m)*(cos(ϕ_m)*sin(ψ_m))) - RotM[2,2,mo] = (cos(θ_m)*(cos(ϕ_m)*cos(ψ_m))) - (sin(ϕ_m)*sin(ψ_m)) - RotM[3,2,mo] = (-cos(ϕ_m))*sin(θ_m) - RotM[1,3,mo] = sin(θ_m)*sin(ψ_m) - RotM[2,3,mo] = cos(ψ_m)*sin(θ_m) - RotM[3,3,mo] = cos(θ_m) - # Lunar mantle frame -> inertial frame -> Lunar core-equatorial frame coord transformation - # See equation (16) in page 10 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - mantlef2coref = Array{S}(undef, 3, 3) - # Lunar core Euler angle - ϕ_c = q[6N+7] - # mantlef2coref = R_z(ϕ_c)*[ R_z(ψ_m)*R_x(θ_m)*R_z(ϕ_m) ]^T - mantlef2coref[1,1] = (( RotM[1,1,mo])*cos(ϕ_c)) + (RotM[1,2,mo]*sin(ϕ_c)) - mantlef2coref[2,1] = ((-RotM[1,1,mo])*sin(ϕ_c)) + (RotM[1,2,mo]*cos(ϕ_c)) - mantlef2coref[3,1] = RotM[1,3,mo] - mantlef2coref[1,2] = (( RotM[2,1,mo])*cos(ϕ_c)) + (RotM[2,2,mo]*sin(ϕ_c)) - mantlef2coref[2,2] = ((-RotM[2,1,mo])*sin(ϕ_c)) + (RotM[2,2,mo]*cos(ϕ_c)) - mantlef2coref[3,2] = RotM[2,3,mo] - mantlef2coref[1,3] = (( RotM[3,1,mo])*cos(ϕ_c)) + (RotM[3,2,mo]*sin(ϕ_c)) - mantlef2coref[2,3] = ((-RotM[3,1,mo])*sin(ϕ_c)) + (RotM[3,2,mo]*cos(ϕ_c)) - mantlef2coref[3,3] = RotM[3,3,mo] - # Core angular velocity in core-equatorial frame - ω_c_CE_1 = (mantlef2coref[1,1]*q[6N+10]) + ((mantlef2coref[1,2]*q[6N+11]) + (mantlef2coref[1,3]*q[6N+12])) - ω_c_CE_2 = (mantlef2coref[2,1]*q[6N+10]) + ((mantlef2coref[2,2]*q[6N+11]) + (mantlef2coref[2,3]*q[6N+12])) - ω_c_CE_3 = (mantlef2coref[3,1]*q[6N+10]) + ((mantlef2coref[3,2]*q[6N+11]) + (mantlef2coref[3,3]*q[6N+12])) - - # Second zonal harmonic coefficient - # See Table 10 in page 50 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - local J2E_t = (J2E + J2EDOT*(dsj2k/yr))*(RE_au^2) # Earth (considering a linear change in time with rate J2EDOT) - local J2S_t = JSEM[su,2]*one_t # Sun (static) - # Vector of second zonal harmonic coefficients - J2_t = Array{S}(undef, 5) - J2_t[su] = J2S_t # Earth - J2_t[ea] = J2E_t # Sun - # Lunar torques: overall numerical factor in equation (44) in page 18 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - local N_MfigM_figE_factor = 7.5*μ[ea]*J2E_t - - #= - Compute point-mass Newtonian accelerations, all bodies - See equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - =# - for j in 1:N - # Fill point-mass Newton accelerations with zeros - newtonX[j] = zero_q_1 - newtonY[j] = zero_q_1 - newtonZ[j] = zero_q_1 - newtonianNb_Potential[j] = zero_q_1 - # Fill first 3N elements of dq with velocities - dq[3j-2] = q[3(N+j)-2] - dq[3j-1] = q[3(N+j)-1] - dq[3j ] = q[3(N+j) ] - end - # Fill extended-body accelerations with zeros - for j in 1:N_ext - accX[j] = zero_q_1 - accY[j] = zero_q_1 - accZ[j] = zero_q_1 - end - - for j in 1:N - for i in 1:N - # i == j && continue - if i == j - continue - else - # Difference in position \mathbf{r_i} - \mathbf{r_j} - X[i,j] = q[3i-2]-q[3j-2] # X-axis component - Y[i,j] = q[3i-1]-q[3j-1] # Y-axis component - Z[i,j] = q[3i]-q[3j] # Z-axis component - - # Difference in velocity \mathbf{v_i} - \mathbf{v_j} - U[i,j] = dq[3i-2]-dq[3j-2] # X-axis component - V[i,j] = dq[3i-1]-dq[3j-1] # Y-axis component - W[i,j] = dq[3i ]-dq[3j ] # Z-axis component - - # Weighted difference in velocity 4\mathbf{v_i} - 3\mathbf{v_j} - _4U_m_3X[i,j] = (4dq[3j-2])-(3dq[3i-2]) # X-axis component - _4V_m_3Y[i,j] = (4dq[3j-1])-(3dq[3i-1]) # Y-axis component - _4W_m_3Z[i,j] = (4dq[3j ])-(3dq[3i ]) # Z-axis component - - # Dot product inside [] in the second term - pn2x = X[i,j]*_4U_m_3X[i,j] - pn2y = Y[i,j]*_4V_m_3Y[i,j] - pn2z = Z[i,j]*_4W_m_3Z[i,j] - - # Product of velocity components - UU[i,j] = dq[3i-2]*dq[3j-2] # v_{ix}v_{jx} - VV[i,j] = dq[3i-1]*dq[3j-1] # v_{iy}v_{jy} - WW[i,j] = dq[3i ]*dq[3j ] # v_{iz}v_{jz} - - # Dot product of velocities \mathbf{v_i}\cdot\mathbf{v_j} - vi_dot_vj[i,j] = ( UU[i,j]+VV[i,j] ) + WW[i,j] - - # Distances r_{ij} = ||\mathbf{r_i} - \mathbf{r_j}|| - r_p2[i,j] = ( (X[i,j]^2)+(Y[i,j]^2) ) + (Z[i,j]^2) # r_{ij}^2 - r_p1d2[i,j] = sqrt(r_p2[i,j]) # r_{ij} - r_p3d2[i,j] = r_p2[i,j]^1.5 # r_{ij}^3 - r_p7d2[i,j] = r_p2[i,j]^3.5 # r_{ij}^7 - - # Newtonian coefficient, i.e., mass parameter / distance^3 -> \mu_i / r_{ij}^3 - newtonianCoeff[i,j] = μ[i]/r_p3d2[i,j] - - # Second term without (\mathbf{v}_i - \mathbf{v}_j) - pn2[i,j] = newtonianCoeff[i,j]*(( pn2x+pn2y ) + pn2z) - - # Newtonian coefficient * difference between two positions, i.e., - # \mu_i * (\mathbf{r_i} - \mathbf{r_j}) / r_{ij}^3 - newton_acc_X[i,j] = X[i,j]*newtonianCoeff[i,j] # X-axis component - newton_acc_Y[i,j] = Y[i,j]*newtonianCoeff[i,j] # Y-axis component - newton_acc_Z[i,j] = Z[i,j]*newtonianCoeff[i,j] # Z-axis component - - # Newtonian potential of 1 body \mu_i / r_{ij} - newtonian1b_Potential[i,j] = μ[i]/r_p1d2[i, j] - # Third term without newtonian accelerations \mathbf{a}_i - pn3[i,j] = 3.5newtonian1b_Potential[i,j] - # Full second term - U_t_pn2[i,j] = pn2[i,j]*U[i,j] # X-axis component - V_t_pn2[i,j] = pn2[i,j]*V[i,j] # Y-axis component - W_t_pn2[i,j] = pn2[i,j]*W[i,j] # Z-axis component - - # Newtonian accelerations \mathbf{a}_{i} = \sum_{i\neq j} mu_i * (\mathbf{r_i} - \mathbf{r_j}) / r_{ij}^3 - temp_001 = newtonX[j] + (X[i,j]*newtonianCoeff[i,j]) # X-axis component - newtonX[j] = temp_001 - temp_002 = newtonY[j] + (Y[i,j]*newtonianCoeff[i,j]) # Y-axis component - newtonY[j] = temp_002 - temp_003 = newtonZ[j] + (Z[i,j]*newtonianCoeff[i,j]) # Z-axis component - newtonZ[j] = temp_003 - # Newtonian potential of N bodies - # \sum_{i\neq l} \frac{\mu_i}{r_{il}} - temp_004 = newtonianNb_Potential[j] + newtonian1b_Potential[i, j] - newtonianNb_Potential[j] = temp_004 - end # else (i != j) - end #for, i - # Velocity magnitude squared ||\mathbf{v}_i||^2 - v2[j] = ( (dq[3j-2]^2)+(dq[3j-1]^2) ) + (dq[3j]^2) - end #for, j - - #= - Extended body accelerations - See equation (28) in page 13 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - and equations (173) and (174) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - =# - - # 2nd-order lunar zonal (J_2) and tesseral (C_2, S_2) harmonics coefficients - # times the equatorial radius of the moon squared R_M^2 - # See equation (30) in page 13 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - J2M_t = ( I_M_t[3,3] - ((I_M_t[1,1]+I_M_t[2,2])/2) )/(μ[mo]) # J_{2,M}*R_M^2 - C22M_t = ((I_M_t[2,2] - I_M_t[1,1])/(μ[mo]))/4 # C_{22,M}*R_M^2 - C21M_t = (-I_M_t[1,3])/(μ[mo]) # C_{21,M}*R_M^2 - S21M_t = (-I_M_t[3,2])/(μ[mo]) # S_{21,M}*R_M^2 - S22M_t = ((-I_M_t[2,1])/(μ[mo]))/2 # S_{22,M}*R_M^2 - J2_t[mo] = J2M_t - - for j in 1:N_ext - for i in 1:N_ext - # i == j && continue - if i == j - continue - else - # J_n, C_{nm}, S_{nm} accelerations, if j-th body is flattened - if UJ_interaction[i,j] - # Rotate from (X, Y, Z) inertial frame to (X_bf, Y_bf, Z_by) extended-body frame - X_bf_1[i,j] = X[i,j]*RotM[1,1,j] - X_bf_2[i,j] = Y[i,j]*RotM[1,2,j] - X_bf_3[i,j] = Z[i,j]*RotM[1,3,j] - Y_bf_1[i,j] = X[i,j]*RotM[2,1,j] - Y_bf_2[i,j] = Y[i,j]*RotM[2,2,j] - Y_bf_3[i,j] = Z[i,j]*RotM[2,3,j] - Z_bf_1[i,j] = X[i,j]*RotM[3,1,j] - Z_bf_2[i,j] = Y[i,j]*RotM[3,2,j] - Z_bf_3[i,j] = Z[i,j]*RotM[3,3,j] - X_bf[i,j] = (X_bf_1[i,j] + X_bf_2[i,j]) + (X_bf_3[i,j]) # x-coordinate in body-fixed frame - Y_bf[i,j] = (Y_bf_1[i,j] + Y_bf_2[i,j]) + (Y_bf_3[i,j]) # y-coordinate in body-fixed frame - Z_bf[i,j] = (Z_bf_1[i,j] + Z_bf_2[i,j]) + (Z_bf_3[i,j]) # z-coordinate in body-fixed frame - - # Trigonometric functions of latitude ϕ and longitude λ in the body-fixed coordinate system - # See equations (165)-(168) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - sin_ϕ[i,j] = Z_bf[i,j]/r_p1d2[i,j] # eq. (165) - r_xy[i,j] = sqrt( (X_bf[i,j]^2)+(Y_bf[i,j]^2) ) # X-Y projection magnitude in body-fixed frame sqrt(x_b^2 + y_b^2) - cos_ϕ[i,j] = r_xy[i,j]/r_p1d2[i,j] # eq. (166) - sin_λ[i,j] = Y_bf[i,j]/r_xy[i,j] # eq. (167) - cos_λ[i,j] = X_bf[i,j]/r_xy[i,j] # eq. (168) - - # Legendre polynomials - - # See equations (176) and (177) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - P_n[i,j,1] = one_t # Zeroth Legendre polynomial - P_n[i,j,2] = sin_ϕ[i,j] # First Legendre polynomial - dP_n[i,j,1] = zero_q_1 # d/d(sin_ϕ) of zeroth Legendre polynomial - dP_n[i,j,2] = one_t # d/d(sin_ϕ) of first Legendre polynomial - - for n in 2:n1SEM[j] # min(3,n1SEM[j]) - # Recursion relation for the n-th Legenre polynomial - # See equation (175) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - P_n[i,j,n+1] = ((P_n[i,j,n]*sin_ϕ[i,j])*fact1_jsem[n]) - (P_n[i,j,n-1]*fact2_jsem[n]) - # Recursion relation for d/d(sin_ϕ) of the n-th Legendre polynomial - # See equation (178) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - dP_n[i,j,n+1] = (dP_n[i,j,n]*sin_ϕ[i,j]) + (P_n[i,j,n]*fact3_jsem[n]) - # r_{ij}^{n+2} - temp_rn[i,j,n] = r_p1d2[i,j]^fact5_jsem[n] - end - r_p4[i,j] = r_p2[i,j]^2 # r_{ij}^4 - - # Compute accelerations due to zonal harmonics J_n - - # Second zonal harmonic J_2 - # See equation (28) in page 13 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - # and equation (173) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - F_J_ξ[i,j] = ((P_n[i,j,3]*fact4_jsem[2])*J2_t[j])/r_p4[i,j] # ξ-axis - F_J_ζ[i,j] = (((-dP_n[i,j,3])*cos_ϕ[i,j])*J2_t[j])/r_p4[i,j] # ζ-axis - # Beyond third zonal harmonic J_3,... - F_J_ξ_36[i,j] = zero_q_1 - F_J_ζ_36[i,j] = zero_q_1 - for n in 3:n1SEM[j] # min(3,n1SEM[j]) - # ξ-axis - temp_fjξ[i,j,n] = (((P_n[i,j,n+1]*fact4_jsem[n])*JSEM[j,n])/temp_rn[i,j,n]) + F_J_ξ_36[i,j] - # ζ-axis - temp_fjζ[i,j,n] = ((((-dP_n[i,j,n+1])*cos_ϕ[i,j])*JSEM[j,n])/temp_rn[i,j,n]) + F_J_ζ_36[i,j] - F_J_ξ_36[i,j] = temp_fjξ[i,j,n] - F_J_ζ_36[i,j] = temp_fjζ[i,j,n] - end - - # Associate Legendre functions (only for the moon) - if j == mo - for m in 1:n1SEM[mo] - if m == 1 - # In this case associate Legendre functions reduce to Legendre polynomials - # See equations (167) and (168) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - sin_mλ[i,j,1] = sin_λ[i,j] # Moyer (1971), eq. (167) - cos_mλ[i,j,1] = cos_λ[i,j] # Moyer (1971), eq. (168) - # sec( Associate Legendre polynomial with m = n = 1 ) - # See equation (181) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - secϕ_P_nm[i,j,1,1] = one_t - # Associate Legendre polynomial with m = n = 1 - P_nm[i,j,1,1] = cos_ϕ[i,j] - # cosϕP_1^1' - # See equation (183) in page 34 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - # Note: the second term equation (183) vanishes when n = m - cosϕ_dP_nm[i,j,1,1] = sin_ϕ[i,j]*lnm3[1] - else - # Trigonometric identity sin(λ + (m - 1)λ) and cos(λ + (m - 1)λ) - sin_mλ[i,j,m] = (cos_mλ[i,j,m-1]*sin_mλ[i,j,1]) + (sin_mλ[i,j,m-1]*cos_mλ[i,j,1]) - cos_mλ[i,j,m] = (cos_mλ[i,j,m-1]*cos_mλ[i,j,1]) - (sin_mλ[i,j,m-1]*sin_mλ[i,j,1]) - # secϕ P_n^n - # See equation (180) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - secϕ_P_nm[i,j,m,m] = (secϕ_P_nm[i,j,m-1,m-1]*cos_ϕ[i,j])*lnm5[m] - # Associate Legendre polynomial with n = m - P_nm[i,j,m,m] = secϕ_P_nm[i,j,m,m]*cos_ϕ[i,j] - # cosϕP_m^m' - # See equation (183) in page 34 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - # Note: the second term equation (183) vanishes when n = m - cosϕ_dP_nm[i,j,m,m] = (secϕ_P_nm[i,j,m,m]*sin_ϕ[i,j])*lnm3[m] - end - for n in m+1:n1SEM[mo] - # secϕ P_n^m - # See equation (182) in page 34 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - if n == m+1 - secϕ_P_nm[i,j,n,m] = (secϕ_P_nm[i,j,n-1,m]*sin_ϕ[i,j])*lnm1[n,m] - else - secϕ_P_nm[i,j,n,m] = ((secϕ_P_nm[i,j,n-1,m]*sin_ϕ[i,j])*lnm1[n,m]) + (secϕ_P_nm[i,j,n-2,m]*lnm2[n,m]) - end - # Associate Legendre polynomial of degree n and order m - P_nm[i,j,n,m] = secϕ_P_nm[i,j,n,m]*cos_ϕ[i,j] - # secϕ P_n^m - # See equation (183) in page 34 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - cosϕ_dP_nm[i,j,n,m] = ((secϕ_P_nm[i,j,n,m]*sin_ϕ[i,j])*lnm3[n]) + (secϕ_P_nm[i,j,n-1,m]*lnm4[n,m]) - end - end - - # Moon: Compute accelerations due to tesseral harmonics C_{nm}, S_{nm} - # See equation (28) in page 13 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - # and equation (174) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - - # Accelerations due to lunar tesseral harmonics C_{21} and S_{21} - F_CS_ξ[i,j] = ( ( (P_nm[i,j,2,1]*lnm6[2] )*( (C21M_t*cos_mλ[i,j,1]) + (S21M_t*sin_mλ[i,j,1]) ) ) + ( (P_nm[i,j,2,2]*lnm6[2] )*( (C22M_t*cos_mλ[i,j,2]) + (S22M_t*sin_mλ[i,j,2]) ) ) )/r_p4[i,j] - F_CS_η[i,j] = ( ( (secϕ_P_nm[i,j,2,1]*lnm7[1])*( (S21M_t*cos_mλ[i,j,1]) - (C21M_t*sin_mλ[i,j,1]) ) ) + ( (secϕ_P_nm[i,j,2,2]*lnm7[2])*( (S22M_t*cos_mλ[i,j,2]) - (C22M_t*sin_mλ[i,j,2]) ) ) )/r_p4[i,j] - F_CS_ζ[i,j] = ( ( (cosϕ_dP_nm[i,j,2,1] )*( (C21M_t*cos_mλ[i,j,1]) + (S21M_t*sin_mλ[i,j,1]) ) ) + ( (cosϕ_dP_nm[i,j,2,2] )*( (C22M_t*cos_mλ[i,j,2]) + (S22M_t*sin_mλ[i,j,2]) ) ) )/r_p4[i,j] - # Accelerations due to lunar tesseral harmonics beyond C_{21} and S_{21} - F_CS_ξ_36[i,j] = zero_q_1 - F_CS_η_36[i,j] = zero_q_1 - F_CS_ζ_36[i,j] = zero_q_1 - for n in 3:n2M - for m in 1:n - # Lunar teseral harmonics C_{nm}/S_{nm} * trigonometric function of integer times the longitude λ - Cnm_cosmλ[i,j,n,m] = CM[n,m]*cos_mλ[i,j,m] - Cnm_sinmλ[i,j,n,m] = CM[n,m]*sin_mλ[i,j,m] - Snm_cosmλ[i,j,n,m] = SM[n,m]*cos_mλ[i,j,m] - Snm_sinmλ[i,j,n,m] = SM[n,m]*sin_mλ[i,j,m] - # Vector sum in equation (173) - temp_CS_ξ[i,j,n,m] = ( ( (P_nm[i,j,n,m]*lnm6[n] )*( Cnm_cosmλ[i,j,n,m] + Snm_sinmλ[i,j,n,m] ) )/temp_rn[i,j,n] ) + F_CS_ξ_36[i,j] - temp_CS_η[i,j,n,m] = ( ( (secϕ_P_nm[i,j,n,m]*lnm7[m])*( Snm_cosmλ[i,j,n,m] - Cnm_sinmλ[i,j,n,m] ) )/temp_rn[i,j,n] ) + F_CS_η_36[i,j] - temp_CS_ζ[i,j,n,m] = ( ( (cosϕ_dP_nm[i,j,n,m] )*( Cnm_cosmλ[i,j,n,m] + Snm_sinmλ[i,j,n,m] ) )/temp_rn[i,j,n] ) + F_CS_ζ_36[i,j] - F_CS_ξ_36[i,j] = temp_CS_ξ[i,j,n,m] - F_CS_η_36[i,j] = temp_CS_η[i,j,n,m] - F_CS_ζ_36[i,j] = temp_CS_ζ[i,j,n,m] - end - end - # Sum the zonal and tesseral (only for the moon) accelerations without mass parameter - F_JCS_ξ[i,j] = (F_J_ξ[i,j] + F_J_ξ_36[i,j]) + (F_CS_ξ[i,j]+F_CS_ξ_36[i,j]) - F_JCS_η[i,j] = (F_CS_η[i,j]+F_CS_η_36[i,j]) - F_JCS_ζ[i,j] = (F_J_ζ[i,j] + F_J_ζ_36[i,j]) + (F_CS_ζ[i,j]+F_CS_ζ_36[i,j]) - else - # Sum the zonal accelerations without mass parameter - F_JCS_ξ[i,j] = (F_J_ξ[i,j] + F_J_ξ_36[i,j]) - F_JCS_η[i,j] = zero_q_1 - F_JCS_ζ[i,j] = (F_J_ζ[i,j] + F_J_ζ_36[i,j]) - end - - # R matrix: body-fixed -> "primed" (ξ, η, ζ) system - # See equation (161) in page 32 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - Rb2p[i,j,1,1] = cos_ϕ[i,j]*cos_λ[i,j] - Rb2p[i,j,2,1] = -sin_λ[i,j] - Rb2p[i,j,3,1] = -sin_ϕ[i,j]*cos_λ[i,j] - Rb2p[i,j,1,2] = cos_ϕ[i,j]*sin_λ[i,j] - Rb2p[i,j,2,2] = cos_λ[i,j] - Rb2p[i,j,3,2] = -sin_ϕ[i,j]*sin_λ[i,j] - Rb2p[i,j,1,3] = sin_ϕ[i,j] - Rb2p[i,j,2,3] = zero_q_1 - Rb2p[i,j,3,3] = cos_ϕ[i,j] - # G matrix: space-fixed -> body-fixed -> "primed" (ξ, η, ζ) system - # G_{i,j} = \sum_k R_{i,k} RotM{k,j} or G = RotM * R - # See equation (163) in page 32 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - Gc2p[i,j,1,1] = ((Rb2p[i,j,1,1]*RotM[1,1,j]) + (Rb2p[i,j,1,2]*RotM[2,1,j])) + (Rb2p[i,j,1,3]*RotM[3,1,j]) - Gc2p[i,j,2,1] = ((Rb2p[i,j,2,1]*RotM[1,1,j]) + (Rb2p[i,j,2,2]*RotM[2,1,j])) + (Rb2p[i,j,2,3]*RotM[3,1,j]) - Gc2p[i,j,3,1] = ((Rb2p[i,j,3,1]*RotM[1,1,j]) + (Rb2p[i,j,3,2]*RotM[2,1,j])) + (Rb2p[i,j,3,3]*RotM[3,1,j]) - Gc2p[i,j,1,2] = ((Rb2p[i,j,1,1]*RotM[1,2,j]) + (Rb2p[i,j,1,2]*RotM[2,2,j])) + (Rb2p[i,j,1,3]*RotM[3,2,j]) - Gc2p[i,j,2,2] = ((Rb2p[i,j,2,1]*RotM[1,2,j]) + (Rb2p[i,j,2,2]*RotM[2,2,j])) + (Rb2p[i,j,2,3]*RotM[3,2,j]) - Gc2p[i,j,3,2] = ((Rb2p[i,j,3,1]*RotM[1,2,j]) + (Rb2p[i,j,3,2]*RotM[2,2,j])) + (Rb2p[i,j,3,3]*RotM[3,2,j]) - Gc2p[i,j,1,3] = ((Rb2p[i,j,1,1]*RotM[1,3,j]) + (Rb2p[i,j,1,2]*RotM[2,3,j])) + (Rb2p[i,j,1,3]*RotM[3,3,j]) - Gc2p[i,j,2,3] = ((Rb2p[i,j,2,1]*RotM[1,3,j]) + (Rb2p[i,j,2,2]*RotM[2,3,j])) + (Rb2p[i,j,2,3]*RotM[3,3,j]) - Gc2p[i,j,3,3] = ((Rb2p[i,j,3,1]*RotM[1,3,j]) + (Rb2p[i,j,3,2]*RotM[2,3,j])) + (Rb2p[i,j,3,3]*RotM[3,3,j]) - # Compute cartesian coordinates of acceleration due to body figure in inertial frame (without mass parameter) - # See equation (169) in page 33 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - F_JCS_x[i,j] = ((F_JCS_ξ[i,j]*Gc2p[i,j,1,1]) + (F_JCS_η[i,j]*Gc2p[i,j,2,1])) + (F_JCS_ζ[i,j]*Gc2p[i,j,3,1]) - F_JCS_y[i,j] = ((F_JCS_ξ[i,j]*Gc2p[i,j,1,2]) + (F_JCS_η[i,j]*Gc2p[i,j,2,2])) + (F_JCS_ζ[i,j]*Gc2p[i,j,3,2]) - F_JCS_z[i,j] = ((F_JCS_ξ[i,j]*Gc2p[i,j,1,3]) + (F_JCS_η[i,j]*Gc2p[i,j,2,3])) + (F_JCS_ζ[i,j]*Gc2p[i,j,3,3]) - end #if UJ_interaction[i,j] - end # else (i != j) - end #for i in 1:N_ext - end #for j in 1:N_ext - - for j in 1:N_ext - for i in 1:N_ext - # i == j && continue - if i == j - continue - else - if UJ_interaction[i,j] - # Extended body accelerations - # J_n, C_{nm}, S_{nm} accelerations, if j-th body is flattened - - # Add result to total acceleration upon j-th body figure due to i-th point mass - temp_accX_j[i,j] = accX[j] - (μ[i]*F_JCS_x[i,j]) - accX[j] = temp_accX_j[i,j] - temp_accY_j[i,j] = accY[j] - (μ[i]*F_JCS_y[i,j]) - accY[j] = temp_accY_j[i,j] - temp_accZ_j[i,j] = accZ[j] - (μ[i]*F_JCS_z[i,j]) - accZ[j] = temp_accZ_j[i,j] - - # Reaction force on i-th body - temp_accX_i[i,j] = accX[i] + (μ[j]*F_JCS_x[i,j]) - accX[i] = temp_accX_i[i,j] - temp_accY_i[i,j] = accY[i] + (μ[j]*F_JCS_y[i,j]) - accY[i] = temp_accY_i[i,j] - temp_accZ_i[i,j] = accZ[i] + (μ[j]*F_JCS_z[i,j]) - accZ[i] = temp_accZ_i[i,j] - - # Lunar torques - if j == mo - # Compute torques acting upon the body-figure of the Moon due to external point masses - # See equation (43) in page 13 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - N_MfigM_pmA_x[i] = μ[i]*( (Y[i,j]*F_JCS_z[i,j]) - (Z[i,j]*F_JCS_y[i,j]) ) - N_MfigM_pmA_y[i] = μ[i]*( (Z[i,j]*F_JCS_x[i,j]) - (X[i,j]*F_JCS_z[i,j]) ) - N_MfigM_pmA_z[i] = μ[i]*( (X[i,j]*F_JCS_y[i,j]) - (Y[i,j]*F_JCS_x[i,j]) ) - # Expressions below have minus sign since N_MfigM_pmA_{x,y,z} have inverted signs in cross product - temp_N_M_x[i] = N_MfigM[1] - (N_MfigM_pmA_x[i]*μ[j]) - N_MfigM[1] = temp_N_M_x[i] - temp_N_M_y[i] = N_MfigM[2] - (N_MfigM_pmA_y[i]*μ[j]) - N_MfigM[2] = temp_N_M_y[i] - temp_N_M_z[i] = N_MfigM[3] - (N_MfigM_pmA_z[i]*μ[j]) - N_MfigM[3] = temp_N_M_z[i] - end - end - end # else (i != j) - end - end - - #= - Post-Newtonian corrections to gravitational acceleration - Post-Newtonian iterative procedure setup and initialization - See equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - =# - for j in 1:N - for i in 1:N - # i == j && continue - if i == j - continue - else - # 4*\sum term inside {} - _4ϕj[i,j] = 4newtonianNb_Potential[j] - # 4*\sum + \sum terms inside {} - ϕi_plus_4ϕj[i,j] = newtonianNb_Potential[i] + _4ϕj[i,j] - # 2 * ||\mathbf{v_i}||^2 - _2v2[i,j] = 2v2[i] - # \dot{s}_j^2 + 2\dot{s}_i^2 inside {} - sj2_plus_2si2[i,j] = v2[j] + _2v2[i,j] - # \dot{s}_j^2 + 2\dot{s}_i^2 - 4<, > terms inside {} - sj2_plus_2si2_minus_4vivj[i,j] = sj2_plus_2si2[i,j] - (4vi_dot_vj[i,j]) - # -4\sum - \sum + \dot{s}_j^2 + 2\dot{s}_i^2 - 4<, > terms inside {} - ϕs_and_vs[i,j] = sj2_plus_2si2_minus_4vivj[i,j] - ϕi_plus_4ϕj[i,j] - # (\mathbf{r}_i - \mathbf{r}_j)\cdot\mathbf{v_i} - Xij_t_Ui = X[i,j]*dq[3i-2] - Yij_t_Vi = Y[i,j]*dq[3i-1] - Zij_t_Wi = Z[i,j]*dq[3i] - Rij_dot_Vi = ( Xij_t_Ui+Yij_t_Vi ) + Zij_t_Wi - # The expression below inside the (...)^2 should have a minus sign in front of the numerator, - # but upon squaring it is eliminated, so at the end of the day, it is irrelevant ;) - # (\mathbf{r}_i - \mathbf{r}_j)\cdot\mathbf{v_i} / r_{ij} - pn1t7 = (Rij_dot_Vi^2)/r_p2[i,j] - # Everything inside the {} except for the first and last terms - pn1t2_7 = ϕs_and_vs[i,j] - (1.5pn1t7) - # Everything inside the {} except for the last term - pn1t1_7[i,j] = c_p2+pn1t2_7 - end # else (i != j) - end - # Temporary post-Newtonian accelerations - pntempX[j] = zero_q_1 # X-axis component - pntempY[j] = zero_q_1 # Y-axis component - pntempZ[j] = zero_q_1 # Z-axis component - end - - for j in 1:N - for i in 1:N - # i == j && continue - if i == j - continue - else - - # First term of equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - - # Last term inside the {} - pNX_t_X[i,j] = newtonX[i]*X[i,j] # X-axis component - pNY_t_Y[i,j] = newtonY[i]*Y[i,j] # Y-axis component - pNZ_t_Z[i,j] = newtonZ[i]*Z[i,j] # Z-axis component - # Everything inside the {} in the first term - pn1[i,j] = ( pn1t1_7[i,j] + 0.5*( (pNX_t_X[i,j]+pNY_t_Y[i,j]) + pNZ_t_Z[i,j] ) ) - # Full first term - X_t_pn1[i,j] = newton_acc_X[i,j]*pn1[i,j] # X-axis component - Y_t_pn1[i,j] = newton_acc_Y[i,j]*pn1[i,j] # Y-axis component - Z_t_pn1[i,j] = newton_acc_Z[i,j]*pn1[i,j] # Z-axis component - - # Full third term of equation (35) in page 7 of https://ui.adsabs.harvard.edu/abs/1971mfdo.book.....M/abstract - pNX_t_pn3[i,j] = newtonX[i]*pn3[i,j] # X-axis component - pNY_t_pn3[i,j] = newtonY[i]*pn3[i,j] # Y-axis component - pNZ_t_pn3[i,j] = newtonZ[i]*pn3[i,j] # Z-axis component - - # Temporary post-Newtonian accelerations - termpnx = ( X_t_pn1[i,j] + (U_t_pn2[i,j]+pNX_t_pn3[i,j]) ) # X-axis component - sumpnx = pntempX[j] + termpnx - pntempX[j] = sumpnx - termpny = ( Y_t_pn1[i,j] + (V_t_pn2[i,j]+pNY_t_pn3[i,j]) ) # Y-axis component - sumpny = pntempY[j] + termpny - pntempY[j] = sumpny - termpnz = ( Z_t_pn1[i,j] + (W_t_pn2[i,j]+pNZ_t_pn3[i,j]) ) # Z-axis component - sumpnz = pntempZ[j] + termpnz - pntempZ[j] = sumpnz - end # else (i != j) - end - # Post-Newtonian acelerations - postNewtonX[j] = pntempX[j]*c_m2 - postNewtonY[j] = pntempY[j]*c_m2 - postNewtonZ[j] = pntempZ[j]*c_m2 - end - - # Fill accelerations (post-Newtonian and extended body accelerations) - # postNewton -> post-Newtonian accelerations (all bodies) - # accX/Y/Z -> extended body accelerations (only first N_ext bodies) - for i in 1:N_ext - dq[3(N+i)-2] = postNewtonX[i] + accX[i] - dq[3(N+i)-1] = postNewtonY[i] + accY[i] - dq[3(N+i) ] = postNewtonZ[i] + accZ[i] - end - for i in N_ext+1:N - dq[3(N+i)-2] = postNewtonX[i] - dq[3(N+i)-1] = postNewtonY[i] - dq[3(N+i) ] = postNewtonZ[i] - end - - #= - Lunar physical librations - See equations (33)-(35) in pages 15-16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - =# - - # Lunar moment of intertia I times angular velocity ω: Iω - Iω_x = (I_m_t[1,1]*q[6N+4]) + ((I_m_t[1,2]*q[6N+5]) + (I_m_t[1,3]*q[6N+6])) # x-axis component - Iω_y = (I_m_t[2,1]*q[6N+4]) + ((I_m_t[2,2]*q[6N+5]) + (I_m_t[2,3]*q[6N+6])) # y-axis component - Iω_z = (I_m_t[3,1]*q[6N+4]) + ((I_m_t[3,2]*q[6N+5]) + (I_m_t[3,3]*q[6N+6])) # z-axis component - - # Cross product of angular velocity and Iω: ω × (I*ω) - ωxIω_x = (q[6N+5]*Iω_z) - (q[6N+6]*Iω_y) # x-axis component - ωxIω_y = (q[6N+6]*Iω_x) - (q[6N+4]*Iω_z) # y-axis component - ωxIω_z = (q[6N+4]*Iω_y) - (q[6N+5]*Iω_x) # z-axis component - - # Time derivative of moment of inertia times angular velocity: (dI/dt)*ω - dIω_x = (dI_m_t[1,1]*q[6N+4]) + ((dI_m_t[1,2]*q[6N+5]) + (dI_m_t[1,3]*q[6N+6])) # x-axis component - dIω_y = (dI_m_t[2,1]*q[6N+4]) + ((dI_m_t[2,2]*q[6N+5]) + (dI_m_t[2,3]*q[6N+6])) # y-axis component - dIω_z = (dI_m_t[3,1]*q[6N+4]) + ((dI_m_t[3,2]*q[6N+5]) + (dI_m_t[3,3]*q[6N+6])) # z-axis component - - # Moon -> Earth radial unit vector (inertial coordinates) - er_EM_I_1 = X[ea,mo]/r_p1d2[ea,mo] - er_EM_I_2 = Y[ea,mo]/r_p1d2[ea,mo] - er_EM_I_3 = Z[ea,mo]/r_p1d2[ea,mo] - - # Earth pole unit vector (inertial coordinates) - p_E_I_1 = RotM[3,1,ea] - p_E_I_2 = RotM[3,2,ea] - p_E_I_3 = RotM[3,3,ea] - - # Transform Moon -> Earth radial unit vector (inertial coordinates) er_EM_I_i and - # Earth pole unit vector p_E_I_i to lunar mantle frame coordinates - er_EM_1 = (RotM[1,1,mo]*er_EM_I_1) + ((RotM[1,2,mo]*er_EM_I_2) + (RotM[1,3,mo]*er_EM_I_3)) - er_EM_2 = (RotM[2,1,mo]*er_EM_I_1) + ((RotM[2,2,mo]*er_EM_I_2) + (RotM[2,3,mo]*er_EM_I_3)) - er_EM_3 = (RotM[3,1,mo]*er_EM_I_1) + ((RotM[3,2,mo]*er_EM_I_2) + (RotM[3,3,mo]*er_EM_I_3)) - p_E_1 = (RotM[1,1,mo]*p_E_I_1) + ((RotM[1,2,mo]*p_E_I_2) + (RotM[1,3,mo]*p_E_I_3)) - p_E_2 = (RotM[2,1,mo]*p_E_I_1) + ((RotM[2,2,mo]*p_E_I_2) + (RotM[2,3,mo]*p_E_I_3)) - p_E_3 = (RotM[3,1,mo]*p_E_I_1) + ((RotM[3,2,mo]*p_E_I_2) + (RotM[3,3,mo]*p_E_I_3)) - - # Evaluate equation (44) https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - # in lunar mantle frame coords - - # I*e_r - I_er_EM_1 = (I_m_t[1,1]*er_EM_1) + ((I_m_t[1,2]*er_EM_2) + (I_m_t[1,3]*er_EM_3)) - I_er_EM_2 = (I_m_t[2,1]*er_EM_1) + ((I_m_t[2,2]*er_EM_2) + (I_m_t[2,3]*er_EM_3)) - I_er_EM_3 = (I_m_t[3,1]*er_EM_1) + ((I_m_t[3,2]*er_EM_2) + (I_m_t[3,3]*er_EM_3)) - - # I*p_E - I_p_E_1 = (I_m_t[1,1]*p_E_1) + ((I_m_t[1,2]*p_E_2) + (I_m_t[1,3]*p_E_3)) - I_p_E_2 = (I_m_t[2,1]*p_E_1) + ((I_m_t[2,2]*p_E_2) + (I_m_t[2,3]*p_E_3)) - I_p_E_3 = (I_m_t[3,1]*p_E_1) + ((I_m_t[3,2]*p_E_2) + (I_m_t[3,3]*p_E_3)) - - # e_r × (I*e_r) - er_EM_cross_I_er_EM_1 = (er_EM_2*I_er_EM_3) - (er_EM_3*I_er_EM_2) - er_EM_cross_I_er_EM_2 = (er_EM_3*I_er_EM_1) - (er_EM_1*I_er_EM_3) - er_EM_cross_I_er_EM_3 = (er_EM_1*I_er_EM_2) - (er_EM_2*I_er_EM_1) - - # e_r × (I*p_E) - er_EM_cross_I_p_E_1 = (er_EM_2*I_p_E_3) - (er_EM_3*I_p_E_2) - er_EM_cross_I_p_E_2 = (er_EM_3*I_p_E_1) - (er_EM_1*I_p_E_3) - er_EM_cross_I_p_E_3 = (er_EM_1*I_p_E_2) - (er_EM_2*I_p_E_1) - - # p_E × (I*e_r) - p_E_cross_I_er_EM_1 = (p_E_2*I_er_EM_3) - (p_E_3*I_er_EM_2) - p_E_cross_I_er_EM_2 = (p_E_3*I_er_EM_1) - (p_E_1*I_er_EM_3) - p_E_cross_I_er_EM_3 = (p_E_1*I_er_EM_2) - (p_E_2*I_er_EM_1) - - # p_E × (I*p_E) - p_E_cross_I_p_E_1 = (p_E_2*I_p_E_3) - (p_E_3*I_p_E_2) - p_E_cross_I_p_E_2 = (p_E_3*I_p_E_1) - (p_E_1*I_p_E_3) - p_E_cross_I_p_E_3 = (p_E_1*I_p_E_2) - (p_E_2*I_p_E_1) - - # Coefficients of first and second terms inside {} in eq. (44) - one_minus_7sin2ϕEM = one_t - (7((sin_ϕ[ea,mo])^2)) - two_sinϕEM = 2sin_ϕ[ea,mo] - - # Overall numerical factor in eq. (44) / r_{EM}^5 - N_MfigM_figE_factor_div_rEMp5 = (N_MfigM_figE_factor/(r_p1d2[mo,ea]^5)) - # Evaluation of eq. (44) - N_MfigM_figE_1 = N_MfigM_figE_factor_div_rEMp5*( (one_minus_7sin2ϕEM*er_EM_cross_I_er_EM_1) + (two_sinϕEM*(er_EM_cross_I_p_E_1+p_E_cross_I_er_EM_1)) - (0.4p_E_cross_I_p_E_1)) - N_MfigM_figE_2 = N_MfigM_figE_factor_div_rEMp5*( (one_minus_7sin2ϕEM*er_EM_cross_I_er_EM_2) + (two_sinϕEM*(er_EM_cross_I_p_E_2+p_E_cross_I_er_EM_2)) - (0.4p_E_cross_I_p_E_2)) - N_MfigM_figE_3 = N_MfigM_figE_factor_div_rEMp5*( (one_minus_7sin2ϕEM*er_EM_cross_I_er_EM_3) + (two_sinϕEM*(er_EM_cross_I_p_E_3+p_E_cross_I_er_EM_3)) - (0.4p_E_cross_I_p_E_3)) - - # RHS of equation (34) in page 16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - - # Torques acting upon lunar body-figure due to external point masses: transform coordinates from inertial frame to lunar mantle frame - N_1_LMF = (RotM[1,1,mo]*N_MfigM[1]) + ((RotM[1,2,mo]*N_MfigM[2]) + (RotM[1,3,mo]*N_MfigM[3])) - N_2_LMF = (RotM[2,1,mo]*N_MfigM[1]) + ((RotM[2,2,mo]*N_MfigM[2]) + (RotM[2,3,mo]*N_MfigM[3])) - N_3_LMF = (RotM[3,1,mo]*N_MfigM[1]) + ((RotM[3,2,mo]*N_MfigM[2]) + (RotM[3,3,mo]*N_MfigM[3])) - - # Torque on the mantle due to the interaction between core and mantle (evaluated in mantle frame) - # See equation (45) in page 18 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - N_cmb_1 = (k_ν*(q[6N+10]-q[6N+4])) - (C_c_m_A_c*(q[6N+12]*q[6N+11])) - N_cmb_2 = (k_ν*(q[6N+11]-q[6N+5])) + (C_c_m_A_c*(q[6N+12]*q[6N+10])) - N_cmb_3 = (k_ν*(q[6N+12]-q[6N+6])) - - # I*(dω/dt); i.e., I times RHS of equation (34) in page 16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - I_dω_1 = ((N_1_LMF + N_MfigM_figE_1) + N_cmb_1) - (dIω_x + ωxIω_x) - I_dω_2 = ((N_2_LMF + N_MfigM_figE_2) + N_cmb_2) - (dIω_y + ωxIω_y) - I_dω_3 = ((N_3_LMF + N_MfigM_figE_3) + N_cmb_3) - (dIω_z + ωxIω_z) - - # RHS of equation (35) in page 16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - - # I_c * ω_c - Ic_ωc_1 = I_c_t[1,1]*q[6N+10] # + ((I_c_t[1,2]*q[6N+11]) + (I_c_t[1,3]*q[6N+12])) - Ic_ωc_2 = I_c_t[2,2]*q[6N+11] # + ((I_c_t[2,1]*q[6N+10]) + (I_c_t[2,3]*q[6N+12])) - Ic_ωc_3 = I_c_t[3,3]*q[6N+12] # + ((I_c_t[3,1]*q[6N+10]) + (I_c_t[3,2]*q[6N+11])) - - # - ω_m × (I_c * ω_c) - m_ωm_x_Icωc_1 = (q[6N+6]*Ic_ωc_2) - (q[6N+5]*Ic_ωc_3) - m_ωm_x_Icωc_2 = (q[6N+4]*Ic_ωc_3) - (q[6N+6]*Ic_ωc_1) - m_ωm_x_Icωc_3 = (q[6N+5]*Ic_ωc_1) - (q[6N+4]*Ic_ωc_2) - - # I_c*(dω_c/dt); i.e., I_c times RHS of of equation (35) in page 16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - Ic_dωc_1 = m_ωm_x_Icωc_1 - N_cmb_1 - Ic_dωc_2 = m_ωm_x_Icωc_2 - N_cmb_2 - Ic_dωc_3 = m_ωm_x_Icωc_3 - N_cmb_3 - - # Lunar mantle physical librations - - # Euler angles - # See equation (14) in page 9 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - dq[6N+1] = ((q[6N+4]*sin(q[6N+3])) + (q[6N+5]*cos(q[6N+3])) )/sin(q[6N+2]) - dq[6N+2] = (q[6N+4]*cos(q[6N+3])) - (q[6N+5]*sin(q[6N+3])) - dq[6N+3] = q[6N+6] - (dq[6N+1]*cos(q[6N+2])) - # Angular velocitiy - # See equation (34) in page 16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - dq[6N+4] = (inv_I_m_t[1,1]*I_dω_1) + ( (inv_I_m_t[1,2]*I_dω_2) + (inv_I_m_t[1,3]*I_dω_3) ) - dq[6N+5] = (inv_I_m_t[2,1]*I_dω_1) + ( (inv_I_m_t[2,2]*I_dω_2) + (inv_I_m_t[2,3]*I_dω_3) ) - dq[6N+6] = (inv_I_m_t[3,1]*I_dω_1) + ( (inv_I_m_t[3,2]*I_dω_2) + (inv_I_m_t[3,3]*I_dω_3) ) - - # Lunar core physical librations - - # Euler angles - # See equation (15) in page 9 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - # (core angular velocity components ω_c_CE_i represent lunar core-equator frame coordinates) - dq[6N+9] = -(ω_c_CE_2/sin(q[6N+8])) ### evaluated first, since it's used below - dq[6N+7] = ω_c_CE_3-(dq[6N+9]*cos(q[6N+8])) - dq[6N+8] = ω_c_CE_1 - # Angular velocity of the core expressed in the mantle frame - # See equation (35) in page 16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - dq[6N+10] = inv_I_c_t[1,1]*Ic_dωc_1 # + ( (inv_I_c_t[1,2]*Ic_dωc_2) + (inv_I_c_t[1,3]*Ic_dωc_3) ) - dq[6N+11] = inv_I_c_t[2,2]*Ic_dωc_2 # + ( (inv_I_c_t[2,1]*Ic_dωc_1) + (inv_I_c_t[2,3]*Ic_dωc_3) ) - dq[6N+12] = inv_I_c_t[3,3]*Ic_dωc_3 # + ( (inv_I_c_t[3,1]*Ic_dωc_1) + (inv_I_c_t[3,2]*Ic_dωc_2) ) - - # TT-TDB - # TODO: implement TT-TDB integration - dq[6N+13] = zero_q_1 - - nothing -end - -@doc raw""" - NBP_pN_A_J23E_J23M_J2S_threads!(dq, q, params, t) - -Threaded version of `NBP_pN_A_J23E_J23M_J2S!`. - -See also [`NBP_pN_A_J23E_J23M_J2S!`](@ref). """ NBP_pN_A_J23E_J23M_J2S_threads! function NBP_pN_A_J23E_J23M_J2S_threads!(dq, q, params, t) # N: number of bodies @@ -1971,7 +1060,7 @@ end DE430!(dq, q, params, t) Solar System (JPL DE430/431) dynamical model. This function uses threads and includes all the effects in -`NBP_pN_A_J23E_J23M_J2S!` plus +`NBP_pN_A_J23E_J23M_J2S_threads!` plus - Tidal secular acceleration of Moon due to rides raised on Earth by both the Moon and the Sun: see equation (32) in page 14 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract ```math @@ -2000,7 +1089,7 @@ so that ``\mathbf{r} = \mathbf{\rho} + \mathbf{z}`` and the time-delayed positio body is given by ``\mathbf{r}_j^* = \mathbf{\rho}_j^* + \mathbf{z}_j^*``; and ``\mathbf{a}_{M,tide}`` is the acceleration of the Moon with respect to Earth, for each tide-raising body. -See also [`NBP_pN_A_J23E_J23M_J2S!`](@ref) and [`NBP_pN_A_J23E_J23M_J2S_threads!`](@ref). +See also [`NBP_pN_A_J23E_J23M_J2S_threads!`](@ref). """ DE430! function DE430!(dq, q, params, t) # N: number of bodies diff --git a/src/interpolation.jl b/src/interpolation.jl index d49c23a..01c74d2 100644 --- a/src/interpolation.jl +++ b/src/interpolation.jl @@ -35,11 +35,15 @@ function TaylorInterpolant(t0::T, t::SubArray{T, 1}, x::SubArray{Taylor1{U}, N}) end # Custom print -function show(io::IO, interp::TaylorInterpolant{T, U, 2}) where {T, U} +function show(io::IO, interp::TaylorInterpolant{T, U, N}) where {T, U, N} t_range = minmax(interp.t0 + interp.t[1], interp.t0 + interp.t[end]) - N = size(interp.x, 2) S = eltype(interp.x) - print(io, "t: ", t_range, ", x: ", N, " ", S, " variables") + if isone(N) + print(io, "t: ", t_range, ", x: 1 ", S, " variable") + else + L = size(interp.x, 2) + print(io, "t: ", t_range, ", x: ", L, " ", S, " variables") + end end @doc raw""" diff --git a/src/jetcoeffs.jl b/src/jetcoeffs.jl index 045c079..73274ec 100644 --- a/src/jetcoeffs.jl +++ b/src/jetcoeffs.jl @@ -13,4779 +13,6 @@ # 3.- x, y = TaylorIntegration._make_parsed_coeffs(ex) # 4.- Paste x and y in this file -# TaylorIntegration._allocate_jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S! -function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} - order = t.order - local (N, jd0) = params - local S = eltype(q) - local zero_q_1 = zero(q[1]) - local one_t = one(t) - local dsj2k = t + (jd0 - J2000) - local I_m_t = (ITM_und - I_c) .* one_t - local dI_m_t = ordpres_differentiate.(I_m_t) - local inv_I_m_t = inv(I_m_t) - local I_c_t = I_c .* one_t - local inv_I_c_t = inv(I_c_t) - local I_M_t = I_m_t + I_c_t - X = Array{S}(undef, N, N) - Y = Array{S}(undef, N, N) - Z = Array{S}(undef, N, N) - r_p2 = Array{S}(undef, N, N) - r_p1d2 = Array{S}(undef, N, N) - r_p3d2 = Array{S}(undef, N, N) - r_p7d2 = Array{S}(undef, N, N) - newtonX = Array{S}(undef, N) - newtonY = Array{S}(undef, N) - newtonZ = Array{S}(undef, N) - newtonianCoeff = Array{S}(undef, N, N) - U = Array{S}(undef, N, N) - V = Array{S}(undef, N, N) - W = Array{S}(undef, N, N) - _4U_m_3X = Array{S}(undef, N, N) - _4V_m_3Y = Array{S}(undef, N, N) - _4W_m_3Z = Array{S}(undef, N, N) - UU = Array{S}(undef, N, N) - VV = Array{S}(undef, N, N) - WW = Array{S}(undef, N, N) - newtonian1b_Potential = Array{S}(undef, N, N) - newtonianNb_Potential = Array{S}(undef, N) - newton_acc_X = Array{S}(undef, N, N) - newton_acc_Y = Array{S}(undef, N, N) - newton_acc_Z = Array{S}(undef, N, N) - v2 = Array{S}(undef, N) - _2v2 = Array{S}(undef, N, N) - vi_dot_vj = Array{S}(undef, N, N) - pn2 = Array{S}(undef, N, N) - U_t_pn2 = Array{S}(undef, N, N) - V_t_pn2 = Array{S}(undef, N, N) - W_t_pn2 = Array{S}(undef, N, N) - pn3 = Array{S}(undef, N, N) - pNX_t_pn3 = Array{S}(undef, N, N) - pNY_t_pn3 = Array{S}(undef, N, N) - pNZ_t_pn3 = Array{S}(undef, N, N) - _4ϕj = Array{S}(undef, N, N) - ϕi_plus_4ϕj = Array{S}(undef, N, N) - sj2_plus_2si2 = Array{S}(undef, N, N) - sj2_plus_2si2_minus_4vivj = Array{S}(undef, N, N) - ϕs_and_vs = Array{S}(undef, N, N) - pn1t1_7 = Array{S}(undef, N, N) - pNX_t_X = Array{S}(undef, N, N) - pNY_t_Y = Array{S}(undef, N, N) - pNZ_t_Z = Array{S}(undef, N, N) - pn1 = Array{S}(undef, N, N) - X_t_pn1 = Array{S}(undef, N, N) - Y_t_pn1 = Array{S}(undef, N, N) - Z_t_pn1 = Array{S}(undef, N, N) - pntempX = Array{S}(undef, N) - pntempY = Array{S}(undef, N) - pntempZ = Array{S}(undef, N) - postNewtonX = Array{S}(undef, N) - postNewtonY = Array{S}(undef, N) - postNewtonZ = Array{S}(undef, N) - X_bf_1 = Array{S}(undef, N_ext, N_ext) - Y_bf_1 = Array{S}(undef, N_ext, N_ext) - Z_bf_1 = Array{S}(undef, N_ext, N_ext) - X_bf_2 = Array{S}(undef, N_ext, N_ext) - Y_bf_2 = Array{S}(undef, N_ext, N_ext) - Z_bf_2 = Array{S}(undef, N_ext, N_ext) - X_bf_3 = Array{S}(undef, N_ext, N_ext) - Y_bf_3 = Array{S}(undef, N_ext, N_ext) - Z_bf_3 = Array{S}(undef, N_ext, N_ext) - X_bf = Array{S}(undef, N_ext, N_ext) - Y_bf = Array{S}(undef, N_ext, N_ext) - Z_bf = Array{S}(undef, N_ext, N_ext) - F_JCS_x = Array{S}(undef, N_ext, N_ext) - F_JCS_y = Array{S}(undef, N_ext, N_ext) - F_JCS_z = Array{S}(undef, N_ext, N_ext) - temp_accX_j = Array{S}(undef, N_ext, N_ext) - temp_accY_j = Array{S}(undef, N_ext, N_ext) - temp_accZ_j = Array{S}(undef, N_ext, N_ext) - temp_accX_i = Array{S}(undef, N_ext, N_ext) - temp_accY_i = Array{S}(undef, N_ext, N_ext) - temp_accZ_i = Array{S}(undef, N_ext, N_ext) - sin_ϕ = Array{S}(undef, N_ext, N_ext) - cos_ϕ = Array{S}(undef, N_ext, N_ext) - sin_λ = Array{S}(undef, N_ext, N_ext) - cos_λ = Array{S}(undef, N_ext, N_ext) - r_xy = Array{S}(undef, N_ext, N_ext) - r_p4 = Array{S}(undef, N_ext, N_ext) - P_n = Array{S}(undef, N_ext, N_ext, maximum(n1SEM) + 1) - dP_n = Array{S}(undef, N_ext, N_ext, maximum(n1SEM) + 1) - temp_fjξ = Array{S}(undef, N_ext, N_ext, maximum(n1SEM) + 1) - temp_fjζ = Array{S}(undef, N_ext, N_ext, maximum(n1SEM) + 1) - temp_rn = Array{S}(undef, N_ext, N_ext, maximum(n1SEM) + 1) - temp_CS_ξ = Array{S}(undef, N_ext, N_ext, n1SEM[mo], n1SEM[mo]) - temp_CS_η = Array{S}(undef, N_ext, N_ext, n1SEM[mo], n1SEM[mo]) - temp_CS_ζ = Array{S}(undef, N_ext, N_ext, n1SEM[mo], n1SEM[mo]) - F_CS_ξ_36 = Array{S}(undef, N_ext, N_ext) - F_CS_η_36 = Array{S}(undef, N_ext, N_ext) - F_CS_ζ_36 = Array{S}(undef, N_ext, N_ext) - F_J_ξ_36 = Array{S}(undef, N_ext, N_ext) - F_J_ζ_36 = Array{S}(undef, N_ext, N_ext) - sin_mλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]) - cos_mλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo]) - Cnm_cosmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo] + 1, n1SEM[mo] + 1) - Cnm_sinmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo] + 1, n1SEM[mo] + 1) - Snm_cosmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo] + 1, n1SEM[mo] + 1) - Snm_sinmλ = Array{S}(undef, N_ext, N_ext, n1SEM[mo] + 1, n1SEM[mo] + 1) - secϕ_P_nm = Array{S}(undef, N_ext, N_ext, n1SEM[mo] + 1, n1SEM[mo] + 1) - P_nm = Array{S}(undef, N_ext, N_ext, n1SEM[mo] + 1, n1SEM[mo] + 1) - cosϕ_dP_nm = Array{S}(undef, N_ext, N_ext, n1SEM[mo] + 1, n1SEM[mo] + 1) - F_J_ξ = Array{S}(undef, N_ext, N_ext) - F_J_η = Array{S}(undef, N_ext, N_ext) - F_J_ζ = Array{S}(undef, N_ext, N_ext) - F_CS_ξ = Array{S}(undef, N_ext, N_ext) - F_CS_η = Array{S}(undef, N_ext, N_ext) - F_CS_ζ = Array{S}(undef, N_ext, N_ext) - F_JCS_ξ = Array{S}(undef, N_ext, N_ext) - F_JCS_η = Array{S}(undef, N_ext, N_ext) - F_JCS_ζ = Array{S}(undef, N_ext, N_ext) - Rb2p = Array{S}(undef, N_ext, N_ext, 3, 3) - Gc2p = Array{S}(undef, N_ext, N_ext, 3, 3) - accX = Array{S}(undef, N_ext) - accY = Array{S}(undef, N_ext) - accZ = Array{S}(undef, N_ext) - N_MfigM_pmA_x = Array{S}(undef, N_ext) - N_MfigM_pmA_y = Array{S}(undef, N_ext) - N_MfigM_pmA_z = Array{S}(undef, N_ext) - temp_N_M_x = Array{S}(undef, N_ext) - temp_N_M_y = Array{S}(undef, N_ext) - temp_N_M_z = Array{S}(undef, N_ext) - N_MfigM = Array{S}(undef, 3) - N_MfigM[1] = Taylor1(identity(constant_term(zero_q_1)), order) - N_MfigM[2] = Taylor1(identity(constant_term(zero_q_1)), order) - N_MfigM[3] = Taylor1(identity(constant_term(zero_q_1)), order) - local αs = deg2rad(α_p_sun * one_t) - local δs = deg2rad(δ_p_sun * one_t) - RotM = Array{S}(undef, 3, 3, 5) - local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) - local RotM[:, :, su] = pole_rotation(αs, δs) - ϕ_m = Taylor1(identity(constant_term(q[6N + 1])), order) - θ_m = Taylor1(identity(constant_term(q[6N + 2])), order) - ψ_m = Taylor1(identity(constant_term(q[6N + 3])), order) - tmp1220 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1954 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1221 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1955 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1222 = Taylor1(constant_term(tmp1220) * constant_term(tmp1221), order) - tmp1223 = Taylor1(cos(constant_term(θ_m)), order) - tmp1956 = Taylor1(sin(constant_term(θ_m)), order) - tmp1224 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1957 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1225 = Taylor1(constant_term(tmp1223) * constant_term(tmp1224), order) - tmp1226 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1958 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1227 = Taylor1(constant_term(tmp1225) * constant_term(tmp1226), order) - RotM[1, 1, mo] = Taylor1(constant_term(tmp1222) - constant_term(tmp1227), order) - tmp1229 = Taylor1(cos(constant_term(θ_m)), order) - tmp1959 = Taylor1(sin(constant_term(θ_m)), order) - tmp1230 = Taylor1(-(constant_term(tmp1229)), order) - tmp1231 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1960 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1232 = Taylor1(constant_term(tmp1230) * constant_term(tmp1231), order) - tmp1233 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1961 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1234 = Taylor1(constant_term(tmp1232) * constant_term(tmp1233), order) - tmp1235 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1962 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1236 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1963 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1237 = Taylor1(constant_term(tmp1235) * constant_term(tmp1236), order) - RotM[2, 1, mo] = Taylor1(constant_term(tmp1234) - constant_term(tmp1237), order) - tmp1239 = Taylor1(sin(constant_term(θ_m)), order) - tmp1964 = Taylor1(cos(constant_term(θ_m)), order) - tmp1240 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1965 = Taylor1(cos(constant_term(ϕ_m)), order) - RotM[3, 1, mo] = Taylor1(constant_term(tmp1239) * constant_term(tmp1240), order) - tmp1242 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1966 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1243 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1967 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1244 = Taylor1(constant_term(tmp1242) * constant_term(tmp1243), order) - tmp1245 = Taylor1(cos(constant_term(θ_m)), order) - tmp1968 = Taylor1(sin(constant_term(θ_m)), order) - tmp1246 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1969 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1247 = Taylor1(constant_term(tmp1245) * constant_term(tmp1246), order) - tmp1248 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1970 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1249 = Taylor1(constant_term(tmp1247) * constant_term(tmp1248), order) - RotM[1, 2, mo] = Taylor1(constant_term(tmp1244) + constant_term(tmp1249), order) - tmp1251 = Taylor1(cos(constant_term(θ_m)), order) - tmp1971 = Taylor1(sin(constant_term(θ_m)), order) - tmp1252 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1972 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1253 = Taylor1(constant_term(tmp1251) * constant_term(tmp1252), order) - tmp1254 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1973 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1255 = Taylor1(constant_term(tmp1253) * constant_term(tmp1254), order) - tmp1256 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1974 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1257 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1975 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1258 = Taylor1(constant_term(tmp1256) * constant_term(tmp1257), order) - RotM[2, 2, mo] = Taylor1(constant_term(tmp1255) - constant_term(tmp1258), order) - tmp1260 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1976 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1261 = Taylor1(-(constant_term(tmp1260)), order) - tmp1262 = Taylor1(sin(constant_term(θ_m)), order) - tmp1977 = Taylor1(cos(constant_term(θ_m)), order) - RotM[3, 2, mo] = Taylor1(constant_term(tmp1261) * constant_term(tmp1262), order) - tmp1264 = Taylor1(sin(constant_term(θ_m)), order) - tmp1978 = Taylor1(cos(constant_term(θ_m)), order) - tmp1265 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1979 = Taylor1(cos(constant_term(ψ_m)), order) - RotM[1, 3, mo] = Taylor1(constant_term(tmp1264) * constant_term(tmp1265), order) - tmp1267 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1980 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1268 = Taylor1(sin(constant_term(θ_m)), order) - tmp1981 = Taylor1(cos(constant_term(θ_m)), order) - RotM[2, 3, mo] = Taylor1(constant_term(tmp1267) * constant_term(tmp1268), order) - RotM[3, 3, mo] = Taylor1(cos(constant_term(θ_m)), order) - tmp1982 = Taylor1(sin(constant_term(θ_m)), order) - mantlef2coref = Array{S}(undef, 3, 3) - ϕ_c = Taylor1(identity(constant_term(q[6N + 7])), order) - tmp1271 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1983 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1272 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp1271), order) - tmp1273 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1984 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1274 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1273), order) - mantlef2coref[1, 1] = Taylor1(constant_term(tmp1272) + constant_term(tmp1274), order) - tmp1276 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) - tmp1277 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1985 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1278 = Taylor1(constant_term(tmp1276) * constant_term(tmp1277), order) - tmp1279 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1986 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1280 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1279), order) - mantlef2coref[2, 1] = Taylor1(constant_term(tmp1278) + constant_term(tmp1280), order) - mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) - tmp1282 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1987 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1283 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp1282), order) - tmp1284 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1988 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1285 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1284), order) - mantlef2coref[1, 2] = Taylor1(constant_term(tmp1283) + constant_term(tmp1285), order) - tmp1287 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) - tmp1288 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1989 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1289 = Taylor1(constant_term(tmp1287) * constant_term(tmp1288), order) - tmp1290 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1990 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1291 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1290), order) - mantlef2coref[2, 2] = Taylor1(constant_term(tmp1289) + constant_term(tmp1291), order) - mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) - tmp1293 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1991 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1294 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp1293), order) - tmp1295 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1992 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1296 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1295), order) - mantlef2coref[1, 3] = Taylor1(constant_term(tmp1294) + constant_term(tmp1296), order) - tmp1298 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) - tmp1299 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1993 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1300 = Taylor1(constant_term(tmp1298) * constant_term(tmp1299), order) - tmp1301 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1994 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1302 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1301), order) - mantlef2coref[2, 3] = Taylor1(constant_term(tmp1300) + constant_term(tmp1302), order) - mantlef2coref[3, 3] = Taylor1(identity(constant_term(RotM[3, 3, mo])), order) - tmp1304 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) - tmp1305 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) - tmp1306 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) - tmp1307 = Taylor1(constant_term(tmp1305) + constant_term(tmp1306), order) - ω_c_CE_1 = Taylor1(constant_term(tmp1304) + constant_term(tmp1307), order) - tmp1309 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) - tmp1310 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) - tmp1311 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) - tmp1312 = Taylor1(constant_term(tmp1310) + constant_term(tmp1311), order) - ω_c_CE_2 = Taylor1(constant_term(tmp1309) + constant_term(tmp1312), order) - tmp1314 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) - tmp1315 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) - tmp1316 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) - tmp1317 = Taylor1(constant_term(tmp1315) + constant_term(tmp1316), order) - ω_c_CE_3 = Taylor1(constant_term(tmp1314) + constant_term(tmp1317), order) - local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 - local J2S_t = JSEM[su, 2] * one_t - J2_t = Array{S}(undef, 5) - J2_t[su] = Taylor1(identity(constant_term(J2S_t)), order) - J2_t[ea] = Taylor1(identity(constant_term(J2E_t)), order) - local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t - for j = 1:N - newtonX[j] = Taylor1(identity(constant_term(zero_q_1)), order) - newtonY[j] = Taylor1(identity(constant_term(zero_q_1)), order) - newtonZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) - newtonianNb_Potential[j] = Taylor1(identity(constant_term(zero_q_1)), order) - dq[3j - 2] = Taylor1(identity(constant_term(q[3 * (N + j) - 2])), order) - dq[3j - 1] = Taylor1(identity(constant_term(q[3 * (N + j) - 1])), order) - dq[3j] = Taylor1(identity(constant_term(q[3 * (N + j)])), order) - end - for j = 1:N_ext - accX[j] = Taylor1(identity(constant_term(zero_q_1)), order) - accY[j] = Taylor1(identity(constant_term(zero_q_1)), order) - accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) - end - tmp1382 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1382 .= Taylor1(zero(_S), order) - tmp1384 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1384 .= Taylor1(zero(_S), order) - tmp1385 = Array{Taylor1{_S}}(undef, size(tmp1382)) - tmp1385 .= Taylor1(zero(_S), order) - tmp1387 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1387 .= Taylor1(zero(_S), order) - tmp1326 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1326 .= Taylor1(zero(_S), order) - tmp1328 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1328 .= Taylor1(zero(_S), order) - tmp1331 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1331 .= Taylor1(zero(_S), order) - tmp1333 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1333 .= Taylor1(zero(_S), order) - tmp1336 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1336 .= Taylor1(zero(_S), order) - tmp1338 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1338 .= Taylor1(zero(_S), order) - pn2x = Array{Taylor1{_S}}(undef, size(X)) - pn2x .= Taylor1(zero(_S), order) - pn2y = Array{Taylor1{_S}}(undef, size(Y)) - pn2y .= Taylor1(zero(_S), order) - pn2z = Array{Taylor1{_S}}(undef, size(Z)) - pn2z .= Taylor1(zero(_S), order) - tmp1346 = Array{Taylor1{_S}}(undef, size(UU)) - tmp1346 .= Taylor1(zero(_S), order) - tmp1349 = Array{Taylor1{_S}}(undef, size(X)) - tmp1349 .= Taylor1(zero(_S), order) - tmp1351 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1351 .= Taylor1(zero(_S), order) - tmp1352 = Array{Taylor1{_S}}(undef, size(tmp1349)) - tmp1352 .= Taylor1(zero(_S), order) - tmp1354 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1354 .= Taylor1(zero(_S), order) - tmp1362 = Array{Taylor1{_S}}(undef, size(pn2x)) - tmp1362 .= Taylor1(zero(_S), order) - tmp1363 = Array{Taylor1{_S}}(undef, size(tmp1362)) - tmp1363 .= Taylor1(zero(_S), order) - tmp1374 = Array{Taylor1{_S}}(undef, size(X)) - tmp1374 .= Taylor1(zero(_S), order) - temp_001 = Array{Taylor1{_S}}(undef, size(tmp1374)) - temp_001 .= Taylor1(zero(_S), order) - tmp1376 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1376 .= Taylor1(zero(_S), order) - temp_002 = Array{Taylor1{_S}}(undef, size(tmp1376)) - temp_002 .= Taylor1(zero(_S), order) - tmp1378 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1378 .= Taylor1(zero(_S), order) - temp_003 = Array{Taylor1{_S}}(undef, size(tmp1378)) - temp_003 .= Taylor1(zero(_S), order) - temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) - temp_004 .= Taylor1(zero(_S), order) - for j = 1:N - for i = 1:N - if i == j - continue - else - X[i, j] = Taylor1(constant_term(q[3i - 2]) - constant_term(q[3j - 2]), order) - Y[i, j] = Taylor1(constant_term(q[3i - 1]) - constant_term(q[3j - 1]), order) - Z[i, j] = Taylor1(constant_term(q[3i]) - constant_term(q[3j]), order) - U[i, j] = Taylor1(constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]), order) - V[i, j] = Taylor1(constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]), order) - W[i, j] = Taylor1(constant_term(dq[3i]) - constant_term(dq[3j]), order) - tmp1326[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) - tmp1328[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) - _4U_m_3X[i, j] = Taylor1(constant_term(tmp1326[3j - 2]) - constant_term(tmp1328[3i - 2]), order) - tmp1331[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) - tmp1333[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) - _4V_m_3Y[i, j] = Taylor1(constant_term(tmp1331[3j - 1]) - constant_term(tmp1333[3i - 1]), order) - tmp1336[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) - tmp1338[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) - _4W_m_3Z[i, j] = Taylor1(constant_term(tmp1336[3j]) - constant_term(tmp1338[3i]), order) - pn2x[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]), order) - pn2y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]), order) - pn2z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]), order) - UU[i, j] = Taylor1(constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]), order) - VV[i, j] = Taylor1(constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]), order) - WW[i, j] = Taylor1(constant_term(dq[3i]) * constant_term(dq[3j]), order) - tmp1346[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) - vi_dot_vj[i, j] = Taylor1(constant_term(tmp1346[i, j]) + constant_term(WW[i, j]), order) - tmp1349[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) - tmp1351[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) - tmp1352[i, j] = Taylor1(constant_term(tmp1349[i, j]) + constant_term(tmp1351[i, j]), order) - tmp1354[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) - r_p2[i, j] = Taylor1(constant_term(tmp1352[i, j]) + constant_term(tmp1354[i, j]), order) - r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) - r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) - r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) - newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) - tmp1362[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) - tmp1363[i, j] = Taylor1(constant_term(tmp1362[i, j]) + constant_term(pn2z[i, j]), order) - pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp1363[i, j]), order) - newton_acc_X[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - newton_acc_Y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - newton_acc_Z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - newtonian1b_Potential[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p1d2[i, j]), order) - pn3[i, j] = Taylor1(constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]), order) - U_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(U[i, j]), order) - V_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(V[i, j]), order) - W_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(W[i, j]), order) - tmp1374[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp1374[i, j]), order) - newtonX[j] = Taylor1(identity(constant_term(temp_001[i, j])), order) - tmp1376[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp1376[i, j]), order) - newtonY[j] = Taylor1(identity(constant_term(temp_002[i, j])), order) - tmp1378[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp1378[i, j]), order) - newtonZ[j] = Taylor1(identity(constant_term(temp_003[i, j])), order) - temp_004[i, j] = Taylor1(constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]), order) - newtonianNb_Potential[j] = Taylor1(identity(constant_term(temp_004[i, j])), order) - end - end - tmp1382[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) - tmp1384[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) - tmp1385[3j - 2] = Taylor1(constant_term(tmp1382[3j - 2]) + constant_term(tmp1384[3j - 1]), order) - tmp1387[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) - v2[j] = Taylor1(constant_term(tmp1385[3j - 2]) + constant_term(tmp1387[3j]), order) - end - tmp1389 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) - tmp1391 = Taylor1(constant_term(tmp1389) / constant_term(2), order) - tmp1392 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp1391), order) - J2M_t = Taylor1(constant_term(tmp1392) / constant_term(μ[mo]), order) - tmp1394 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) - tmp1395 = Taylor1(constant_term(tmp1394) / constant_term(μ[mo]), order) - C22M_t = Taylor1(constant_term(tmp1395) / constant_term(4), order) - tmp1398 = Taylor1(-(constant_term(I_M_t[1, 3])), order) - C21M_t = Taylor1(constant_term(tmp1398) / constant_term(μ[mo]), order) - tmp1400 = Taylor1(-(constant_term(I_M_t[3, 2])), order) - S21M_t = Taylor1(constant_term(tmp1400) / constant_term(μ[mo]), order) - tmp1402 = Taylor1(-(constant_term(I_M_t[2, 1])), order) - tmp1403 = Taylor1(constant_term(tmp1402) / constant_term(μ[mo]), order) - S22M_t = Taylor1(constant_term(tmp1403) / constant_term(2), order) - J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) - tmp1415 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - tmp1415 .= Taylor1(zero(_S), order) - tmp1417 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - tmp1417 .= Taylor1(zero(_S), order) - tmp1419 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - tmp1419 .= Taylor1(zero(_S), order) - tmp1423 = Array{Taylor1{_S}}(undef, size(X_bf)) - tmp1423 .= Taylor1(zero(_S), order) - tmp1425 = Array{Taylor1{_S}}(undef, size(Y_bf)) - tmp1425 .= Taylor1(zero(_S), order) - tmp1426 = Array{Taylor1{_S}}(undef, size(tmp1423)) - tmp1426 .= Taylor1(zero(_S), order) - tmp1441 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1441 .= Taylor1(zero(_S), order) - tmp1442 = Array{Taylor1{_S}}(undef, size(tmp1441)) - tmp1442 .= Taylor1(zero(_S), order) - tmp1444 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp1444 .= Taylor1(zero(_S), order) - tmp1445 = Array{Taylor1{_S}}(undef, size(tmp1444)) - tmp1445 .= Taylor1(zero(_S), order) - tmp1446 = Array{Taylor1{_S}}(undef, size(tmp1445)) - tmp1446 .= Taylor1(zero(_S), order) - tmp1543 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp1543 .= Taylor1(zero(_S), order) - tmp1546 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp1546 .= Taylor1(zero(_S), order) - tmp1548 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1548 .= Taylor1(zero(_S), order) - tmp1549 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1549 .= Taylor1(zero(_S), order) - tmp1550 = Array{Taylor1{_S}}(undef, size(tmp1548)) - tmp1550 .= Taylor1(zero(_S), order) - tmp1551 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1551 .= Taylor1(zero(_S), order) - tmp1553 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1553 .= Taylor1(zero(_S), order) - tmp1554 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1554 .= Taylor1(zero(_S), order) - tmp1555 = Array{Taylor1{_S}}(undef, size(tmp1553)) - tmp1555 .= Taylor1(zero(_S), order) - tmp1556 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1556 .= Taylor1(zero(_S), order) - tmp1558 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1558 .= Taylor1(zero(_S), order) - tmp1559 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1559 .= Taylor1(zero(_S), order) - tmp1560 = Array{Taylor1{_S}}(undef, size(tmp1558)) - tmp1560 .= Taylor1(zero(_S), order) - tmp1561 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1561 .= Taylor1(zero(_S), order) - tmp1563 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1563 .= Taylor1(zero(_S), order) - tmp1564 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1564 .= Taylor1(zero(_S), order) - tmp1565 = Array{Taylor1{_S}}(undef, size(tmp1563)) - tmp1565 .= Taylor1(zero(_S), order) - tmp1566 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1566 .= Taylor1(zero(_S), order) - tmp1568 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1568 .= Taylor1(zero(_S), order) - tmp1569 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1569 .= Taylor1(zero(_S), order) - tmp1570 = Array{Taylor1{_S}}(undef, size(tmp1568)) - tmp1570 .= Taylor1(zero(_S), order) - tmp1571 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1571 .= Taylor1(zero(_S), order) - tmp1573 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1573 .= Taylor1(zero(_S), order) - tmp1574 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1574 .= Taylor1(zero(_S), order) - tmp1575 = Array{Taylor1{_S}}(undef, size(tmp1573)) - tmp1575 .= Taylor1(zero(_S), order) - tmp1576 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1576 .= Taylor1(zero(_S), order) - tmp1578 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1578 .= Taylor1(zero(_S), order) - tmp1579 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1579 .= Taylor1(zero(_S), order) - tmp1580 = Array{Taylor1{_S}}(undef, size(tmp1578)) - tmp1580 .= Taylor1(zero(_S), order) - tmp1581 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1581 .= Taylor1(zero(_S), order) - tmp1583 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1583 .= Taylor1(zero(_S), order) - tmp1584 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1584 .= Taylor1(zero(_S), order) - tmp1585 = Array{Taylor1{_S}}(undef, size(tmp1583)) - tmp1585 .= Taylor1(zero(_S), order) - tmp1586 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1586 .= Taylor1(zero(_S), order) - tmp1588 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1588 .= Taylor1(zero(_S), order) - tmp1589 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1589 .= Taylor1(zero(_S), order) - tmp1590 = Array{Taylor1{_S}}(undef, size(tmp1588)) - tmp1590 .= Taylor1(zero(_S), order) - tmp1591 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1591 .= Taylor1(zero(_S), order) - tmp1593 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1593 .= Taylor1(zero(_S), order) - tmp1594 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1594 .= Taylor1(zero(_S), order) - tmp1595 = Array{Taylor1{_S}}(undef, size(tmp1593)) - tmp1595 .= Taylor1(zero(_S), order) - tmp1596 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1596 .= Taylor1(zero(_S), order) - tmp1598 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1598 .= Taylor1(zero(_S), order) - tmp1599 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1599 .= Taylor1(zero(_S), order) - tmp1600 = Array{Taylor1{_S}}(undef, size(tmp1598)) - tmp1600 .= Taylor1(zero(_S), order) - tmp1601 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1601 .= Taylor1(zero(_S), order) - tmp1603 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1603 .= Taylor1(zero(_S), order) - tmp1604 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1604 .= Taylor1(zero(_S), order) - tmp1605 = Array{Taylor1{_S}}(undef, size(tmp1603)) - tmp1605 .= Taylor1(zero(_S), order) - tmp1606 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1606 .= Taylor1(zero(_S), order) - tmp1431 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1431 .= Taylor1(zero(_S), order) - tmp1432 = Array{Taylor1{_S}}(undef, size(tmp1431)) - tmp1432 .= Taylor1(zero(_S), order) - tmp1433 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1433 .= Taylor1(zero(_S), order) - tmp1435 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp1435 .= Taylor1(zero(_S), order) - tmp1436 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1436 .= Taylor1(zero(_S), order) - tmp1448 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1448 .= Taylor1(zero(_S), order) - tmp1449 = Array{Taylor1{_S}}(undef, size(tmp1448)) - tmp1449 .= Taylor1(zero(_S), order) - tmp1450 = Array{Taylor1{_S}}(undef, size(tmp1449)) - tmp1450 .= Taylor1(zero(_S), order) - tmp1452 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp1452 .= Taylor1(zero(_S), order) - tmp1453 = Array{Taylor1{_S}}(undef, size(tmp1452)) - tmp1453 .= Taylor1(zero(_S), order) - tmp1454 = Array{Taylor1{_S}}(undef, size(tmp1453)) - tmp1454 .= Taylor1(zero(_S), order) - tmp1455 = Array{Taylor1{_S}}(undef, size(tmp1454)) - tmp1455 .= Taylor1(zero(_S), order) - tmp1480 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp1480 .= Taylor1(zero(_S), order) - tmp1481 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1481 .= Taylor1(zero(_S), order) - tmp1482 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1482 .= Taylor1(zero(_S), order) - tmp1483 = Array{Taylor1{_S}}(undef, size(tmp1481)) - tmp1483 .= Taylor1(zero(_S), order) - tmp1484 = Array{Taylor1{_S}}(undef, size(tmp1480)) - tmp1484 .= Taylor1(zero(_S), order) - tmp1485 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp1485 .= Taylor1(zero(_S), order) - tmp1486 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1486 .= Taylor1(zero(_S), order) - tmp1487 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1487 .= Taylor1(zero(_S), order) - tmp1488 = Array{Taylor1{_S}}(undef, size(tmp1486)) - tmp1488 .= Taylor1(zero(_S), order) - tmp1489 = Array{Taylor1{_S}}(undef, size(tmp1485)) - tmp1489 .= Taylor1(zero(_S), order) - tmp1490 = Array{Taylor1{_S}}(undef, size(tmp1484)) - tmp1490 .= Taylor1(zero(_S), order) - tmp1492 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1492 .= Taylor1(zero(_S), order) - tmp1493 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1493 .= Taylor1(zero(_S), order) - tmp1494 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1494 .= Taylor1(zero(_S), order) - tmp1495 = Array{Taylor1{_S}}(undef, size(tmp1493)) - tmp1495 .= Taylor1(zero(_S), order) - tmp1496 = Array{Taylor1{_S}}(undef, size(tmp1492)) - tmp1496 .= Taylor1(zero(_S), order) - tmp1497 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1497 .= Taylor1(zero(_S), order) - tmp1498 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1498 .= Taylor1(zero(_S), order) - tmp1499 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1499 .= Taylor1(zero(_S), order) - tmp1500 = Array{Taylor1{_S}}(undef, size(tmp1498)) - tmp1500 .= Taylor1(zero(_S), order) - tmp1501 = Array{Taylor1{_S}}(undef, size(tmp1497)) - tmp1501 .= Taylor1(zero(_S), order) - tmp1502 = Array{Taylor1{_S}}(undef, size(tmp1496)) - tmp1502 .= Taylor1(zero(_S), order) - tmp1504 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1504 .= Taylor1(zero(_S), order) - tmp1505 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1505 .= Taylor1(zero(_S), order) - tmp1506 = Array{Taylor1{_S}}(undef, size(tmp1504)) - tmp1506 .= Taylor1(zero(_S), order) - tmp1507 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp1507 .= Taylor1(zero(_S), order) - tmp1508 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1508 .= Taylor1(zero(_S), order) - tmp1509 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1509 .= Taylor1(zero(_S), order) - tmp1510 = Array{Taylor1{_S}}(undef, size(tmp1508)) - tmp1510 .= Taylor1(zero(_S), order) - tmp1511 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp1511 .= Taylor1(zero(_S), order) - tmp1512 = Array{Taylor1{_S}}(undef, size(tmp1507)) - tmp1512 .= Taylor1(zero(_S), order) - tmp1532 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - tmp1532 .= Taylor1(zero(_S), order) - tmp1533 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) - tmp1533 .= Taylor1(zero(_S), order) - tmp1536 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) - tmp1536 .= Taylor1(zero(_S), order) - tmp1537 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) - tmp1537 .= Taylor1(zero(_S), order) - tmp1458 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1458 .= Taylor1(zero(_S), order) - tmp1459 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1459 .= Taylor1(zero(_S), order) - tmp1461 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1461 .= Taylor1(zero(_S), order) - tmp1462 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1462 .= Taylor1(zero(_S), order) - tmp1464 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1464 .= Taylor1(zero(_S), order) - tmp1467 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1467 .= Taylor1(zero(_S), order) - tmp1476 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1476 .= Taylor1(zero(_S), order) - tmp1477 = Array{Taylor1{_S}}(undef, size(tmp1476)) - tmp1477 .= Taylor1(zero(_S), order) - tmp1478 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1478 .= Taylor1(zero(_S), order) - tmp1469 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1469 .= Taylor1(zero(_S), order) - tmp1471 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1471 .= Taylor1(zero(_S), order) - tmp1472 = Array{Taylor1{_S}}(undef, size(tmp1471)) - tmp1472 .= Taylor1(zero(_S), order) - tmp1473 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1473 .= Taylor1(zero(_S), order) - tmp1518 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp1518 .= Taylor1(zero(_S), order) - tmp1519 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp1519 .= Taylor1(zero(_S), order) - tmp1520 = Array{Taylor1{_S}}(undef, size(tmp1518)) - tmp1520 .= Taylor1(zero(_S), order) - tmp1521 = Array{Taylor1{_S}}(undef, size(tmp1520)) - tmp1521 .= Taylor1(zero(_S), order) - tmp1523 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1523 .= Taylor1(zero(_S), order) - tmp1524 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - tmp1524 .= Taylor1(zero(_S), order) - tmp1525 = Array{Taylor1{_S}}(undef, size(tmp1523)) - tmp1525 .= Taylor1(zero(_S), order) - tmp1526 = Array{Taylor1{_S}}(undef, size(tmp1525)) - tmp1526 .= Taylor1(zero(_S), order) - tmp1528 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp1528 .= Taylor1(zero(_S), order) - tmp1529 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp1529 .= Taylor1(zero(_S), order) - tmp1530 = Array{Taylor1{_S}}(undef, size(tmp1529)) - tmp1530 .= Taylor1(zero(_S), order) - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - X_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[1, 1, j]), order) - X_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]), order) - X_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]), order) - Y_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[2, 1, j]), order) - Y_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]), order) - Y_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]), order) - Z_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[3, 1, j]), order) - Z_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]), order) - Z_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]), order) - tmp1415[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) - X_bf[i, j] = Taylor1(constant_term(tmp1415[i, j]) + constant_term(X_bf_3[i, j]), order) - tmp1417[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) - Y_bf[i, j] = Taylor1(constant_term(tmp1417[i, j]) + constant_term(Y_bf_3[i, j]), order) - tmp1419[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) - Z_bf[i, j] = Taylor1(constant_term(tmp1419[i, j]) + constant_term(Z_bf_3[i, j]), order) - sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) - tmp1423[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) - tmp1425[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) - tmp1426[i, j] = Taylor1(constant_term(tmp1423[i, j]) + constant_term(tmp1425[i, j]), order) - r_xy[i, j] = Taylor1(sqrt(constant_term(tmp1426[i, j])), order) - cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) - sin_λ[i, j] = Taylor1(constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]), order) - cos_λ[i, j] = Taylor1(constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]), order) - P_n[i, j, 1] = Taylor1(identity(constant_term(one_t)), order) - P_n[i, j, 2] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) - dP_n[i, j, 1] = Taylor1(identity(constant_term(zero_q_1)), order) - dP_n[i, j, 2] = Taylor1(identity(constant_term(one_t)), order) - for n = 2:n1SEM[j] - tmp1431[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp1432[i, j, n] = Taylor1(constant_term(tmp1431[i, j, n]) * constant_term(fact1_jsem[n]), order) - tmp1433[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) - P_n[i, j, n + 1] = Taylor1(constant_term(tmp1432[i, j, n]) - constant_term(tmp1433[i, j, n - 1]), order) - tmp1435[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp1436[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) - dP_n[i, j, n + 1] = Taylor1(constant_term(tmp1435[i, j, n]) + constant_term(tmp1436[i, j, n]), order) - temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) - end - r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) - tmp1441[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) - tmp1442[i, j, 3] = Taylor1(constant_term(tmp1441[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ξ[i, j] = Taylor1(constant_term(tmp1442[i, j, 3]) / constant_term(r_p4[i, j]), order) - tmp1444[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) - tmp1445[i, j, 3] = Taylor1(constant_term(tmp1444[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) - tmp1446[i, j, 3] = Taylor1(constant_term(tmp1445[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ζ[i, j] = Taylor1(constant_term(tmp1446[i, j, 3]) / constant_term(r_p4[i, j]), order) - F_J_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) - F_J_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) - for n = 3:n1SEM[j] - tmp1448[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) - tmp1449[i, j, n + 1] = Taylor1(constant_term(tmp1448[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp1450[i, j, n + 1] = Taylor1(constant_term(tmp1449[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjξ[i, j, n] = Taylor1(constant_term(tmp1450[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) - tmp1452[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) - tmp1453[i, j, n + 1] = Taylor1(constant_term(tmp1452[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) - tmp1454[i, j, n + 1] = Taylor1(constant_term(tmp1453[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp1455[i, j, n + 1] = Taylor1(constant_term(tmp1454[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjζ[i, j, n] = Taylor1(constant_term(tmp1455[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) - F_J_ξ_36[i, j] = Taylor1(identity(constant_term(temp_fjξ[i, j, n])), order) - F_J_ζ_36[i, j] = Taylor1(identity(constant_term(temp_fjζ[i, j, n])), order) - end - if j == mo - for m = 1:n1SEM[mo] - if m == 1 - sin_mλ[i, j, 1] = Taylor1(identity(constant_term(sin_λ[i, j])), order) - cos_mλ[i, j, 1] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - secϕ_P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(one_t)), order) - P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - cosϕ_dP_nm[i, j, 1, 1] = Taylor1(constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]), order) - else - tmp1458[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - tmp1459[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - sin_mλ[i, j, m] = Taylor1(constant_term(tmp1458[i, j, m - 1]) + constant_term(tmp1459[i, j, m - 1]), order) - tmp1461[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - tmp1462[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - cos_mλ[i, j, m] = Taylor1(constant_term(tmp1461[i, j, m - 1]) - constant_term(tmp1462[i, j, m - 1]), order) - tmp1464[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) - secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp1464[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) - P_nm[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]), order) - tmp1467[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) - cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp1467[i, j, m, m]) * constant_term(lnm3[m]), order) - end - for n = m + 1:n1SEM[mo] - if n == m + 1 - tmp1469[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1469[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - else - tmp1471[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - tmp1472[i, j, n - 1, m] = Taylor1(constant_term(tmp1471[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - tmp1473[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1472[i, j, n - 1, m]) + constant_term(tmp1473[i, j, n - 2, m]), order) - end - P_nm[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]), order) - tmp1476[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) - tmp1477[i, j, n, m] = Taylor1(constant_term(tmp1476[i, j, n, m]) * constant_term(lnm3[n]), order) - tmp1478[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) - cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp1477[i, j, n, m]) + constant_term(tmp1478[i, j, n - 1, m]), order) - end - end - tmp1480[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) - tmp1481[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp1482[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp1483[i, j, 1] = Taylor1(constant_term(tmp1481[i, j, 1]) + constant_term(tmp1482[i, j, 1]), order) - tmp1484[i, j, 2, 1] = Taylor1(constant_term(tmp1480[i, j, 2, 1]) * constant_term(tmp1483[i, j, 1]), order) - tmp1485[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) - tmp1486[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp1487[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp1488[i, j, 2] = Taylor1(constant_term(tmp1486[i, j, 2]) + constant_term(tmp1487[i, j, 2]), order) - tmp1489[i, j, 2, 2] = Taylor1(constant_term(tmp1485[i, j, 2, 2]) * constant_term(tmp1488[i, j, 2]), order) - tmp1490[i, j, 2, 1] = Taylor1(constant_term(tmp1484[i, j, 2, 1]) + constant_term(tmp1489[i, j, 2, 2]), order) - F_CS_ξ[i, j] = Taylor1(constant_term(tmp1490[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp1492[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) - tmp1493[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp1494[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp1495[i, j, 1] = Taylor1(constant_term(tmp1493[i, j, 1]) - constant_term(tmp1494[i, j, 1]), order) - tmp1496[i, j, 2, 1] = Taylor1(constant_term(tmp1492[i, j, 2, 1]) * constant_term(tmp1495[i, j, 1]), order) - tmp1497[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) - tmp1498[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp1499[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp1500[i, j, 2] = Taylor1(constant_term(tmp1498[i, j, 2]) - constant_term(tmp1499[i, j, 2]), order) - tmp1501[i, j, 2, 2] = Taylor1(constant_term(tmp1497[i, j, 2, 2]) * constant_term(tmp1500[i, j, 2]), order) - tmp1502[i, j, 2, 1] = Taylor1(constant_term(tmp1496[i, j, 2, 1]) + constant_term(tmp1501[i, j, 2, 2]), order) - F_CS_η[i, j] = Taylor1(constant_term(tmp1502[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp1504[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp1505[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp1506[i, j, 1] = Taylor1(constant_term(tmp1504[i, j, 1]) + constant_term(tmp1505[i, j, 1]), order) - tmp1507[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1506[i, j, 1]), order) - tmp1508[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp1509[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp1510[i, j, 2] = Taylor1(constant_term(tmp1508[i, j, 2]) + constant_term(tmp1509[i, j, 2]), order) - tmp1511[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1510[i, j, 2]), order) - tmp1512[i, j, 2, 1] = Taylor1(constant_term(tmp1507[i, j, 2, 1]) + constant_term(tmp1511[i, j, 2, 2]), order) - F_CS_ζ[i, j] = Taylor1(constant_term(tmp1512[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) - F_CS_η_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) - F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) - for n = 3:n2M - for m = 1:n - Cnm_cosmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]), order) - Cnm_sinmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - Snm_cosmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]), order) - Snm_sinmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - tmp1518[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) - tmp1519[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp1520[i, j, n, m] = Taylor1(constant_term(tmp1518[i, j, n, m]) * constant_term(tmp1519[i, j, n, m]), order) - tmp1521[i, j, n, m] = Taylor1(constant_term(tmp1520[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp1521[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) - tmp1523[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) - tmp1524[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) - tmp1525[i, j, n, m] = Taylor1(constant_term(tmp1523[i, j, n, m]) * constant_term(tmp1524[i, j, n, m]), order) - tmp1526[i, j, n, m] = Taylor1(constant_term(tmp1525[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp1526[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) - tmp1528[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp1529[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1528[i, j, n, m]), order) - tmp1530[i, j, n, m] = Taylor1(constant_term(tmp1529[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp1530[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) - F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ξ[i, j, n, m])), order) - F_CS_η_36[i, j] = Taylor1(identity(constant_term(temp_CS_η[i, j, n, m])), order) - F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ζ[i, j, n, m])), order) - end - end - tmp1532[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - tmp1533[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) - F_JCS_ξ[i, j] = Taylor1(constant_term(tmp1532[i, j]) + constant_term(tmp1533[i, j]), order) - F_JCS_η[i, j] = Taylor1(constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]), order) - tmp1536[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - tmp1537[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(tmp1536[i, j]) + constant_term(tmp1537[i, j]), order) - else - F_JCS_ξ[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - F_JCS_η[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - end - Rb2p[i, j, 1, 1] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]), order) - Rb2p[i, j, 2, 1] = Taylor1(-(constant_term(sin_λ[i, j])), order) - tmp1543[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp1543[i, j]) * constant_term(cos_λ[i, j]), order) - Rb2p[i, j, 1, 2] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]), order) - Rb2p[i, j, 2, 2] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - tmp1546[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp1546[i, j]) * constant_term(sin_λ[i, j]), order) - Rb2p[i, j, 1, 3] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 2, 3] = Taylor1(identity(constant_term(zero_q_1)), order) - Rb2p[i, j, 3, 3] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - tmp1548[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) - tmp1549[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) - tmp1550[i, j, 1, 1] = Taylor1(constant_term(tmp1548[i, j, 1, 1]) + constant_term(tmp1549[i, j, 1, 2]), order) - tmp1551[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp1550[i, j, 1, 1]) + constant_term(tmp1551[i, j, 1, 3]), order) - tmp1553[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) - tmp1554[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) - tmp1555[i, j, 2, 1] = Taylor1(constant_term(tmp1553[i, j, 2, 1]) + constant_term(tmp1554[i, j, 2, 2]), order) - tmp1556[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp1555[i, j, 2, 1]) + constant_term(tmp1556[i, j, 2, 3]), order) - tmp1558[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) - tmp1559[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) - tmp1560[i, j, 3, 1] = Taylor1(constant_term(tmp1558[i, j, 3, 1]) + constant_term(tmp1559[i, j, 3, 2]), order) - tmp1561[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp1560[i, j, 3, 1]) + constant_term(tmp1561[i, j, 3, 3]), order) - tmp1563[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) - tmp1564[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) - tmp1565[i, j, 1, 1] = Taylor1(constant_term(tmp1563[i, j, 1, 1]) + constant_term(tmp1564[i, j, 1, 2]), order) - tmp1566[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp1565[i, j, 1, 1]) + constant_term(tmp1566[i, j, 1, 3]), order) - tmp1568[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) - tmp1569[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) - tmp1570[i, j, 2, 1] = Taylor1(constant_term(tmp1568[i, j, 2, 1]) + constant_term(tmp1569[i, j, 2, 2]), order) - tmp1571[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp1570[i, j, 2, 1]) + constant_term(tmp1571[i, j, 2, 3]), order) - tmp1573[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) - tmp1574[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) - tmp1575[i, j, 3, 1] = Taylor1(constant_term(tmp1573[i, j, 3, 1]) + constant_term(tmp1574[i, j, 3, 2]), order) - tmp1576[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp1575[i, j, 3, 1]) + constant_term(tmp1576[i, j, 3, 3]), order) - tmp1578[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) - tmp1579[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) - tmp1580[i, j, 1, 1] = Taylor1(constant_term(tmp1578[i, j, 1, 1]) + constant_term(tmp1579[i, j, 1, 2]), order) - tmp1581[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp1580[i, j, 1, 1]) + constant_term(tmp1581[i, j, 1, 3]), order) - tmp1583[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) - tmp1584[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) - tmp1585[i, j, 2, 1] = Taylor1(constant_term(tmp1583[i, j, 2, 1]) + constant_term(tmp1584[i, j, 2, 2]), order) - tmp1586[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp1585[i, j, 2, 1]) + constant_term(tmp1586[i, j, 2, 3]), order) - tmp1588[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) - tmp1589[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) - tmp1590[i, j, 3, 1] = Taylor1(constant_term(tmp1588[i, j, 3, 1]) + constant_term(tmp1589[i, j, 3, 2]), order) - tmp1591[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp1590[i, j, 3, 1]) + constant_term(tmp1591[i, j, 3, 3]), order) - tmp1593[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) - tmp1594[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) - tmp1595[i, j, 1, 1] = Taylor1(constant_term(tmp1593[i, j, 1, 1]) + constant_term(tmp1594[i, j, 2, 1]), order) - tmp1596[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) - F_JCS_x[i, j] = Taylor1(constant_term(tmp1595[i, j, 1, 1]) + constant_term(tmp1596[i, j, 3, 1]), order) - tmp1598[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) - tmp1599[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) - tmp1600[i, j, 1, 2] = Taylor1(constant_term(tmp1598[i, j, 1, 2]) + constant_term(tmp1599[i, j, 2, 2]), order) - tmp1601[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) - F_JCS_y[i, j] = Taylor1(constant_term(tmp1600[i, j, 1, 2]) + constant_term(tmp1601[i, j, 3, 2]), order) - tmp1603[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) - tmp1604[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) - tmp1605[i, j, 1, 3] = Taylor1(constant_term(tmp1603[i, j, 1, 3]) + constant_term(tmp1604[i, j, 2, 3]), order) - tmp1606[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) - F_JCS_z[i, j] = Taylor1(constant_term(tmp1605[i, j, 1, 3]) + constant_term(tmp1606[i, j, 3, 3]), order) - end - end - end - end - tmp1608 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp1608 .= Taylor1(zero(_S), order) - tmp1610 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp1610 .= Taylor1(zero(_S), order) - tmp1612 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp1612 .= Taylor1(zero(_S), order) - tmp1614 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp1614 .= Taylor1(zero(_S), order) - tmp1616 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp1616 .= Taylor1(zero(_S), order) - tmp1618 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp1618 .= Taylor1(zero(_S), order) - tmp1620 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1620 .= Taylor1(zero(_S), order) - tmp1621 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1621 .= Taylor1(zero(_S), order) - tmp1622 = Array{Taylor1{_S}}(undef, size(tmp1620)) - tmp1622 .= Taylor1(zero(_S), order) - tmp1624 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1624 .= Taylor1(zero(_S), order) - tmp1625 = Array{Taylor1{_S}}(undef, size(X)) - tmp1625 .= Taylor1(zero(_S), order) - tmp1626 = Array{Taylor1{_S}}(undef, size(tmp1624)) - tmp1626 .= Taylor1(zero(_S), order) - tmp1628 = Array{Taylor1{_S}}(undef, size(X)) - tmp1628 .= Taylor1(zero(_S), order) - tmp1629 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1629 .= Taylor1(zero(_S), order) - tmp1630 = Array{Taylor1{_S}}(undef, size(tmp1628)) - tmp1630 .= Taylor1(zero(_S), order) - tmp1632 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_x)) - tmp1632 .= Taylor1(zero(_S), order) - tmp1634 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_y)) - tmp1634 .= Taylor1(zero(_S), order) - tmp1636 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_z)) - tmp1636 .= Taylor1(zero(_S), order) - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - tmp1608[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp1608[i, j]), order) - accX[j] = Taylor1(identity(constant_term(temp_accX_j[i, j])), order) - tmp1610[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp1610[i, j]), order) - accY[j] = Taylor1(identity(constant_term(temp_accY_j[i, j])), order) - tmp1612[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp1612[i, j]), order) - accZ[j] = Taylor1(identity(constant_term(temp_accZ_j[i, j])), order) - tmp1614[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp1614[i, j]), order) - accX[i] = Taylor1(identity(constant_term(temp_accX_i[i, j])), order) - tmp1616[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp1616[i, j]), order) - accY[i] = Taylor1(identity(constant_term(temp_accY_i[i, j])), order) - tmp1618[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp1618[i, j]), order) - accZ[i] = Taylor1(identity(constant_term(temp_accZ_i[i, j])), order) - if j == mo - tmp1620[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp1621[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp1622[i, j] = Taylor1(constant_term(tmp1620[i, j]) - constant_term(tmp1621[i, j]), order) - N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1622[i, j]), order) - tmp1624[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp1625[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp1626[i, j] = Taylor1(constant_term(tmp1624[i, j]) - constant_term(tmp1625[i, j]), order) - N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1626[i, j]), order) - tmp1628[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp1629[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp1630[i, j] = Taylor1(constant_term(tmp1628[i, j]) - constant_term(tmp1629[i, j]), order) - N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1630[i, j]), order) - tmp1632[i] = Taylor1(constant_term(N_MfigM_pmA_x[i]) * constant_term(μ[j]), order) - temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(tmp1632[i]), order) - N_MfigM[1] = Taylor1(identity(constant_term(temp_N_M_x[i])), order) - tmp1634[i] = Taylor1(constant_term(N_MfigM_pmA_y[i]) * constant_term(μ[j]), order) - temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(tmp1634[i]), order) - N_MfigM[2] = Taylor1(identity(constant_term(temp_N_M_y[i])), order) - tmp1636[i] = Taylor1(constant_term(N_MfigM_pmA_z[i]) * constant_term(μ[j]), order) - temp_N_M_z[i] = Taylor1(constant_term(N_MfigM[3]) - constant_term(tmp1636[i]), order) - N_MfigM[3] = Taylor1(identity(constant_term(temp_N_M_z[i])), order) - end - end - end - end - end - tmp1645 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - tmp1645 .= Taylor1(zero(_S), order) - Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) - Xij_t_Ui .= Taylor1(zero(_S), order) - Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) - Yij_t_Vi .= Taylor1(zero(_S), order) - Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) - Zij_t_Wi .= Taylor1(zero(_S), order) - tmp1651 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - tmp1651 .= Taylor1(zero(_S), order) - Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp1651)) - Rij_dot_Vi .= Taylor1(zero(_S), order) - tmp1654 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - tmp1654 .= Taylor1(zero(_S), order) - pn1t7 = Array{Taylor1{_S}}(undef, size(tmp1654)) - pn1t7 .= Taylor1(zero(_S), order) - tmp1657 = Array{Taylor1{_S}}(undef, size(pn1t7)) - tmp1657 .= Taylor1(zero(_S), order) - pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) - pn1t2_7 .= Taylor1(zero(_S), order) - for j = 1:N - for i = 1:N - if i == j - continue - else - _4ϕj[i, j] = Taylor1(constant_term(4) * constant_term(newtonianNb_Potential[j]), order) - ϕi_plus_4ϕj[i, j] = Taylor1(constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]), order) - _2v2[i, j] = Taylor1(constant_term(2) * constant_term(v2[i]), order) - sj2_plus_2si2[i, j] = Taylor1(constant_term(v2[j]) + constant_term(_2v2[i, j]), order) - tmp1645[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) - sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1645[i, j]), order) - ϕs_and_vs[i, j] = Taylor1(constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]), order) - Xij_t_Ui[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(dq[3i - 2]), order) - Yij_t_Vi[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(dq[3i - 1]), order) - Zij_t_Wi[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(dq[3i]), order) - tmp1651[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) - Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp1651[i, j]) + constant_term(Zij_t_Wi[i, j]), order) - tmp1654[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) - pn1t7[i, j] = Taylor1(constant_term(tmp1654[i, j]) / constant_term(r_p2[i, j]), order) - tmp1657[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) - pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1657[i, j]), order) - pn1t1_7[i, j] = Taylor1(constant_term(c_p2) + constant_term(pn1t2_7[i, j]), order) - end - end - pntempX[j] = Taylor1(identity(constant_term(zero_q_1)), order) - pntempY[j] = Taylor1(identity(constant_term(zero_q_1)), order) - pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) - end - tmp1664 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - tmp1664 .= Taylor1(zero(_S), order) - tmp1665 = Array{Taylor1{_S}}(undef, size(tmp1664)) - tmp1665 .= Taylor1(zero(_S), order) - tmp1666 = Array{Taylor1{_S}}(undef, size(tmp1665)) - tmp1666 .= Taylor1(zero(_S), order) - tmp1674 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - tmp1674 .= Taylor1(zero(_S), order) - termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) - termpnx .= Taylor1(zero(_S), order) - sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) - sumpnx .= Taylor1(zero(_S), order) - tmp1677 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - tmp1677 .= Taylor1(zero(_S), order) - termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) - termpny .= Taylor1(zero(_S), order) - sumpny = Array{Taylor1{_S}}(undef, size(termpny)) - sumpny .= Taylor1(zero(_S), order) - tmp1680 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - tmp1680 .= Taylor1(zero(_S), order) - termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) - termpnz .= Taylor1(zero(_S), order) - sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) - sumpnz .= Taylor1(zero(_S), order) - for j = 1:N - for i = 1:N - if i == j - continue - else - pNX_t_X[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(X[i, j]), order) - pNY_t_Y[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(Y[i, j]), order) - pNZ_t_Z[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(Z[i, j]), order) - tmp1664[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) - tmp1665[i, j] = Taylor1(constant_term(tmp1664[i, j]) + constant_term(pNZ_t_Z[i, j]), order) - tmp1666[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp1665[i, j]), order) - pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp1666[i, j]), order) - X_t_pn1[i, j] = Taylor1(constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]), order) - Y_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]), order) - Z_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]), order) - pNX_t_pn3[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(pn3[i, j]), order) - pNY_t_pn3[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(pn3[i, j]), order) - pNZ_t_pn3[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(pn3[i, j]), order) - tmp1674[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) - termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp1674[i, j]), order) - sumpnx[i, j] = Taylor1(constant_term(pntempX[j]) + constant_term(termpnx[i, j]), order) - pntempX[j] = Taylor1(identity(constant_term(sumpnx[i, j])), order) - tmp1677[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) - termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp1677[i, j]), order) - sumpny[i, j] = Taylor1(constant_term(pntempY[j]) + constant_term(termpny[i, j]), order) - pntempY[j] = Taylor1(identity(constant_term(sumpny[i, j])), order) - tmp1680[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) - termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp1680[i, j]), order) - sumpnz[i, j] = Taylor1(constant_term(pntempZ[j]) + constant_term(termpnz[i, j]), order) - pntempZ[j] = Taylor1(identity(constant_term(sumpnz[i, j])), order) - end - end - postNewtonX[j] = Taylor1(constant_term(pntempX[j]) * constant_term(c_m2), order) - postNewtonY[j] = Taylor1(constant_term(pntempY[j]) * constant_term(c_m2), order) - postNewtonZ[j] = Taylor1(constant_term(pntempZ[j]) * constant_term(c_m2), order) - end - for i = 1:N_ext - dq[3 * (N + i) - 2] = Taylor1(constant_term(postNewtonX[i]) + constant_term(accX[i]), order) - dq[3 * (N + i) - 1] = Taylor1(constant_term(postNewtonY[i]) + constant_term(accY[i]), order) - dq[3 * (N + i)] = Taylor1(constant_term(postNewtonZ[i]) + constant_term(accZ[i]), order) - end - for i = N_ext + 1:N - dq[3 * (N + i) - 2] = Taylor1(identity(constant_term(postNewtonX[i])), order) - dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) - dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) - end - tmp1689 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp1690 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp1691 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp1692 = Taylor1(constant_term(tmp1690) + constant_term(tmp1691), order) - Iω_x = Taylor1(constant_term(tmp1689) + constant_term(tmp1692), order) - tmp1694 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp1695 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp1696 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp1697 = Taylor1(constant_term(tmp1695) + constant_term(tmp1696), order) - Iω_y = Taylor1(constant_term(tmp1694) + constant_term(tmp1697), order) - tmp1699 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp1700 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp1701 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp1702 = Taylor1(constant_term(tmp1700) + constant_term(tmp1701), order) - Iω_z = Taylor1(constant_term(tmp1699) + constant_term(tmp1702), order) - tmp1704 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) - tmp1705 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) - ωxIω_x = Taylor1(constant_term(tmp1704) - constant_term(tmp1705), order) - tmp1707 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) - tmp1708 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) - ωxIω_y = Taylor1(constant_term(tmp1707) - constant_term(tmp1708), order) - tmp1710 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) - tmp1711 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) - ωxIω_z = Taylor1(constant_term(tmp1710) - constant_term(tmp1711), order) - tmp1713 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp1714 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp1715 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp1716 = Taylor1(constant_term(tmp1714) + constant_term(tmp1715), order) - dIω_x = Taylor1(constant_term(tmp1713) + constant_term(tmp1716), order) - tmp1718 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp1719 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp1720 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp1721 = Taylor1(constant_term(tmp1719) + constant_term(tmp1720), order) - dIω_y = Taylor1(constant_term(tmp1718) + constant_term(tmp1721), order) - tmp1723 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp1724 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp1725 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp1726 = Taylor1(constant_term(tmp1724) + constant_term(tmp1725), order) - dIω_z = Taylor1(constant_term(tmp1723) + constant_term(tmp1726), order) - er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) - er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) - er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) - p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) - p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) - p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) - tmp1731 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) - tmp1732 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) - tmp1733 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) - tmp1734 = Taylor1(constant_term(tmp1732) + constant_term(tmp1733), order) - er_EM_1 = Taylor1(constant_term(tmp1731) + constant_term(tmp1734), order) - tmp1736 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) - tmp1737 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) - tmp1738 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) - tmp1739 = Taylor1(constant_term(tmp1737) + constant_term(tmp1738), order) - er_EM_2 = Taylor1(constant_term(tmp1736) + constant_term(tmp1739), order) - tmp1741 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) - tmp1742 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) - tmp1743 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) - tmp1744 = Taylor1(constant_term(tmp1742) + constant_term(tmp1743), order) - er_EM_3 = Taylor1(constant_term(tmp1741) + constant_term(tmp1744), order) - tmp1746 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) - tmp1747 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) - tmp1748 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) - tmp1749 = Taylor1(constant_term(tmp1747) + constant_term(tmp1748), order) - p_E_1 = Taylor1(constant_term(tmp1746) + constant_term(tmp1749), order) - tmp1751 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) - tmp1752 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) - tmp1753 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) - tmp1754 = Taylor1(constant_term(tmp1752) + constant_term(tmp1753), order) - p_E_2 = Taylor1(constant_term(tmp1751) + constant_term(tmp1754), order) - tmp1756 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) - tmp1757 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) - tmp1758 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) - tmp1759 = Taylor1(constant_term(tmp1757) + constant_term(tmp1758), order) - p_E_3 = Taylor1(constant_term(tmp1756) + constant_term(tmp1759), order) - tmp1761 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) - tmp1762 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) - tmp1763 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) - tmp1764 = Taylor1(constant_term(tmp1762) + constant_term(tmp1763), order) - I_er_EM_1 = Taylor1(constant_term(tmp1761) + constant_term(tmp1764), order) - tmp1766 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) - tmp1767 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) - tmp1768 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) - tmp1769 = Taylor1(constant_term(tmp1767) + constant_term(tmp1768), order) - I_er_EM_2 = Taylor1(constant_term(tmp1766) + constant_term(tmp1769), order) - tmp1771 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) - tmp1772 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) - tmp1773 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) - tmp1774 = Taylor1(constant_term(tmp1772) + constant_term(tmp1773), order) - I_er_EM_3 = Taylor1(constant_term(tmp1771) + constant_term(tmp1774), order) - tmp1776 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) - tmp1777 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) - tmp1778 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) - tmp1779 = Taylor1(constant_term(tmp1777) + constant_term(tmp1778), order) - I_p_E_1 = Taylor1(constant_term(tmp1776) + constant_term(tmp1779), order) - tmp1781 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) - tmp1782 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) - tmp1783 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) - tmp1784 = Taylor1(constant_term(tmp1782) + constant_term(tmp1783), order) - I_p_E_2 = Taylor1(constant_term(tmp1781) + constant_term(tmp1784), order) - tmp1786 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) - tmp1787 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) - tmp1788 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) - tmp1789 = Taylor1(constant_term(tmp1787) + constant_term(tmp1788), order) - I_p_E_3 = Taylor1(constant_term(tmp1786) + constant_term(tmp1789), order) - tmp1791 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) - tmp1792 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) - er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp1791) - constant_term(tmp1792), order) - tmp1794 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) - tmp1795 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) - er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp1794) - constant_term(tmp1795), order) - tmp1797 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) - tmp1798 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) - er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp1797) - constant_term(tmp1798), order) - tmp1800 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) - tmp1801 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) - er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp1800) - constant_term(tmp1801), order) - tmp1803 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) - tmp1804 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) - er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp1803) - constant_term(tmp1804), order) - tmp1806 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) - tmp1807 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) - er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp1806) - constant_term(tmp1807), order) - tmp1809 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) - tmp1810 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) - p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp1809) - constant_term(tmp1810), order) - tmp1812 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) - tmp1813 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) - p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp1812) - constant_term(tmp1813), order) - tmp1815 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) - tmp1816 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) - p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp1815) - constant_term(tmp1816), order) - tmp1818 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) - tmp1819 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) - p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp1818) - constant_term(tmp1819), order) - tmp1821 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) - tmp1822 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) - p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp1821) - constant_term(tmp1822), order) - tmp1824 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) - tmp1825 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) - p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp1824) - constant_term(tmp1825), order) - tmp1829 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) - tmp1830 = Taylor1(constant_term(7) * constant_term(tmp1829), order) - one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp1830), order) - two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) - tmp1835 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) - N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp1835), order) - tmp1837 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) - tmp1838 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) - tmp1839 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1838), order) - tmp1840 = Taylor1(constant_term(tmp1837) + constant_term(tmp1839), order) - tmp1842 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) - tmp1843 = Taylor1(constant_term(tmp1840) - constant_term(tmp1842), order) - N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1843), order) - tmp1845 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) - tmp1846 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) - tmp1847 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1846), order) - tmp1848 = Taylor1(constant_term(tmp1845) + constant_term(tmp1847), order) - tmp1850 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) - tmp1851 = Taylor1(constant_term(tmp1848) - constant_term(tmp1850), order) - N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1851), order) - tmp1853 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) - tmp1854 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) - tmp1855 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1854), order) - tmp1856 = Taylor1(constant_term(tmp1853) + constant_term(tmp1855), order) - tmp1858 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) - tmp1859 = Taylor1(constant_term(tmp1856) - constant_term(tmp1858), order) - N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1859), order) - tmp1861 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp1862 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp1863 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp1864 = Taylor1(constant_term(tmp1862) + constant_term(tmp1863), order) - N_1_LMF = Taylor1(constant_term(tmp1861) + constant_term(tmp1864), order) - tmp1866 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp1867 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp1868 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp1869 = Taylor1(constant_term(tmp1867) + constant_term(tmp1868), order) - N_2_LMF = Taylor1(constant_term(tmp1866) + constant_term(tmp1869), order) - tmp1871 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp1872 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp1873 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp1874 = Taylor1(constant_term(tmp1872) + constant_term(tmp1873), order) - N_3_LMF = Taylor1(constant_term(tmp1871) + constant_term(tmp1874), order) - tmp1876 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) - tmp1877 = Taylor1(constant_term(k_ν) * constant_term(tmp1876), order) - tmp1878 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp1879 = Taylor1(constant_term(tmp1878) * constant_term(q[6N + 11]), order) - N_cmb_1 = Taylor1(constant_term(tmp1877) - constant_term(tmp1879), order) - tmp1881 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) - tmp1882 = Taylor1(constant_term(k_ν) * constant_term(tmp1881), order) - tmp1883 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp1884 = Taylor1(constant_term(tmp1883) * constant_term(q[6N + 10]), order) - N_cmb_2 = Taylor1(constant_term(tmp1882) + constant_term(tmp1884), order) - tmp1886 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) - N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp1886), order) - tmp1888 = Taylor1(constant_term(N_1_LMF) + constant_term(N_MfigM_figE_1), order) - tmp1889 = Taylor1(constant_term(tmp1888) + constant_term(N_cmb_1), order) - tmp1890 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) - I_dω_1 = Taylor1(constant_term(tmp1889) - constant_term(tmp1890), order) - tmp1892 = Taylor1(constant_term(N_2_LMF) + constant_term(N_MfigM_figE_2), order) - tmp1893 = Taylor1(constant_term(tmp1892) + constant_term(N_cmb_2), order) - tmp1894 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) - I_dω_2 = Taylor1(constant_term(tmp1893) - constant_term(tmp1894), order) - tmp1896 = Taylor1(constant_term(N_3_LMF) + constant_term(N_MfigM_figE_3), order) - tmp1897 = Taylor1(constant_term(tmp1896) + constant_term(N_cmb_3), order) - tmp1898 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) - I_dω_3 = Taylor1(constant_term(tmp1897) - constant_term(tmp1898), order) - Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) - Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) - Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) - tmp1903 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) - tmp1904 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) - m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp1903) - constant_term(tmp1904), order) - tmp1906 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) - tmp1907 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) - m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp1906) - constant_term(tmp1907), order) - tmp1909 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) - tmp1910 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) - m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp1909) - constant_term(tmp1910), order) - Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) - Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) - Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) - tmp1915 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1995 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1916 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1915), order) - tmp1917 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1996 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1918 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1917), order) - tmp1919 = Taylor1(constant_term(tmp1916) + constant_term(tmp1918), order) - tmp1920 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp1997 = Taylor1(cos(constant_term(q[6N + 2])), order) - dq[6N + 1] = Taylor1(constant_term(tmp1919) / constant_term(tmp1920), order) - tmp1922 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1998 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1923 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1922), order) - tmp1924 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1999 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1925 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1924), order) - dq[6N + 2] = Taylor1(constant_term(tmp1923) - constant_term(tmp1925), order) - tmp1927 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp2000 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp1928 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp1927), order) - dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp1928), order) - tmp1930 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) - tmp1931 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) - tmp1932 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) - tmp1933 = Taylor1(constant_term(tmp1931) + constant_term(tmp1932), order) - dq[6N + 4] = Taylor1(constant_term(tmp1930) + constant_term(tmp1933), order) - tmp1935 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) - tmp1936 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) - tmp1937 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) - tmp1938 = Taylor1(constant_term(tmp1936) + constant_term(tmp1937), order) - dq[6N + 5] = Taylor1(constant_term(tmp1935) + constant_term(tmp1938), order) - tmp1940 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) - tmp1941 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) - tmp1942 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) - tmp1943 = Taylor1(constant_term(tmp1941) + constant_term(tmp1942), order) - dq[6N + 6] = Taylor1(constant_term(tmp1940) + constant_term(tmp1943), order) - tmp1945 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp2001 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp1946 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp1945), order) - dq[6N + 9] = Taylor1(-(constant_term(tmp1946)), order) - tmp1948 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp2002 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp1949 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp1948), order) - dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp1949), order) - dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) - dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) - dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) - dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) - dq[6N + 13] = Taylor1(identity(constant_term(zero_q_1)), order) - return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp1220, tmp1221, tmp1222, tmp1223, tmp1224, tmp1225, tmp1226, tmp1227, tmp1229, tmp1230, tmp1231, tmp1232, tmp1233, tmp1234, tmp1235, tmp1236, tmp1237, tmp1239, tmp1240, tmp1242, tmp1243, tmp1244, tmp1245, tmp1246, tmp1247, tmp1248, tmp1249, tmp1251, tmp1252, tmp1253, tmp1254, tmp1255, tmp1256, tmp1257, tmp1258, tmp1260, tmp1261, tmp1262, tmp1264, tmp1265, tmp1267, tmp1268, tmp1271, tmp1272, tmp1273, tmp1274, tmp1276, tmp1277, tmp1278, tmp1279, tmp1280, tmp1282, tmp1283, tmp1284, tmp1285, tmp1287, tmp1288, tmp1289, tmp1290, tmp1291, tmp1293, tmp1294, tmp1295, tmp1296, tmp1298, tmp1299, tmp1300, tmp1301, tmp1302, tmp1304, tmp1305, tmp1306, tmp1307, tmp1309, tmp1310, tmp1311, tmp1312, tmp1314, tmp1315, tmp1316, tmp1317, tmp1389, tmp1391, tmp1392, tmp1394, tmp1395, tmp1398, tmp1400, tmp1402, tmp1403, tmp1689, tmp1690, tmp1691, tmp1692, tmp1694, tmp1695, tmp1696, tmp1697, tmp1699, tmp1700, tmp1701, tmp1702, tmp1704, tmp1705, tmp1707, tmp1708, tmp1710, tmp1711, tmp1713, tmp1714, tmp1715, tmp1716, tmp1718, tmp1719, tmp1720, tmp1721, tmp1723, tmp1724, tmp1725, tmp1726, tmp1731, tmp1732, tmp1733, tmp1734, tmp1736, tmp1737, tmp1738, tmp1739, tmp1741, tmp1742, tmp1743, tmp1744, tmp1746, tmp1747, tmp1748, tmp1749, tmp1751, tmp1752, tmp1753, tmp1754, tmp1756, tmp1757, tmp1758, tmp1759, tmp1761, tmp1762, tmp1763, tmp1764, tmp1766, tmp1767, tmp1768, tmp1769, tmp1771, tmp1772, tmp1773, tmp1774, tmp1776, tmp1777, tmp1778, tmp1779, tmp1781, tmp1782, tmp1783, tmp1784, tmp1786, tmp1787, tmp1788, tmp1789, tmp1791, tmp1792, tmp1794, tmp1795, tmp1797, tmp1798, tmp1800, tmp1801, tmp1803, tmp1804, tmp1806, tmp1807, tmp1809, tmp1810, tmp1812, tmp1813, tmp1815, tmp1816, tmp1818, tmp1819, tmp1821, tmp1822, tmp1824, tmp1825, tmp1829, tmp1830, tmp1835, tmp1837, tmp1838, tmp1839, tmp1840, tmp1842, tmp1843, tmp1845, tmp1846, tmp1847, tmp1848, tmp1850, tmp1851, tmp1853, tmp1854, tmp1855, tmp1856, tmp1858, tmp1859, tmp1861, tmp1862, tmp1863, tmp1864, tmp1866, tmp1867, tmp1868, tmp1869, tmp1871, tmp1872, tmp1873, tmp1874, tmp1876, tmp1877, tmp1878, tmp1879, tmp1881, tmp1882, tmp1883, tmp1884, tmp1886, tmp1888, tmp1889, tmp1890, tmp1892, tmp1893, tmp1894, tmp1896, tmp1897, tmp1898, tmp1903, tmp1904, tmp1906, tmp1907, tmp1909, tmp1910, tmp1915, tmp1916, tmp1917, tmp1918, tmp1919, tmp1920, tmp1922, tmp1923, tmp1924, tmp1925, tmp1927, tmp1928, tmp1930, tmp1931, tmp1932, tmp1933, tmp1935, tmp1936, tmp1937, tmp1938, tmp1940, tmp1941, tmp1942, tmp1943, tmp1945, tmp1946, tmp1948, tmp1949, ϕ_m, θ_m, ψ_m, tmp1954, tmp1955, tmp1956, tmp1957, tmp1958, tmp1959, tmp1960, tmp1961, tmp1962, tmp1963, tmp1964, tmp1965, tmp1966, tmp1967, tmp1968, tmp1969, tmp1970, tmp1971, tmp1972, tmp1973, tmp1974, tmp1975, tmp1976, tmp1977, tmp1978, tmp1979, tmp1980, tmp1981, tmp1982, ϕ_c, tmp1983, tmp1984, tmp1985, tmp1986, tmp1987, tmp1988, tmp1989, tmp1990, tmp1991, tmp1992, tmp1993, tmp1994, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp1995, tmp1996, tmp1997, tmp1998, tmp1999, tmp2000, tmp2001, tmp2002], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp1326, tmp1328, tmp1331, tmp1333, tmp1336, tmp1338, tmp1382, tmp1384, tmp1385, tmp1387, tmp1632, tmp1634, tmp1636], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp1346, tmp1349, tmp1351, tmp1352, tmp1354, tmp1362, tmp1363, tmp1374, temp_001, tmp1376, temp_002, tmp1378, temp_003, temp_004, tmp1415, tmp1417, tmp1419, tmp1423, tmp1425, tmp1426, tmp1532, tmp1533, tmp1536, tmp1537, tmp1543, tmp1546, tmp1608, tmp1610, tmp1612, tmp1614, tmp1616, tmp1618, tmp1620, tmp1621, tmp1622, tmp1624, tmp1625, tmp1626, tmp1628, tmp1629, tmp1630, tmp1645, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp1651, Rij_dot_Vi, tmp1654, pn1t7, tmp1657, pn1t2_7, tmp1664, tmp1665, tmp1666, tmp1674, termpnx, sumpnx, tmp1677, termpny, sumpny, tmp1680, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp1431, tmp1432, tmp1433, tmp1435, tmp1436, tmp1441, tmp1442, tmp1444, tmp1445, tmp1446, tmp1448, tmp1449, tmp1450, tmp1452, tmp1453, tmp1454, tmp1455, tmp1458, tmp1459, tmp1461, tmp1462, tmp1481, tmp1482, tmp1483, tmp1486, tmp1487, tmp1488, tmp1493, tmp1494, tmp1495, tmp1498, tmp1499, tmp1500, tmp1504, tmp1505, tmp1506, tmp1508, tmp1509, tmp1510], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp1464, tmp1467, tmp1469, tmp1471, tmp1472, tmp1473, tmp1476, tmp1477, tmp1478, tmp1480, tmp1484, tmp1485, tmp1489, tmp1490, tmp1492, tmp1496, tmp1497, tmp1501, tmp1502, tmp1507, tmp1511, tmp1512, tmp1518, tmp1519, tmp1520, tmp1521, tmp1523, tmp1524, tmp1525, tmp1526, tmp1528, tmp1529, tmp1530, tmp1548, tmp1549, tmp1550, tmp1551, tmp1553, tmp1554, tmp1555, tmp1556, tmp1558, tmp1559, tmp1560, tmp1561, tmp1563, tmp1564, tmp1565, tmp1566, tmp1568, tmp1569, tmp1570, tmp1571, tmp1573, tmp1574, tmp1575, tmp1576, tmp1578, tmp1579, tmp1580, tmp1581, tmp1583, tmp1584, tmp1585, tmp1586, tmp1588, tmp1589, tmp1590, tmp1591, tmp1593, tmp1594, tmp1595, tmp1596, tmp1598, tmp1599, tmp1600, tmp1601, tmp1603, tmp1604, tmp1605, tmp1606]) -end -# TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S! -function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} - order = t.order - tmp1220 = __ralloc.v0[1]::Taylor1{_S} - tmp1221 = __ralloc.v0[2]::Taylor1{_S} - tmp1222 = __ralloc.v0[3]::Taylor1{_S} - tmp1223 = __ralloc.v0[4]::Taylor1{_S} - tmp1224 = __ralloc.v0[5]::Taylor1{_S} - tmp1225 = __ralloc.v0[6]::Taylor1{_S} - tmp1226 = __ralloc.v0[7]::Taylor1{_S} - tmp1227 = __ralloc.v0[8]::Taylor1{_S} - tmp1229 = __ralloc.v0[9]::Taylor1{_S} - tmp1230 = __ralloc.v0[10]::Taylor1{_S} - tmp1231 = __ralloc.v0[11]::Taylor1{_S} - tmp1232 = __ralloc.v0[12]::Taylor1{_S} - tmp1233 = __ralloc.v0[13]::Taylor1{_S} - tmp1234 = __ralloc.v0[14]::Taylor1{_S} - tmp1235 = __ralloc.v0[15]::Taylor1{_S} - tmp1236 = __ralloc.v0[16]::Taylor1{_S} - tmp1237 = __ralloc.v0[17]::Taylor1{_S} - tmp1239 = __ralloc.v0[18]::Taylor1{_S} - tmp1240 = __ralloc.v0[19]::Taylor1{_S} - tmp1242 = __ralloc.v0[20]::Taylor1{_S} - tmp1243 = __ralloc.v0[21]::Taylor1{_S} - tmp1244 = __ralloc.v0[22]::Taylor1{_S} - tmp1245 = __ralloc.v0[23]::Taylor1{_S} - tmp1246 = __ralloc.v0[24]::Taylor1{_S} - tmp1247 = __ralloc.v0[25]::Taylor1{_S} - tmp1248 = __ralloc.v0[26]::Taylor1{_S} - tmp1249 = __ralloc.v0[27]::Taylor1{_S} - tmp1251 = __ralloc.v0[28]::Taylor1{_S} - tmp1252 = __ralloc.v0[29]::Taylor1{_S} - tmp1253 = __ralloc.v0[30]::Taylor1{_S} - tmp1254 = __ralloc.v0[31]::Taylor1{_S} - tmp1255 = __ralloc.v0[32]::Taylor1{_S} - tmp1256 = __ralloc.v0[33]::Taylor1{_S} - tmp1257 = __ralloc.v0[34]::Taylor1{_S} - tmp1258 = __ralloc.v0[35]::Taylor1{_S} - tmp1260 = __ralloc.v0[36]::Taylor1{_S} - tmp1261 = __ralloc.v0[37]::Taylor1{_S} - tmp1262 = __ralloc.v0[38]::Taylor1{_S} - tmp1264 = __ralloc.v0[39]::Taylor1{_S} - tmp1265 = __ralloc.v0[40]::Taylor1{_S} - tmp1267 = __ralloc.v0[41]::Taylor1{_S} - tmp1268 = __ralloc.v0[42]::Taylor1{_S} - tmp1271 = __ralloc.v0[43]::Taylor1{_S} - tmp1272 = __ralloc.v0[44]::Taylor1{_S} - tmp1273 = __ralloc.v0[45]::Taylor1{_S} - tmp1274 = __ralloc.v0[46]::Taylor1{_S} - tmp1276 = __ralloc.v0[47]::Taylor1{_S} - tmp1277 = __ralloc.v0[48]::Taylor1{_S} - tmp1278 = __ralloc.v0[49]::Taylor1{_S} - tmp1279 = __ralloc.v0[50]::Taylor1{_S} - tmp1280 = __ralloc.v0[51]::Taylor1{_S} - tmp1282 = __ralloc.v0[52]::Taylor1{_S} - tmp1283 = __ralloc.v0[53]::Taylor1{_S} - tmp1284 = __ralloc.v0[54]::Taylor1{_S} - tmp1285 = __ralloc.v0[55]::Taylor1{_S} - tmp1287 = __ralloc.v0[56]::Taylor1{_S} - tmp1288 = __ralloc.v0[57]::Taylor1{_S} - tmp1289 = __ralloc.v0[58]::Taylor1{_S} - tmp1290 = __ralloc.v0[59]::Taylor1{_S} - tmp1291 = __ralloc.v0[60]::Taylor1{_S} - tmp1293 = __ralloc.v0[61]::Taylor1{_S} - tmp1294 = __ralloc.v0[62]::Taylor1{_S} - tmp1295 = __ralloc.v0[63]::Taylor1{_S} - tmp1296 = __ralloc.v0[64]::Taylor1{_S} - tmp1298 = __ralloc.v0[65]::Taylor1{_S} - tmp1299 = __ralloc.v0[66]::Taylor1{_S} - tmp1300 = __ralloc.v0[67]::Taylor1{_S} - tmp1301 = __ralloc.v0[68]::Taylor1{_S} - tmp1302 = __ralloc.v0[69]::Taylor1{_S} - tmp1304 = __ralloc.v0[70]::Taylor1{_S} - tmp1305 = __ralloc.v0[71]::Taylor1{_S} - tmp1306 = __ralloc.v0[72]::Taylor1{_S} - tmp1307 = __ralloc.v0[73]::Taylor1{_S} - tmp1309 = __ralloc.v0[74]::Taylor1{_S} - tmp1310 = __ralloc.v0[75]::Taylor1{_S} - tmp1311 = __ralloc.v0[76]::Taylor1{_S} - tmp1312 = __ralloc.v0[77]::Taylor1{_S} - tmp1314 = __ralloc.v0[78]::Taylor1{_S} - tmp1315 = __ralloc.v0[79]::Taylor1{_S} - tmp1316 = __ralloc.v0[80]::Taylor1{_S} - tmp1317 = __ralloc.v0[81]::Taylor1{_S} - tmp1389 = __ralloc.v0[82]::Taylor1{_S} - tmp1391 = __ralloc.v0[83]::Taylor1{_S} - tmp1392 = __ralloc.v0[84]::Taylor1{_S} - tmp1394 = __ralloc.v0[85]::Taylor1{_S} - tmp1395 = __ralloc.v0[86]::Taylor1{_S} - tmp1398 = __ralloc.v0[87]::Taylor1{_S} - tmp1400 = __ralloc.v0[88]::Taylor1{_S} - tmp1402 = __ralloc.v0[89]::Taylor1{_S} - tmp1403 = __ralloc.v0[90]::Taylor1{_S} - tmp1689 = __ralloc.v0[91]::Taylor1{_S} - tmp1690 = __ralloc.v0[92]::Taylor1{_S} - tmp1691 = __ralloc.v0[93]::Taylor1{_S} - tmp1692 = __ralloc.v0[94]::Taylor1{_S} - tmp1694 = __ralloc.v0[95]::Taylor1{_S} - tmp1695 = __ralloc.v0[96]::Taylor1{_S} - tmp1696 = __ralloc.v0[97]::Taylor1{_S} - tmp1697 = __ralloc.v0[98]::Taylor1{_S} - tmp1699 = __ralloc.v0[99]::Taylor1{_S} - tmp1700 = __ralloc.v0[100]::Taylor1{_S} - tmp1701 = __ralloc.v0[101]::Taylor1{_S} - tmp1702 = __ralloc.v0[102]::Taylor1{_S} - tmp1704 = __ralloc.v0[103]::Taylor1{_S} - tmp1705 = __ralloc.v0[104]::Taylor1{_S} - tmp1707 = __ralloc.v0[105]::Taylor1{_S} - tmp1708 = __ralloc.v0[106]::Taylor1{_S} - tmp1710 = __ralloc.v0[107]::Taylor1{_S} - tmp1711 = __ralloc.v0[108]::Taylor1{_S} - tmp1713 = __ralloc.v0[109]::Taylor1{_S} - tmp1714 = __ralloc.v0[110]::Taylor1{_S} - tmp1715 = __ralloc.v0[111]::Taylor1{_S} - tmp1716 = __ralloc.v0[112]::Taylor1{_S} - tmp1718 = __ralloc.v0[113]::Taylor1{_S} - tmp1719 = __ralloc.v0[114]::Taylor1{_S} - tmp1720 = __ralloc.v0[115]::Taylor1{_S} - tmp1721 = __ralloc.v0[116]::Taylor1{_S} - tmp1723 = __ralloc.v0[117]::Taylor1{_S} - tmp1724 = __ralloc.v0[118]::Taylor1{_S} - tmp1725 = __ralloc.v0[119]::Taylor1{_S} - tmp1726 = __ralloc.v0[120]::Taylor1{_S} - tmp1731 = __ralloc.v0[121]::Taylor1{_S} - tmp1732 = __ralloc.v0[122]::Taylor1{_S} - tmp1733 = __ralloc.v0[123]::Taylor1{_S} - tmp1734 = __ralloc.v0[124]::Taylor1{_S} - tmp1736 = __ralloc.v0[125]::Taylor1{_S} - tmp1737 = __ralloc.v0[126]::Taylor1{_S} - tmp1738 = __ralloc.v0[127]::Taylor1{_S} - tmp1739 = __ralloc.v0[128]::Taylor1{_S} - tmp1741 = __ralloc.v0[129]::Taylor1{_S} - tmp1742 = __ralloc.v0[130]::Taylor1{_S} - tmp1743 = __ralloc.v0[131]::Taylor1{_S} - tmp1744 = __ralloc.v0[132]::Taylor1{_S} - tmp1746 = __ralloc.v0[133]::Taylor1{_S} - tmp1747 = __ralloc.v0[134]::Taylor1{_S} - tmp1748 = __ralloc.v0[135]::Taylor1{_S} - tmp1749 = __ralloc.v0[136]::Taylor1{_S} - tmp1751 = __ralloc.v0[137]::Taylor1{_S} - tmp1752 = __ralloc.v0[138]::Taylor1{_S} - tmp1753 = __ralloc.v0[139]::Taylor1{_S} - tmp1754 = __ralloc.v0[140]::Taylor1{_S} - tmp1756 = __ralloc.v0[141]::Taylor1{_S} - tmp1757 = __ralloc.v0[142]::Taylor1{_S} - tmp1758 = __ralloc.v0[143]::Taylor1{_S} - tmp1759 = __ralloc.v0[144]::Taylor1{_S} - tmp1761 = __ralloc.v0[145]::Taylor1{_S} - tmp1762 = __ralloc.v0[146]::Taylor1{_S} - tmp1763 = __ralloc.v0[147]::Taylor1{_S} - tmp1764 = __ralloc.v0[148]::Taylor1{_S} - tmp1766 = __ralloc.v0[149]::Taylor1{_S} - tmp1767 = __ralloc.v0[150]::Taylor1{_S} - tmp1768 = __ralloc.v0[151]::Taylor1{_S} - tmp1769 = __ralloc.v0[152]::Taylor1{_S} - tmp1771 = __ralloc.v0[153]::Taylor1{_S} - tmp1772 = __ralloc.v0[154]::Taylor1{_S} - tmp1773 = __ralloc.v0[155]::Taylor1{_S} - tmp1774 = __ralloc.v0[156]::Taylor1{_S} - tmp1776 = __ralloc.v0[157]::Taylor1{_S} - tmp1777 = __ralloc.v0[158]::Taylor1{_S} - tmp1778 = __ralloc.v0[159]::Taylor1{_S} - tmp1779 = __ralloc.v0[160]::Taylor1{_S} - tmp1781 = __ralloc.v0[161]::Taylor1{_S} - tmp1782 = __ralloc.v0[162]::Taylor1{_S} - tmp1783 = __ralloc.v0[163]::Taylor1{_S} - tmp1784 = __ralloc.v0[164]::Taylor1{_S} - tmp1786 = __ralloc.v0[165]::Taylor1{_S} - tmp1787 = __ralloc.v0[166]::Taylor1{_S} - tmp1788 = __ralloc.v0[167]::Taylor1{_S} - tmp1789 = __ralloc.v0[168]::Taylor1{_S} - tmp1791 = __ralloc.v0[169]::Taylor1{_S} - tmp1792 = __ralloc.v0[170]::Taylor1{_S} - tmp1794 = __ralloc.v0[171]::Taylor1{_S} - tmp1795 = __ralloc.v0[172]::Taylor1{_S} - tmp1797 = __ralloc.v0[173]::Taylor1{_S} - tmp1798 = __ralloc.v0[174]::Taylor1{_S} - tmp1800 = __ralloc.v0[175]::Taylor1{_S} - tmp1801 = __ralloc.v0[176]::Taylor1{_S} - tmp1803 = __ralloc.v0[177]::Taylor1{_S} - tmp1804 = __ralloc.v0[178]::Taylor1{_S} - tmp1806 = __ralloc.v0[179]::Taylor1{_S} - tmp1807 = __ralloc.v0[180]::Taylor1{_S} - tmp1809 = __ralloc.v0[181]::Taylor1{_S} - tmp1810 = __ralloc.v0[182]::Taylor1{_S} - tmp1812 = __ralloc.v0[183]::Taylor1{_S} - tmp1813 = __ralloc.v0[184]::Taylor1{_S} - tmp1815 = __ralloc.v0[185]::Taylor1{_S} - tmp1816 = __ralloc.v0[186]::Taylor1{_S} - tmp1818 = __ralloc.v0[187]::Taylor1{_S} - tmp1819 = __ralloc.v0[188]::Taylor1{_S} - tmp1821 = __ralloc.v0[189]::Taylor1{_S} - tmp1822 = __ralloc.v0[190]::Taylor1{_S} - tmp1824 = __ralloc.v0[191]::Taylor1{_S} - tmp1825 = __ralloc.v0[192]::Taylor1{_S} - tmp1829 = __ralloc.v0[193]::Taylor1{_S} - tmp1830 = __ralloc.v0[194]::Taylor1{_S} - tmp1835 = __ralloc.v0[195]::Taylor1{_S} - tmp1837 = __ralloc.v0[196]::Taylor1{_S} - tmp1838 = __ralloc.v0[197]::Taylor1{_S} - tmp1839 = __ralloc.v0[198]::Taylor1{_S} - tmp1840 = __ralloc.v0[199]::Taylor1{_S} - tmp1842 = __ralloc.v0[200]::Taylor1{_S} - tmp1843 = __ralloc.v0[201]::Taylor1{_S} - tmp1845 = __ralloc.v0[202]::Taylor1{_S} - tmp1846 = __ralloc.v0[203]::Taylor1{_S} - tmp1847 = __ralloc.v0[204]::Taylor1{_S} - tmp1848 = __ralloc.v0[205]::Taylor1{_S} - tmp1850 = __ralloc.v0[206]::Taylor1{_S} - tmp1851 = __ralloc.v0[207]::Taylor1{_S} - tmp1853 = __ralloc.v0[208]::Taylor1{_S} - tmp1854 = __ralloc.v0[209]::Taylor1{_S} - tmp1855 = __ralloc.v0[210]::Taylor1{_S} - tmp1856 = __ralloc.v0[211]::Taylor1{_S} - tmp1858 = __ralloc.v0[212]::Taylor1{_S} - tmp1859 = __ralloc.v0[213]::Taylor1{_S} - tmp1861 = __ralloc.v0[214]::Taylor1{_S} - tmp1862 = __ralloc.v0[215]::Taylor1{_S} - tmp1863 = __ralloc.v0[216]::Taylor1{_S} - tmp1864 = __ralloc.v0[217]::Taylor1{_S} - tmp1866 = __ralloc.v0[218]::Taylor1{_S} - tmp1867 = __ralloc.v0[219]::Taylor1{_S} - tmp1868 = __ralloc.v0[220]::Taylor1{_S} - tmp1869 = __ralloc.v0[221]::Taylor1{_S} - tmp1871 = __ralloc.v0[222]::Taylor1{_S} - tmp1872 = __ralloc.v0[223]::Taylor1{_S} - tmp1873 = __ralloc.v0[224]::Taylor1{_S} - tmp1874 = __ralloc.v0[225]::Taylor1{_S} - tmp1876 = __ralloc.v0[226]::Taylor1{_S} - tmp1877 = __ralloc.v0[227]::Taylor1{_S} - tmp1878 = __ralloc.v0[228]::Taylor1{_S} - tmp1879 = __ralloc.v0[229]::Taylor1{_S} - tmp1881 = __ralloc.v0[230]::Taylor1{_S} - tmp1882 = __ralloc.v0[231]::Taylor1{_S} - tmp1883 = __ralloc.v0[232]::Taylor1{_S} - tmp1884 = __ralloc.v0[233]::Taylor1{_S} - tmp1886 = __ralloc.v0[234]::Taylor1{_S} - tmp1888 = __ralloc.v0[235]::Taylor1{_S} - tmp1889 = __ralloc.v0[236]::Taylor1{_S} - tmp1890 = __ralloc.v0[237]::Taylor1{_S} - tmp1892 = __ralloc.v0[238]::Taylor1{_S} - tmp1893 = __ralloc.v0[239]::Taylor1{_S} - tmp1894 = __ralloc.v0[240]::Taylor1{_S} - tmp1896 = __ralloc.v0[241]::Taylor1{_S} - tmp1897 = __ralloc.v0[242]::Taylor1{_S} - tmp1898 = __ralloc.v0[243]::Taylor1{_S} - tmp1903 = __ralloc.v0[244]::Taylor1{_S} - tmp1904 = __ralloc.v0[245]::Taylor1{_S} - tmp1906 = __ralloc.v0[246]::Taylor1{_S} - tmp1907 = __ralloc.v0[247]::Taylor1{_S} - tmp1909 = __ralloc.v0[248]::Taylor1{_S} - tmp1910 = __ralloc.v0[249]::Taylor1{_S} - tmp1915 = __ralloc.v0[250]::Taylor1{_S} - tmp1916 = __ralloc.v0[251]::Taylor1{_S} - tmp1917 = __ralloc.v0[252]::Taylor1{_S} - tmp1918 = __ralloc.v0[253]::Taylor1{_S} - tmp1919 = __ralloc.v0[254]::Taylor1{_S} - tmp1920 = __ralloc.v0[255]::Taylor1{_S} - tmp1922 = __ralloc.v0[256]::Taylor1{_S} - tmp1923 = __ralloc.v0[257]::Taylor1{_S} - tmp1924 = __ralloc.v0[258]::Taylor1{_S} - tmp1925 = __ralloc.v0[259]::Taylor1{_S} - tmp1927 = __ralloc.v0[260]::Taylor1{_S} - tmp1928 = __ralloc.v0[261]::Taylor1{_S} - tmp1930 = __ralloc.v0[262]::Taylor1{_S} - tmp1931 = __ralloc.v0[263]::Taylor1{_S} - tmp1932 = __ralloc.v0[264]::Taylor1{_S} - tmp1933 = __ralloc.v0[265]::Taylor1{_S} - tmp1935 = __ralloc.v0[266]::Taylor1{_S} - tmp1936 = __ralloc.v0[267]::Taylor1{_S} - tmp1937 = __ralloc.v0[268]::Taylor1{_S} - tmp1938 = __ralloc.v0[269]::Taylor1{_S} - tmp1940 = __ralloc.v0[270]::Taylor1{_S} - tmp1941 = __ralloc.v0[271]::Taylor1{_S} - tmp1942 = __ralloc.v0[272]::Taylor1{_S} - tmp1943 = __ralloc.v0[273]::Taylor1{_S} - tmp1945 = __ralloc.v0[274]::Taylor1{_S} - tmp1946 = __ralloc.v0[275]::Taylor1{_S} - tmp1948 = __ralloc.v0[276]::Taylor1{_S} - tmp1949 = __ralloc.v0[277]::Taylor1{_S} - ϕ_m = __ralloc.v0[278]::Taylor1{_S} - θ_m = __ralloc.v0[279]::Taylor1{_S} - ψ_m = __ralloc.v0[280]::Taylor1{_S} - tmp1954 = __ralloc.v0[281]::Taylor1{_S} - tmp1955 = __ralloc.v0[282]::Taylor1{_S} - tmp1956 = __ralloc.v0[283]::Taylor1{_S} - tmp1957 = __ralloc.v0[284]::Taylor1{_S} - tmp1958 = __ralloc.v0[285]::Taylor1{_S} - tmp1959 = __ralloc.v0[286]::Taylor1{_S} - tmp1960 = __ralloc.v0[287]::Taylor1{_S} - tmp1961 = __ralloc.v0[288]::Taylor1{_S} - tmp1962 = __ralloc.v0[289]::Taylor1{_S} - tmp1963 = __ralloc.v0[290]::Taylor1{_S} - tmp1964 = __ralloc.v0[291]::Taylor1{_S} - tmp1965 = __ralloc.v0[292]::Taylor1{_S} - tmp1966 = __ralloc.v0[293]::Taylor1{_S} - tmp1967 = __ralloc.v0[294]::Taylor1{_S} - tmp1968 = __ralloc.v0[295]::Taylor1{_S} - tmp1969 = __ralloc.v0[296]::Taylor1{_S} - tmp1970 = __ralloc.v0[297]::Taylor1{_S} - tmp1971 = __ralloc.v0[298]::Taylor1{_S} - tmp1972 = __ralloc.v0[299]::Taylor1{_S} - tmp1973 = __ralloc.v0[300]::Taylor1{_S} - tmp1974 = __ralloc.v0[301]::Taylor1{_S} - tmp1975 = __ralloc.v0[302]::Taylor1{_S} - tmp1976 = __ralloc.v0[303]::Taylor1{_S} - tmp1977 = __ralloc.v0[304]::Taylor1{_S} - tmp1978 = __ralloc.v0[305]::Taylor1{_S} - tmp1979 = __ralloc.v0[306]::Taylor1{_S} - tmp1980 = __ralloc.v0[307]::Taylor1{_S} - tmp1981 = __ralloc.v0[308]::Taylor1{_S} - tmp1982 = __ralloc.v0[309]::Taylor1{_S} - ϕ_c = __ralloc.v0[310]::Taylor1{_S} - tmp1983 = __ralloc.v0[311]::Taylor1{_S} - tmp1984 = __ralloc.v0[312]::Taylor1{_S} - tmp1985 = __ralloc.v0[313]::Taylor1{_S} - tmp1986 = __ralloc.v0[314]::Taylor1{_S} - tmp1987 = __ralloc.v0[315]::Taylor1{_S} - tmp1988 = __ralloc.v0[316]::Taylor1{_S} - tmp1989 = __ralloc.v0[317]::Taylor1{_S} - tmp1990 = __ralloc.v0[318]::Taylor1{_S} - tmp1991 = __ralloc.v0[319]::Taylor1{_S} - tmp1992 = __ralloc.v0[320]::Taylor1{_S} - tmp1993 = __ralloc.v0[321]::Taylor1{_S} - tmp1994 = __ralloc.v0[322]::Taylor1{_S} - ω_c_CE_1 = __ralloc.v0[323]::Taylor1{_S} - ω_c_CE_2 = __ralloc.v0[324]::Taylor1{_S} - ω_c_CE_3 = __ralloc.v0[325]::Taylor1{_S} - J2M_t = __ralloc.v0[326]::Taylor1{_S} - C22M_t = __ralloc.v0[327]::Taylor1{_S} - C21M_t = __ralloc.v0[328]::Taylor1{_S} - S21M_t = __ralloc.v0[329]::Taylor1{_S} - S22M_t = __ralloc.v0[330]::Taylor1{_S} - Iω_x = __ralloc.v0[331]::Taylor1{_S} - Iω_y = __ralloc.v0[332]::Taylor1{_S} - Iω_z = __ralloc.v0[333]::Taylor1{_S} - ωxIω_x = __ralloc.v0[334]::Taylor1{_S} - ωxIω_y = __ralloc.v0[335]::Taylor1{_S} - ωxIω_z = __ralloc.v0[336]::Taylor1{_S} - dIω_x = __ralloc.v0[337]::Taylor1{_S} - dIω_y = __ralloc.v0[338]::Taylor1{_S} - dIω_z = __ralloc.v0[339]::Taylor1{_S} - er_EM_I_1 = __ralloc.v0[340]::Taylor1{_S} - er_EM_I_2 = __ralloc.v0[341]::Taylor1{_S} - er_EM_I_3 = __ralloc.v0[342]::Taylor1{_S} - p_E_I_1 = __ralloc.v0[343]::Taylor1{_S} - p_E_I_2 = __ralloc.v0[344]::Taylor1{_S} - p_E_I_3 = __ralloc.v0[345]::Taylor1{_S} - er_EM_1 = __ralloc.v0[346]::Taylor1{_S} - er_EM_2 = __ralloc.v0[347]::Taylor1{_S} - er_EM_3 = __ralloc.v0[348]::Taylor1{_S} - p_E_1 = __ralloc.v0[349]::Taylor1{_S} - p_E_2 = __ralloc.v0[350]::Taylor1{_S} - p_E_3 = __ralloc.v0[351]::Taylor1{_S} - I_er_EM_1 = __ralloc.v0[352]::Taylor1{_S} - I_er_EM_2 = __ralloc.v0[353]::Taylor1{_S} - I_er_EM_3 = __ralloc.v0[354]::Taylor1{_S} - I_p_E_1 = __ralloc.v0[355]::Taylor1{_S} - I_p_E_2 = __ralloc.v0[356]::Taylor1{_S} - I_p_E_3 = __ralloc.v0[357]::Taylor1{_S} - er_EM_cross_I_er_EM_1 = __ralloc.v0[358]::Taylor1{_S} - er_EM_cross_I_er_EM_2 = __ralloc.v0[359]::Taylor1{_S} - er_EM_cross_I_er_EM_3 = __ralloc.v0[360]::Taylor1{_S} - er_EM_cross_I_p_E_1 = __ralloc.v0[361]::Taylor1{_S} - er_EM_cross_I_p_E_2 = __ralloc.v0[362]::Taylor1{_S} - er_EM_cross_I_p_E_3 = __ralloc.v0[363]::Taylor1{_S} - p_E_cross_I_er_EM_1 = __ralloc.v0[364]::Taylor1{_S} - p_E_cross_I_er_EM_2 = __ralloc.v0[365]::Taylor1{_S} - p_E_cross_I_er_EM_3 = __ralloc.v0[366]::Taylor1{_S} - p_E_cross_I_p_E_1 = __ralloc.v0[367]::Taylor1{_S} - p_E_cross_I_p_E_2 = __ralloc.v0[368]::Taylor1{_S} - p_E_cross_I_p_E_3 = __ralloc.v0[369]::Taylor1{_S} - one_minus_7sin2ϕEM = __ralloc.v0[370]::Taylor1{_S} - two_sinϕEM = __ralloc.v0[371]::Taylor1{_S} - N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[372]::Taylor1{_S} - N_MfigM_figE_1 = __ralloc.v0[373]::Taylor1{_S} - N_MfigM_figE_2 = __ralloc.v0[374]::Taylor1{_S} - N_MfigM_figE_3 = __ralloc.v0[375]::Taylor1{_S} - N_1_LMF = __ralloc.v0[376]::Taylor1{_S} - N_2_LMF = __ralloc.v0[377]::Taylor1{_S} - N_3_LMF = __ralloc.v0[378]::Taylor1{_S} - N_cmb_1 = __ralloc.v0[379]::Taylor1{_S} - N_cmb_2 = __ralloc.v0[380]::Taylor1{_S} - N_cmb_3 = __ralloc.v0[381]::Taylor1{_S} - I_dω_1 = __ralloc.v0[382]::Taylor1{_S} - I_dω_2 = __ralloc.v0[383]::Taylor1{_S} - I_dω_3 = __ralloc.v0[384]::Taylor1{_S} - Ic_ωc_1 = __ralloc.v0[385]::Taylor1{_S} - Ic_ωc_2 = __ralloc.v0[386]::Taylor1{_S} - Ic_ωc_3 = __ralloc.v0[387]::Taylor1{_S} - m_ωm_x_Icωc_1 = __ralloc.v0[388]::Taylor1{_S} - m_ωm_x_Icωc_2 = __ralloc.v0[389]::Taylor1{_S} - m_ωm_x_Icωc_3 = __ralloc.v0[390]::Taylor1{_S} - Ic_dωc_1 = __ralloc.v0[391]::Taylor1{_S} - Ic_dωc_2 = __ralloc.v0[392]::Taylor1{_S} - Ic_dωc_3 = __ralloc.v0[393]::Taylor1{_S} - tmp1995 = __ralloc.v0[394]::Taylor1{_S} - tmp1996 = __ralloc.v0[395]::Taylor1{_S} - tmp1997 = __ralloc.v0[396]::Taylor1{_S} - tmp1998 = __ralloc.v0[397]::Taylor1{_S} - tmp1999 = __ralloc.v0[398]::Taylor1{_S} - tmp2000 = __ralloc.v0[399]::Taylor1{_S} - tmp2001 = __ralloc.v0[400]::Taylor1{_S} - tmp2002 = __ralloc.v0[401]::Taylor1{_S} - newtonX = __ralloc.v1[1]::Vector{Taylor1{_S}} - newtonY = __ralloc.v1[2]::Vector{Taylor1{_S}} - newtonZ = __ralloc.v1[3]::Vector{Taylor1{_S}} - newtonianNb_Potential = __ralloc.v1[4]::Vector{Taylor1{_S}} - v2 = __ralloc.v1[5]::Vector{Taylor1{_S}} - pntempX = __ralloc.v1[6]::Vector{Taylor1{_S}} - pntempY = __ralloc.v1[7]::Vector{Taylor1{_S}} - pntempZ = __ralloc.v1[8]::Vector{Taylor1{_S}} - postNewtonX = __ralloc.v1[9]::Vector{Taylor1{_S}} - postNewtonY = __ralloc.v1[10]::Vector{Taylor1{_S}} - postNewtonZ = __ralloc.v1[11]::Vector{Taylor1{_S}} - accX = __ralloc.v1[12]::Vector{Taylor1{_S}} - accY = __ralloc.v1[13]::Vector{Taylor1{_S}} - accZ = __ralloc.v1[14]::Vector{Taylor1{_S}} - N_MfigM_pmA_x = __ralloc.v1[15]::Vector{Taylor1{_S}} - N_MfigM_pmA_y = __ralloc.v1[16]::Vector{Taylor1{_S}} - N_MfigM_pmA_z = __ralloc.v1[17]::Vector{Taylor1{_S}} - temp_N_M_x = __ralloc.v1[18]::Vector{Taylor1{_S}} - temp_N_M_y = __ralloc.v1[19]::Vector{Taylor1{_S}} - temp_N_M_z = __ralloc.v1[20]::Vector{Taylor1{_S}} - N_MfigM = __ralloc.v1[21]::Vector{Taylor1{_S}} - J2_t = __ralloc.v1[22]::Vector{Taylor1{_S}} - tmp1326 = __ralloc.v1[23]::Vector{Taylor1{_S}} - tmp1328 = __ralloc.v1[24]::Vector{Taylor1{_S}} - tmp1331 = __ralloc.v1[25]::Vector{Taylor1{_S}} - tmp1333 = __ralloc.v1[26]::Vector{Taylor1{_S}} - tmp1336 = __ralloc.v1[27]::Vector{Taylor1{_S}} - tmp1338 = __ralloc.v1[28]::Vector{Taylor1{_S}} - tmp1382 = __ralloc.v1[29]::Vector{Taylor1{_S}} - tmp1384 = __ralloc.v1[30]::Vector{Taylor1{_S}} - tmp1385 = __ralloc.v1[31]::Vector{Taylor1{_S}} - tmp1387 = __ralloc.v1[32]::Vector{Taylor1{_S}} - tmp1632 = __ralloc.v1[33]::Vector{Taylor1{_S}} - tmp1634 = __ralloc.v1[34]::Vector{Taylor1{_S}} - tmp1636 = __ralloc.v1[35]::Vector{Taylor1{_S}} - X = __ralloc.v2[1]::Array{Taylor1{_S}, 2} - Y = __ralloc.v2[2]::Array{Taylor1{_S}, 2} - Z = __ralloc.v2[3]::Array{Taylor1{_S}, 2} - r_p2 = __ralloc.v2[4]::Array{Taylor1{_S}, 2} - r_p1d2 = __ralloc.v2[5]::Array{Taylor1{_S}, 2} - r_p3d2 = __ralloc.v2[6]::Array{Taylor1{_S}, 2} - r_p7d2 = __ralloc.v2[7]::Array{Taylor1{_S}, 2} - newtonianCoeff = __ralloc.v2[8]::Array{Taylor1{_S}, 2} - U = __ralloc.v2[9]::Array{Taylor1{_S}, 2} - V = __ralloc.v2[10]::Array{Taylor1{_S}, 2} - W = __ralloc.v2[11]::Array{Taylor1{_S}, 2} - _4U_m_3X = __ralloc.v2[12]::Array{Taylor1{_S}, 2} - _4V_m_3Y = __ralloc.v2[13]::Array{Taylor1{_S}, 2} - _4W_m_3Z = __ralloc.v2[14]::Array{Taylor1{_S}, 2} - UU = __ralloc.v2[15]::Array{Taylor1{_S}, 2} - VV = __ralloc.v2[16]::Array{Taylor1{_S}, 2} - WW = __ralloc.v2[17]::Array{Taylor1{_S}, 2} - newtonian1b_Potential = __ralloc.v2[18]::Array{Taylor1{_S}, 2} - newton_acc_X = __ralloc.v2[19]::Array{Taylor1{_S}, 2} - newton_acc_Y = __ralloc.v2[20]::Array{Taylor1{_S}, 2} - newton_acc_Z = __ralloc.v2[21]::Array{Taylor1{_S}, 2} - _2v2 = __ralloc.v2[22]::Array{Taylor1{_S}, 2} - vi_dot_vj = __ralloc.v2[23]::Array{Taylor1{_S}, 2} - pn2 = __ralloc.v2[24]::Array{Taylor1{_S}, 2} - U_t_pn2 = __ralloc.v2[25]::Array{Taylor1{_S}, 2} - V_t_pn2 = __ralloc.v2[26]::Array{Taylor1{_S}, 2} - W_t_pn2 = __ralloc.v2[27]::Array{Taylor1{_S}, 2} - pn3 = __ralloc.v2[28]::Array{Taylor1{_S}, 2} - pNX_t_pn3 = __ralloc.v2[29]::Array{Taylor1{_S}, 2} - pNY_t_pn3 = __ralloc.v2[30]::Array{Taylor1{_S}, 2} - pNZ_t_pn3 = __ralloc.v2[31]::Array{Taylor1{_S}, 2} - _4ϕj = __ralloc.v2[32]::Array{Taylor1{_S}, 2} - ϕi_plus_4ϕj = __ralloc.v2[33]::Array{Taylor1{_S}, 2} - sj2_plus_2si2 = __ralloc.v2[34]::Array{Taylor1{_S}, 2} - sj2_plus_2si2_minus_4vivj = __ralloc.v2[35]::Array{Taylor1{_S}, 2} - ϕs_and_vs = __ralloc.v2[36]::Array{Taylor1{_S}, 2} - pn1t1_7 = __ralloc.v2[37]::Array{Taylor1{_S}, 2} - pNX_t_X = __ralloc.v2[38]::Array{Taylor1{_S}, 2} - pNY_t_Y = __ralloc.v2[39]::Array{Taylor1{_S}, 2} - pNZ_t_Z = __ralloc.v2[40]::Array{Taylor1{_S}, 2} - pn1 = __ralloc.v2[41]::Array{Taylor1{_S}, 2} - X_t_pn1 = __ralloc.v2[42]::Array{Taylor1{_S}, 2} - Y_t_pn1 = __ralloc.v2[43]::Array{Taylor1{_S}, 2} - Z_t_pn1 = __ralloc.v2[44]::Array{Taylor1{_S}, 2} - X_bf_1 = __ralloc.v2[45]::Array{Taylor1{_S}, 2} - Y_bf_1 = __ralloc.v2[46]::Array{Taylor1{_S}, 2} - Z_bf_1 = __ralloc.v2[47]::Array{Taylor1{_S}, 2} - X_bf_2 = __ralloc.v2[48]::Array{Taylor1{_S}, 2} - Y_bf_2 = __ralloc.v2[49]::Array{Taylor1{_S}, 2} - Z_bf_2 = __ralloc.v2[50]::Array{Taylor1{_S}, 2} - X_bf_3 = __ralloc.v2[51]::Array{Taylor1{_S}, 2} - Y_bf_3 = __ralloc.v2[52]::Array{Taylor1{_S}, 2} - Z_bf_3 = __ralloc.v2[53]::Array{Taylor1{_S}, 2} - X_bf = __ralloc.v2[54]::Array{Taylor1{_S}, 2} - Y_bf = __ralloc.v2[55]::Array{Taylor1{_S}, 2} - Z_bf = __ralloc.v2[56]::Array{Taylor1{_S}, 2} - F_JCS_x = __ralloc.v2[57]::Array{Taylor1{_S}, 2} - F_JCS_y = __ralloc.v2[58]::Array{Taylor1{_S}, 2} - F_JCS_z = __ralloc.v2[59]::Array{Taylor1{_S}, 2} - temp_accX_j = __ralloc.v2[60]::Array{Taylor1{_S}, 2} - temp_accY_j = __ralloc.v2[61]::Array{Taylor1{_S}, 2} - temp_accZ_j = __ralloc.v2[62]::Array{Taylor1{_S}, 2} - temp_accX_i = __ralloc.v2[63]::Array{Taylor1{_S}, 2} - temp_accY_i = __ralloc.v2[64]::Array{Taylor1{_S}, 2} - temp_accZ_i = __ralloc.v2[65]::Array{Taylor1{_S}, 2} - sin_ϕ = __ralloc.v2[66]::Array{Taylor1{_S}, 2} - cos_ϕ = __ralloc.v2[67]::Array{Taylor1{_S}, 2} - sin_λ = __ralloc.v2[68]::Array{Taylor1{_S}, 2} - cos_λ = __ralloc.v2[69]::Array{Taylor1{_S}, 2} - r_xy = __ralloc.v2[70]::Array{Taylor1{_S}, 2} - r_p4 = __ralloc.v2[71]::Array{Taylor1{_S}, 2} - F_CS_ξ_36 = __ralloc.v2[72]::Array{Taylor1{_S}, 2} - F_CS_η_36 = __ralloc.v2[73]::Array{Taylor1{_S}, 2} - F_CS_ζ_36 = __ralloc.v2[74]::Array{Taylor1{_S}, 2} - F_J_ξ_36 = __ralloc.v2[75]::Array{Taylor1{_S}, 2} - F_J_ζ_36 = __ralloc.v2[76]::Array{Taylor1{_S}, 2} - F_J_ξ = __ralloc.v2[77]::Array{Taylor1{_S}, 2} - F_J_ζ = __ralloc.v2[78]::Array{Taylor1{_S}, 2} - F_CS_ξ = __ralloc.v2[79]::Array{Taylor1{_S}, 2} - F_CS_η = __ralloc.v2[80]::Array{Taylor1{_S}, 2} - F_CS_ζ = __ralloc.v2[81]::Array{Taylor1{_S}, 2} - F_JCS_ξ = __ralloc.v2[82]::Array{Taylor1{_S}, 2} - F_JCS_η = __ralloc.v2[83]::Array{Taylor1{_S}, 2} - F_JCS_ζ = __ralloc.v2[84]::Array{Taylor1{_S}, 2} - mantlef2coref = __ralloc.v2[85]::Array{Taylor1{_S}, 2} - pn2x = __ralloc.v2[86]::Array{Taylor1{_S}, 2} - pn2y = __ralloc.v2[87]::Array{Taylor1{_S}, 2} - pn2z = __ralloc.v2[88]::Array{Taylor1{_S}, 2} - tmp1346 = __ralloc.v2[89]::Array{Taylor1{_S}, 2} - tmp1349 = __ralloc.v2[90]::Array{Taylor1{_S}, 2} - tmp1351 = __ralloc.v2[91]::Array{Taylor1{_S}, 2} - tmp1352 = __ralloc.v2[92]::Array{Taylor1{_S}, 2} - tmp1354 = __ralloc.v2[93]::Array{Taylor1{_S}, 2} - tmp1362 = __ralloc.v2[94]::Array{Taylor1{_S}, 2} - tmp1363 = __ralloc.v2[95]::Array{Taylor1{_S}, 2} - tmp1374 = __ralloc.v2[96]::Array{Taylor1{_S}, 2} - temp_001 = __ralloc.v2[97]::Array{Taylor1{_S}, 2} - tmp1376 = __ralloc.v2[98]::Array{Taylor1{_S}, 2} - temp_002 = __ralloc.v2[99]::Array{Taylor1{_S}, 2} - tmp1378 = __ralloc.v2[100]::Array{Taylor1{_S}, 2} - temp_003 = __ralloc.v2[101]::Array{Taylor1{_S}, 2} - temp_004 = __ralloc.v2[102]::Array{Taylor1{_S}, 2} - tmp1415 = __ralloc.v2[103]::Array{Taylor1{_S}, 2} - tmp1417 = __ralloc.v2[104]::Array{Taylor1{_S}, 2} - tmp1419 = __ralloc.v2[105]::Array{Taylor1{_S}, 2} - tmp1423 = __ralloc.v2[106]::Array{Taylor1{_S}, 2} - tmp1425 = __ralloc.v2[107]::Array{Taylor1{_S}, 2} - tmp1426 = __ralloc.v2[108]::Array{Taylor1{_S}, 2} - tmp1532 = __ralloc.v2[109]::Array{Taylor1{_S}, 2} - tmp1533 = __ralloc.v2[110]::Array{Taylor1{_S}, 2} - tmp1536 = __ralloc.v2[111]::Array{Taylor1{_S}, 2} - tmp1537 = __ralloc.v2[112]::Array{Taylor1{_S}, 2} - tmp1543 = __ralloc.v2[113]::Array{Taylor1{_S}, 2} - tmp1546 = __ralloc.v2[114]::Array{Taylor1{_S}, 2} - tmp1608 = __ralloc.v2[115]::Array{Taylor1{_S}, 2} - tmp1610 = __ralloc.v2[116]::Array{Taylor1{_S}, 2} - tmp1612 = __ralloc.v2[117]::Array{Taylor1{_S}, 2} - tmp1614 = __ralloc.v2[118]::Array{Taylor1{_S}, 2} - tmp1616 = __ralloc.v2[119]::Array{Taylor1{_S}, 2} - tmp1618 = __ralloc.v2[120]::Array{Taylor1{_S}, 2} - tmp1620 = __ralloc.v2[121]::Array{Taylor1{_S}, 2} - tmp1621 = __ralloc.v2[122]::Array{Taylor1{_S}, 2} - tmp1622 = __ralloc.v2[123]::Array{Taylor1{_S}, 2} - tmp1624 = __ralloc.v2[124]::Array{Taylor1{_S}, 2} - tmp1625 = __ralloc.v2[125]::Array{Taylor1{_S}, 2} - tmp1626 = __ralloc.v2[126]::Array{Taylor1{_S}, 2} - tmp1628 = __ralloc.v2[127]::Array{Taylor1{_S}, 2} - tmp1629 = __ralloc.v2[128]::Array{Taylor1{_S}, 2} - tmp1630 = __ralloc.v2[129]::Array{Taylor1{_S}, 2} - tmp1645 = __ralloc.v2[130]::Array{Taylor1{_S}, 2} - Xij_t_Ui = __ralloc.v2[131]::Array{Taylor1{_S}, 2} - Yij_t_Vi = __ralloc.v2[132]::Array{Taylor1{_S}, 2} - Zij_t_Wi = __ralloc.v2[133]::Array{Taylor1{_S}, 2} - tmp1651 = __ralloc.v2[134]::Array{Taylor1{_S}, 2} - Rij_dot_Vi = __ralloc.v2[135]::Array{Taylor1{_S}, 2} - tmp1654 = __ralloc.v2[136]::Array{Taylor1{_S}, 2} - pn1t7 = __ralloc.v2[137]::Array{Taylor1{_S}, 2} - tmp1657 = __ralloc.v2[138]::Array{Taylor1{_S}, 2} - pn1t2_7 = __ralloc.v2[139]::Array{Taylor1{_S}, 2} - tmp1664 = __ralloc.v2[140]::Array{Taylor1{_S}, 2} - tmp1665 = __ralloc.v2[141]::Array{Taylor1{_S}, 2} - tmp1666 = __ralloc.v2[142]::Array{Taylor1{_S}, 2} - tmp1674 = __ralloc.v2[143]::Array{Taylor1{_S}, 2} - termpnx = __ralloc.v2[144]::Array{Taylor1{_S}, 2} - sumpnx = __ralloc.v2[145]::Array{Taylor1{_S}, 2} - tmp1677 = __ralloc.v2[146]::Array{Taylor1{_S}, 2} - termpny = __ralloc.v2[147]::Array{Taylor1{_S}, 2} - sumpny = __ralloc.v2[148]::Array{Taylor1{_S}, 2} - tmp1680 = __ralloc.v2[149]::Array{Taylor1{_S}, 2} - termpnz = __ralloc.v2[150]::Array{Taylor1{_S}, 2} - sumpnz = __ralloc.v2[151]::Array{Taylor1{_S}, 2} - P_n = __ralloc.v3[1]::Array{Taylor1{_S}, 3} - dP_n = __ralloc.v3[2]::Array{Taylor1{_S}, 3} - temp_fjξ = __ralloc.v3[3]::Array{Taylor1{_S}, 3} - temp_fjζ = __ralloc.v3[4]::Array{Taylor1{_S}, 3} - temp_rn = __ralloc.v3[5]::Array{Taylor1{_S}, 3} - sin_mλ = __ralloc.v3[6]::Array{Taylor1{_S}, 3} - cos_mλ = __ralloc.v3[7]::Array{Taylor1{_S}, 3} - RotM = __ralloc.v3[8]::Array{Taylor1{_S}, 3} - tmp1431 = __ralloc.v3[9]::Array{Taylor1{_S}, 3} - tmp1432 = __ralloc.v3[10]::Array{Taylor1{_S}, 3} - tmp1433 = __ralloc.v3[11]::Array{Taylor1{_S}, 3} - tmp1435 = __ralloc.v3[12]::Array{Taylor1{_S}, 3} - tmp1436 = __ralloc.v3[13]::Array{Taylor1{_S}, 3} - tmp1441 = __ralloc.v3[14]::Array{Taylor1{_S}, 3} - tmp1442 = __ralloc.v3[15]::Array{Taylor1{_S}, 3} - tmp1444 = __ralloc.v3[16]::Array{Taylor1{_S}, 3} - tmp1445 = __ralloc.v3[17]::Array{Taylor1{_S}, 3} - tmp1446 = __ralloc.v3[18]::Array{Taylor1{_S}, 3} - tmp1448 = __ralloc.v3[19]::Array{Taylor1{_S}, 3} - tmp1449 = __ralloc.v3[20]::Array{Taylor1{_S}, 3} - tmp1450 = __ralloc.v3[21]::Array{Taylor1{_S}, 3} - tmp1452 = __ralloc.v3[22]::Array{Taylor1{_S}, 3} - tmp1453 = __ralloc.v3[23]::Array{Taylor1{_S}, 3} - tmp1454 = __ralloc.v3[24]::Array{Taylor1{_S}, 3} - tmp1455 = __ralloc.v3[25]::Array{Taylor1{_S}, 3} - tmp1458 = __ralloc.v3[26]::Array{Taylor1{_S}, 3} - tmp1459 = __ralloc.v3[27]::Array{Taylor1{_S}, 3} - tmp1461 = __ralloc.v3[28]::Array{Taylor1{_S}, 3} - tmp1462 = __ralloc.v3[29]::Array{Taylor1{_S}, 3} - tmp1481 = __ralloc.v3[30]::Array{Taylor1{_S}, 3} - tmp1482 = __ralloc.v3[31]::Array{Taylor1{_S}, 3} - tmp1483 = __ralloc.v3[32]::Array{Taylor1{_S}, 3} - tmp1486 = __ralloc.v3[33]::Array{Taylor1{_S}, 3} - tmp1487 = __ralloc.v3[34]::Array{Taylor1{_S}, 3} - tmp1488 = __ralloc.v3[35]::Array{Taylor1{_S}, 3} - tmp1493 = __ralloc.v3[36]::Array{Taylor1{_S}, 3} - tmp1494 = __ralloc.v3[37]::Array{Taylor1{_S}, 3} - tmp1495 = __ralloc.v3[38]::Array{Taylor1{_S}, 3} - tmp1498 = __ralloc.v3[39]::Array{Taylor1{_S}, 3} - tmp1499 = __ralloc.v3[40]::Array{Taylor1{_S}, 3} - tmp1500 = __ralloc.v3[41]::Array{Taylor1{_S}, 3} - tmp1504 = __ralloc.v3[42]::Array{Taylor1{_S}, 3} - tmp1505 = __ralloc.v3[43]::Array{Taylor1{_S}, 3} - tmp1506 = __ralloc.v3[44]::Array{Taylor1{_S}, 3} - tmp1508 = __ralloc.v3[45]::Array{Taylor1{_S}, 3} - tmp1509 = __ralloc.v3[46]::Array{Taylor1{_S}, 3} - tmp1510 = __ralloc.v3[47]::Array{Taylor1{_S}, 3} - temp_CS_ξ = __ralloc.v4[1]::Array{Taylor1{_S}, 4} - temp_CS_η = __ralloc.v4[2]::Array{Taylor1{_S}, 4} - temp_CS_ζ = __ralloc.v4[3]::Array{Taylor1{_S}, 4} - Cnm_cosmλ = __ralloc.v4[4]::Array{Taylor1{_S}, 4} - Cnm_sinmλ = __ralloc.v4[5]::Array{Taylor1{_S}, 4} - Snm_cosmλ = __ralloc.v4[6]::Array{Taylor1{_S}, 4} - Snm_sinmλ = __ralloc.v4[7]::Array{Taylor1{_S}, 4} - secϕ_P_nm = __ralloc.v4[8]::Array{Taylor1{_S}, 4} - P_nm = __ralloc.v4[9]::Array{Taylor1{_S}, 4} - cosϕ_dP_nm = __ralloc.v4[10]::Array{Taylor1{_S}, 4} - Rb2p = __ralloc.v4[11]::Array{Taylor1{_S}, 4} - Gc2p = __ralloc.v4[12]::Array{Taylor1{_S}, 4} - tmp1464 = __ralloc.v4[13]::Array{Taylor1{_S}, 4} - tmp1467 = __ralloc.v4[14]::Array{Taylor1{_S}, 4} - tmp1469 = __ralloc.v4[15]::Array{Taylor1{_S}, 4} - tmp1471 = __ralloc.v4[16]::Array{Taylor1{_S}, 4} - tmp1472 = __ralloc.v4[17]::Array{Taylor1{_S}, 4} - tmp1473 = __ralloc.v4[18]::Array{Taylor1{_S}, 4} - tmp1476 = __ralloc.v4[19]::Array{Taylor1{_S}, 4} - tmp1477 = __ralloc.v4[20]::Array{Taylor1{_S}, 4} - tmp1478 = __ralloc.v4[21]::Array{Taylor1{_S}, 4} - tmp1480 = __ralloc.v4[22]::Array{Taylor1{_S}, 4} - tmp1484 = __ralloc.v4[23]::Array{Taylor1{_S}, 4} - tmp1485 = __ralloc.v4[24]::Array{Taylor1{_S}, 4} - tmp1489 = __ralloc.v4[25]::Array{Taylor1{_S}, 4} - tmp1490 = __ralloc.v4[26]::Array{Taylor1{_S}, 4} - tmp1492 = __ralloc.v4[27]::Array{Taylor1{_S}, 4} - tmp1496 = __ralloc.v4[28]::Array{Taylor1{_S}, 4} - tmp1497 = __ralloc.v4[29]::Array{Taylor1{_S}, 4} - tmp1501 = __ralloc.v4[30]::Array{Taylor1{_S}, 4} - tmp1502 = __ralloc.v4[31]::Array{Taylor1{_S}, 4} - tmp1507 = __ralloc.v4[32]::Array{Taylor1{_S}, 4} - tmp1511 = __ralloc.v4[33]::Array{Taylor1{_S}, 4} - tmp1512 = __ralloc.v4[34]::Array{Taylor1{_S}, 4} - tmp1518 = __ralloc.v4[35]::Array{Taylor1{_S}, 4} - tmp1519 = __ralloc.v4[36]::Array{Taylor1{_S}, 4} - tmp1520 = __ralloc.v4[37]::Array{Taylor1{_S}, 4} - tmp1521 = __ralloc.v4[38]::Array{Taylor1{_S}, 4} - tmp1523 = __ralloc.v4[39]::Array{Taylor1{_S}, 4} - tmp1524 = __ralloc.v4[40]::Array{Taylor1{_S}, 4} - tmp1525 = __ralloc.v4[41]::Array{Taylor1{_S}, 4} - tmp1526 = __ralloc.v4[42]::Array{Taylor1{_S}, 4} - tmp1528 = __ralloc.v4[43]::Array{Taylor1{_S}, 4} - tmp1529 = __ralloc.v4[44]::Array{Taylor1{_S}, 4} - tmp1530 = __ralloc.v4[45]::Array{Taylor1{_S}, 4} - tmp1548 = __ralloc.v4[46]::Array{Taylor1{_S}, 4} - tmp1549 = __ralloc.v4[47]::Array{Taylor1{_S}, 4} - tmp1550 = __ralloc.v4[48]::Array{Taylor1{_S}, 4} - tmp1551 = __ralloc.v4[49]::Array{Taylor1{_S}, 4} - tmp1553 = __ralloc.v4[50]::Array{Taylor1{_S}, 4} - tmp1554 = __ralloc.v4[51]::Array{Taylor1{_S}, 4} - tmp1555 = __ralloc.v4[52]::Array{Taylor1{_S}, 4} - tmp1556 = __ralloc.v4[53]::Array{Taylor1{_S}, 4} - tmp1558 = __ralloc.v4[54]::Array{Taylor1{_S}, 4} - tmp1559 = __ralloc.v4[55]::Array{Taylor1{_S}, 4} - tmp1560 = __ralloc.v4[56]::Array{Taylor1{_S}, 4} - tmp1561 = __ralloc.v4[57]::Array{Taylor1{_S}, 4} - tmp1563 = __ralloc.v4[58]::Array{Taylor1{_S}, 4} - tmp1564 = __ralloc.v4[59]::Array{Taylor1{_S}, 4} - tmp1565 = __ralloc.v4[60]::Array{Taylor1{_S}, 4} - tmp1566 = __ralloc.v4[61]::Array{Taylor1{_S}, 4} - tmp1568 = __ralloc.v4[62]::Array{Taylor1{_S}, 4} - tmp1569 = __ralloc.v4[63]::Array{Taylor1{_S}, 4} - tmp1570 = __ralloc.v4[64]::Array{Taylor1{_S}, 4} - tmp1571 = __ralloc.v4[65]::Array{Taylor1{_S}, 4} - tmp1573 = __ralloc.v4[66]::Array{Taylor1{_S}, 4} - tmp1574 = __ralloc.v4[67]::Array{Taylor1{_S}, 4} - tmp1575 = __ralloc.v4[68]::Array{Taylor1{_S}, 4} - tmp1576 = __ralloc.v4[69]::Array{Taylor1{_S}, 4} - tmp1578 = __ralloc.v4[70]::Array{Taylor1{_S}, 4} - tmp1579 = __ralloc.v4[71]::Array{Taylor1{_S}, 4} - tmp1580 = __ralloc.v4[72]::Array{Taylor1{_S}, 4} - tmp1581 = __ralloc.v4[73]::Array{Taylor1{_S}, 4} - tmp1583 = __ralloc.v4[74]::Array{Taylor1{_S}, 4} - tmp1584 = __ralloc.v4[75]::Array{Taylor1{_S}, 4} - tmp1585 = __ralloc.v4[76]::Array{Taylor1{_S}, 4} - tmp1586 = __ralloc.v4[77]::Array{Taylor1{_S}, 4} - tmp1588 = __ralloc.v4[78]::Array{Taylor1{_S}, 4} - tmp1589 = __ralloc.v4[79]::Array{Taylor1{_S}, 4} - tmp1590 = __ralloc.v4[80]::Array{Taylor1{_S}, 4} - tmp1591 = __ralloc.v4[81]::Array{Taylor1{_S}, 4} - tmp1593 = __ralloc.v4[82]::Array{Taylor1{_S}, 4} - tmp1594 = __ralloc.v4[83]::Array{Taylor1{_S}, 4} - tmp1595 = __ralloc.v4[84]::Array{Taylor1{_S}, 4} - tmp1596 = __ralloc.v4[85]::Array{Taylor1{_S}, 4} - tmp1598 = __ralloc.v4[86]::Array{Taylor1{_S}, 4} - tmp1599 = __ralloc.v4[87]::Array{Taylor1{_S}, 4} - tmp1600 = __ralloc.v4[88]::Array{Taylor1{_S}, 4} - tmp1601 = __ralloc.v4[89]::Array{Taylor1{_S}, 4} - tmp1603 = __ralloc.v4[90]::Array{Taylor1{_S}, 4} - tmp1604 = __ralloc.v4[91]::Array{Taylor1{_S}, 4} - tmp1605 = __ralloc.v4[92]::Array{Taylor1{_S}, 4} - tmp1606 = __ralloc.v4[93]::Array{Taylor1{_S}, 4} - local (N, jd0) = params - local S = eltype(q) - local zero_q_1 = zero(q[1]) - local one_t = one(t) - local dsj2k = t + (jd0 - J2000) - local I_m_t = (ITM_und - I_c) .* one_t - local dI_m_t = ordpres_differentiate.(I_m_t) - local inv_I_m_t = inv(I_m_t) - local I_c_t = I_c .* one_t - local inv_I_c_t = inv(I_c_t) - local I_M_t = I_m_t + I_c_t - (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) - (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) - (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) - local αs = deg2rad(α_p_sun * one_t) - local δs = deg2rad(δ_p_sun * one_t) - local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) - local RotM[:, :, su] = pole_rotation(αs, δs) - ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) - ϕ_m.coeffs[2:order + 1] .= zero(ϕ_m.coeffs[1]) - θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) - θ_m.coeffs[2:order + 1] .= zero(θ_m.coeffs[1]) - ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) - ψ_m.coeffs[2:order + 1] .= zero(ψ_m.coeffs[1]) - tmp1220.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1220.coeffs[2:order + 1] .= zero(tmp1220.coeffs[1]) - tmp1954.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1954.coeffs[2:order + 1] .= zero(tmp1954.coeffs[1]) - tmp1221.coeffs[1] = cos(constant_term(ψ_m)) - tmp1221.coeffs[2:order + 1] .= zero(tmp1221.coeffs[1]) - tmp1955.coeffs[1] = sin(constant_term(ψ_m)) - tmp1955.coeffs[2:order + 1] .= zero(tmp1955.coeffs[1]) - tmp1222.coeffs[1] = constant_term(tmp1220) * constant_term(tmp1221) - tmp1222.coeffs[2:order + 1] .= zero(tmp1222.coeffs[1]) - tmp1223.coeffs[1] = cos(constant_term(θ_m)) - tmp1223.coeffs[2:order + 1] .= zero(tmp1223.coeffs[1]) - tmp1956.coeffs[1] = sin(constant_term(θ_m)) - tmp1956.coeffs[2:order + 1] .= zero(tmp1956.coeffs[1]) - tmp1224.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1224.coeffs[2:order + 1] .= zero(tmp1224.coeffs[1]) - tmp1957.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1957.coeffs[2:order + 1] .= zero(tmp1957.coeffs[1]) - tmp1225.coeffs[1] = constant_term(tmp1223) * constant_term(tmp1224) - tmp1225.coeffs[2:order + 1] .= zero(tmp1225.coeffs[1]) - tmp1226.coeffs[1] = sin(constant_term(ψ_m)) - tmp1226.coeffs[2:order + 1] .= zero(tmp1226.coeffs[1]) - tmp1958.coeffs[1] = cos(constant_term(ψ_m)) - tmp1958.coeffs[2:order + 1] .= zero(tmp1958.coeffs[1]) - tmp1227.coeffs[1] = constant_term(tmp1225) * constant_term(tmp1226) - tmp1227.coeffs[2:order + 1] .= zero(tmp1227.coeffs[1]) - (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp1222) - constant_term(tmp1227) - (RotM[1, 1, mo]).coeffs[2:order + 1] .= zero((RotM[1, 1, mo]).coeffs[1]) - tmp1229.coeffs[1] = cos(constant_term(θ_m)) - tmp1229.coeffs[2:order + 1] .= zero(tmp1229.coeffs[1]) - tmp1959.coeffs[1] = sin(constant_term(θ_m)) - tmp1959.coeffs[2:order + 1] .= zero(tmp1959.coeffs[1]) - tmp1230.coeffs[1] = -(constant_term(tmp1229)) - tmp1230.coeffs[2:order + 1] .= zero(tmp1230.coeffs[1]) - tmp1231.coeffs[1] = cos(constant_term(ψ_m)) - tmp1231.coeffs[2:order + 1] .= zero(tmp1231.coeffs[1]) - tmp1960.coeffs[1] = sin(constant_term(ψ_m)) - tmp1960.coeffs[2:order + 1] .= zero(tmp1960.coeffs[1]) - tmp1232.coeffs[1] = constant_term(tmp1230) * constant_term(tmp1231) - tmp1232.coeffs[2:order + 1] .= zero(tmp1232.coeffs[1]) - tmp1233.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1233.coeffs[2:order + 1] .= zero(tmp1233.coeffs[1]) - tmp1961.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1961.coeffs[2:order + 1] .= zero(tmp1961.coeffs[1]) - tmp1234.coeffs[1] = constant_term(tmp1232) * constant_term(tmp1233) - tmp1234.coeffs[2:order + 1] .= zero(tmp1234.coeffs[1]) - tmp1235.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1235.coeffs[2:order + 1] .= zero(tmp1235.coeffs[1]) - tmp1962.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1962.coeffs[2:order + 1] .= zero(tmp1962.coeffs[1]) - tmp1236.coeffs[1] = sin(constant_term(ψ_m)) - tmp1236.coeffs[2:order + 1] .= zero(tmp1236.coeffs[1]) - tmp1963.coeffs[1] = cos(constant_term(ψ_m)) - tmp1963.coeffs[2:order + 1] .= zero(tmp1963.coeffs[1]) - tmp1237.coeffs[1] = constant_term(tmp1235) * constant_term(tmp1236) - tmp1237.coeffs[2:order + 1] .= zero(tmp1237.coeffs[1]) - (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp1234) - constant_term(tmp1237) - (RotM[2, 1, mo]).coeffs[2:order + 1] .= zero((RotM[2, 1, mo]).coeffs[1]) - tmp1239.coeffs[1] = sin(constant_term(θ_m)) - tmp1239.coeffs[2:order + 1] .= zero(tmp1239.coeffs[1]) - tmp1964.coeffs[1] = cos(constant_term(θ_m)) - tmp1964.coeffs[2:order + 1] .= zero(tmp1964.coeffs[1]) - tmp1240.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1240.coeffs[2:order + 1] .= zero(tmp1240.coeffs[1]) - tmp1965.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1965.coeffs[2:order + 1] .= zero(tmp1965.coeffs[1]) - (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp1239) * constant_term(tmp1240) - (RotM[3, 1, mo]).coeffs[2:order + 1] .= zero((RotM[3, 1, mo]).coeffs[1]) - tmp1242.coeffs[1] = cos(constant_term(ψ_m)) - tmp1242.coeffs[2:order + 1] .= zero(tmp1242.coeffs[1]) - tmp1966.coeffs[1] = sin(constant_term(ψ_m)) - tmp1966.coeffs[2:order + 1] .= zero(tmp1966.coeffs[1]) - tmp1243.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1243.coeffs[2:order + 1] .= zero(tmp1243.coeffs[1]) - tmp1967.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1967.coeffs[2:order + 1] .= zero(tmp1967.coeffs[1]) - tmp1244.coeffs[1] = constant_term(tmp1242) * constant_term(tmp1243) - tmp1244.coeffs[2:order + 1] .= zero(tmp1244.coeffs[1]) - tmp1245.coeffs[1] = cos(constant_term(θ_m)) - tmp1245.coeffs[2:order + 1] .= zero(tmp1245.coeffs[1]) - tmp1968.coeffs[1] = sin(constant_term(θ_m)) - tmp1968.coeffs[2:order + 1] .= zero(tmp1968.coeffs[1]) - tmp1246.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1246.coeffs[2:order + 1] .= zero(tmp1246.coeffs[1]) - tmp1969.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1969.coeffs[2:order + 1] .= zero(tmp1969.coeffs[1]) - tmp1247.coeffs[1] = constant_term(tmp1245) * constant_term(tmp1246) - tmp1247.coeffs[2:order + 1] .= zero(tmp1247.coeffs[1]) - tmp1248.coeffs[1] = sin(constant_term(ψ_m)) - tmp1248.coeffs[2:order + 1] .= zero(tmp1248.coeffs[1]) - tmp1970.coeffs[1] = cos(constant_term(ψ_m)) - tmp1970.coeffs[2:order + 1] .= zero(tmp1970.coeffs[1]) - tmp1249.coeffs[1] = constant_term(tmp1247) * constant_term(tmp1248) - tmp1249.coeffs[2:order + 1] .= zero(tmp1249.coeffs[1]) - (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp1244) + constant_term(tmp1249) - (RotM[1, 2, mo]).coeffs[2:order + 1] .= zero((RotM[1, 2, mo]).coeffs[1]) - tmp1251.coeffs[1] = cos(constant_term(θ_m)) - tmp1251.coeffs[2:order + 1] .= zero(tmp1251.coeffs[1]) - tmp1971.coeffs[1] = sin(constant_term(θ_m)) - tmp1971.coeffs[2:order + 1] .= zero(tmp1971.coeffs[1]) - tmp1252.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1252.coeffs[2:order + 1] .= zero(tmp1252.coeffs[1]) - tmp1972.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1972.coeffs[2:order + 1] .= zero(tmp1972.coeffs[1]) - tmp1253.coeffs[1] = constant_term(tmp1251) * constant_term(tmp1252) - tmp1253.coeffs[2:order + 1] .= zero(tmp1253.coeffs[1]) - tmp1254.coeffs[1] = cos(constant_term(ψ_m)) - tmp1254.coeffs[2:order + 1] .= zero(tmp1254.coeffs[1]) - tmp1973.coeffs[1] = sin(constant_term(ψ_m)) - tmp1973.coeffs[2:order + 1] .= zero(tmp1973.coeffs[1]) - tmp1255.coeffs[1] = constant_term(tmp1253) * constant_term(tmp1254) - tmp1255.coeffs[2:order + 1] .= zero(tmp1255.coeffs[1]) - tmp1256.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1256.coeffs[2:order + 1] .= zero(tmp1256.coeffs[1]) - tmp1974.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1974.coeffs[2:order + 1] .= zero(tmp1974.coeffs[1]) - tmp1257.coeffs[1] = sin(constant_term(ψ_m)) - tmp1257.coeffs[2:order + 1] .= zero(tmp1257.coeffs[1]) - tmp1975.coeffs[1] = cos(constant_term(ψ_m)) - tmp1975.coeffs[2:order + 1] .= zero(tmp1975.coeffs[1]) - tmp1258.coeffs[1] = constant_term(tmp1256) * constant_term(tmp1257) - tmp1258.coeffs[2:order + 1] .= zero(tmp1258.coeffs[1]) - (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp1255) - constant_term(tmp1258) - (RotM[2, 2, mo]).coeffs[2:order + 1] .= zero((RotM[2, 2, mo]).coeffs[1]) - tmp1260.coeffs[1] = cos(constant_term(ϕ_m)) - tmp1260.coeffs[2:order + 1] .= zero(tmp1260.coeffs[1]) - tmp1976.coeffs[1] = sin(constant_term(ϕ_m)) - tmp1976.coeffs[2:order + 1] .= zero(tmp1976.coeffs[1]) - tmp1261.coeffs[1] = -(constant_term(tmp1260)) - tmp1261.coeffs[2:order + 1] .= zero(tmp1261.coeffs[1]) - tmp1262.coeffs[1] = sin(constant_term(θ_m)) - tmp1262.coeffs[2:order + 1] .= zero(tmp1262.coeffs[1]) - tmp1977.coeffs[1] = cos(constant_term(θ_m)) - tmp1977.coeffs[2:order + 1] .= zero(tmp1977.coeffs[1]) - (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp1261) * constant_term(tmp1262) - (RotM[3, 2, mo]).coeffs[2:order + 1] .= zero((RotM[3, 2, mo]).coeffs[1]) - tmp1264.coeffs[1] = sin(constant_term(θ_m)) - tmp1264.coeffs[2:order + 1] .= zero(tmp1264.coeffs[1]) - tmp1978.coeffs[1] = cos(constant_term(θ_m)) - tmp1978.coeffs[2:order + 1] .= zero(tmp1978.coeffs[1]) - tmp1265.coeffs[1] = sin(constant_term(ψ_m)) - tmp1265.coeffs[2:order + 1] .= zero(tmp1265.coeffs[1]) - tmp1979.coeffs[1] = cos(constant_term(ψ_m)) - tmp1979.coeffs[2:order + 1] .= zero(tmp1979.coeffs[1]) - (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp1264) * constant_term(tmp1265) - (RotM[1, 3, mo]).coeffs[2:order + 1] .= zero((RotM[1, 3, mo]).coeffs[1]) - tmp1267.coeffs[1] = cos(constant_term(ψ_m)) - tmp1267.coeffs[2:order + 1] .= zero(tmp1267.coeffs[1]) - tmp1980.coeffs[1] = sin(constant_term(ψ_m)) - tmp1980.coeffs[2:order + 1] .= zero(tmp1980.coeffs[1]) - tmp1268.coeffs[1] = sin(constant_term(θ_m)) - tmp1268.coeffs[2:order + 1] .= zero(tmp1268.coeffs[1]) - tmp1981.coeffs[1] = cos(constant_term(θ_m)) - tmp1981.coeffs[2:order + 1] .= zero(tmp1981.coeffs[1]) - (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp1267) * constant_term(tmp1268) - (RotM[2, 3, mo]).coeffs[2:order + 1] .= zero((RotM[2, 3, mo]).coeffs[1]) - (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) - (RotM[3, 3, mo]).coeffs[2:order + 1] .= zero((RotM[3, 3, mo]).coeffs[1]) - tmp1982.coeffs[1] = sin(constant_term(θ_m)) - tmp1982.coeffs[2:order + 1] .= zero(tmp1982.coeffs[1]) - ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) - ϕ_c.coeffs[2:order + 1] .= zero(ϕ_c.coeffs[1]) - tmp1271.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1271.coeffs[2:order + 1] .= zero(tmp1271.coeffs[1]) - tmp1983.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1983.coeffs[2:order + 1] .= zero(tmp1983.coeffs[1]) - tmp1272.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp1271) - tmp1272.coeffs[2:order + 1] .= zero(tmp1272.coeffs[1]) - tmp1273.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1273.coeffs[2:order + 1] .= zero(tmp1273.coeffs[1]) - tmp1984.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1984.coeffs[2:order + 1] .= zero(tmp1984.coeffs[1]) - tmp1274.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1273) - tmp1274.coeffs[2:order + 1] .= zero(tmp1274.coeffs[1]) - (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp1272) + constant_term(tmp1274) - (mantlef2coref[1, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 1]).coeffs[1]) - tmp1276.coeffs[1] = -(constant_term(RotM[1, 1, mo])) - tmp1276.coeffs[2:order + 1] .= zero(tmp1276.coeffs[1]) - tmp1277.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1277.coeffs[2:order + 1] .= zero(tmp1277.coeffs[1]) - tmp1985.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1985.coeffs[2:order + 1] .= zero(tmp1985.coeffs[1]) - tmp1278.coeffs[1] = constant_term(tmp1276) * constant_term(tmp1277) - tmp1278.coeffs[2:order + 1] .= zero(tmp1278.coeffs[1]) - tmp1279.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1279.coeffs[2:order + 1] .= zero(tmp1279.coeffs[1]) - tmp1986.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1986.coeffs[2:order + 1] .= zero(tmp1986.coeffs[1]) - tmp1280.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1279) - tmp1280.coeffs[2:order + 1] .= zero(tmp1280.coeffs[1]) - (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp1278) + constant_term(tmp1280) - (mantlef2coref[2, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 1]).coeffs[1]) - (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) - (mantlef2coref[3, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 1]).coeffs[1]) - tmp1282.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1282.coeffs[2:order + 1] .= zero(tmp1282.coeffs[1]) - tmp1987.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1987.coeffs[2:order + 1] .= zero(tmp1987.coeffs[1]) - tmp1283.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp1282) - tmp1283.coeffs[2:order + 1] .= zero(tmp1283.coeffs[1]) - tmp1284.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1284.coeffs[2:order + 1] .= zero(tmp1284.coeffs[1]) - tmp1988.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1988.coeffs[2:order + 1] .= zero(tmp1988.coeffs[1]) - tmp1285.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1284) - tmp1285.coeffs[2:order + 1] .= zero(tmp1285.coeffs[1]) - (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp1283) + constant_term(tmp1285) - (mantlef2coref[1, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 2]).coeffs[1]) - tmp1287.coeffs[1] = -(constant_term(RotM[2, 1, mo])) - tmp1287.coeffs[2:order + 1] .= zero(tmp1287.coeffs[1]) - tmp1288.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1288.coeffs[2:order + 1] .= zero(tmp1288.coeffs[1]) - tmp1989.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1989.coeffs[2:order + 1] .= zero(tmp1989.coeffs[1]) - tmp1289.coeffs[1] = constant_term(tmp1287) * constant_term(tmp1288) - tmp1289.coeffs[2:order + 1] .= zero(tmp1289.coeffs[1]) - tmp1290.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1290.coeffs[2:order + 1] .= zero(tmp1290.coeffs[1]) - tmp1990.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1990.coeffs[2:order + 1] .= zero(tmp1990.coeffs[1]) - tmp1291.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1290) - tmp1291.coeffs[2:order + 1] .= zero(tmp1291.coeffs[1]) - (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp1289) + constant_term(tmp1291) - (mantlef2coref[2, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 2]).coeffs[1]) - (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) - (mantlef2coref[3, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 2]).coeffs[1]) - tmp1293.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1293.coeffs[2:order + 1] .= zero(tmp1293.coeffs[1]) - tmp1991.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1991.coeffs[2:order + 1] .= zero(tmp1991.coeffs[1]) - tmp1294.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp1293) - tmp1294.coeffs[2:order + 1] .= zero(tmp1294.coeffs[1]) - tmp1295.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1295.coeffs[2:order + 1] .= zero(tmp1295.coeffs[1]) - tmp1992.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1992.coeffs[2:order + 1] .= zero(tmp1992.coeffs[1]) - tmp1296.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1295) - tmp1296.coeffs[2:order + 1] .= zero(tmp1296.coeffs[1]) - (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp1294) + constant_term(tmp1296) - (mantlef2coref[1, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 3]).coeffs[1]) - tmp1298.coeffs[1] = -(constant_term(RotM[3, 1, mo])) - tmp1298.coeffs[2:order + 1] .= zero(tmp1298.coeffs[1]) - tmp1299.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1299.coeffs[2:order + 1] .= zero(tmp1299.coeffs[1]) - tmp1993.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1993.coeffs[2:order + 1] .= zero(tmp1993.coeffs[1]) - tmp1300.coeffs[1] = constant_term(tmp1298) * constant_term(tmp1299) - tmp1300.coeffs[2:order + 1] .= zero(tmp1300.coeffs[1]) - tmp1301.coeffs[1] = cos(constant_term(ϕ_c)) - tmp1301.coeffs[2:order + 1] .= zero(tmp1301.coeffs[1]) - tmp1994.coeffs[1] = sin(constant_term(ϕ_c)) - tmp1994.coeffs[2:order + 1] .= zero(tmp1994.coeffs[1]) - tmp1302.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1301) - tmp1302.coeffs[2:order + 1] .= zero(tmp1302.coeffs[1]) - (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp1300) + constant_term(tmp1302) - (mantlef2coref[2, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 3]).coeffs[1]) - (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) - (mantlef2coref[3, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 3]).coeffs[1]) - tmp1304.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) - tmp1304.coeffs[2:order + 1] .= zero(tmp1304.coeffs[1]) - tmp1305.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) - tmp1305.coeffs[2:order + 1] .= zero(tmp1305.coeffs[1]) - tmp1306.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) - tmp1306.coeffs[2:order + 1] .= zero(tmp1306.coeffs[1]) - tmp1307.coeffs[1] = constant_term(tmp1305) + constant_term(tmp1306) - tmp1307.coeffs[2:order + 1] .= zero(tmp1307.coeffs[1]) - ω_c_CE_1.coeffs[1] = constant_term(tmp1304) + constant_term(tmp1307) - ω_c_CE_1.coeffs[2:order + 1] .= zero(ω_c_CE_1.coeffs[1]) - tmp1309.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) - tmp1309.coeffs[2:order + 1] .= zero(tmp1309.coeffs[1]) - tmp1310.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) - tmp1310.coeffs[2:order + 1] .= zero(tmp1310.coeffs[1]) - tmp1311.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) - tmp1311.coeffs[2:order + 1] .= zero(tmp1311.coeffs[1]) - tmp1312.coeffs[1] = constant_term(tmp1310) + constant_term(tmp1311) - tmp1312.coeffs[2:order + 1] .= zero(tmp1312.coeffs[1]) - ω_c_CE_2.coeffs[1] = constant_term(tmp1309) + constant_term(tmp1312) - ω_c_CE_2.coeffs[2:order + 1] .= zero(ω_c_CE_2.coeffs[1]) - tmp1314.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) - tmp1314.coeffs[2:order + 1] .= zero(tmp1314.coeffs[1]) - tmp1315.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) - tmp1315.coeffs[2:order + 1] .= zero(tmp1315.coeffs[1]) - tmp1316.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) - tmp1316.coeffs[2:order + 1] .= zero(tmp1316.coeffs[1]) - tmp1317.coeffs[1] = constant_term(tmp1315) + constant_term(tmp1316) - tmp1317.coeffs[2:order + 1] .= zero(tmp1317.coeffs[1]) - ω_c_CE_3.coeffs[1] = constant_term(tmp1314) + constant_term(tmp1317) - ω_c_CE_3.coeffs[2:order + 1] .= zero(ω_c_CE_3.coeffs[1]) - local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 - local J2S_t = JSEM[su, 2] * one_t - (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) - (J2_t[su]).coeffs[2:order + 1] .= zero((J2_t[su]).coeffs[1]) - (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) - (J2_t[ea]).coeffs[2:order + 1] .= zero((J2_t[ea]).coeffs[1]) - local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t - for j = 1:N - (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) - (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) - (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) - (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) - (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) - (dq[3j - 2]).coeffs[2:order + 1] .= zero((dq[3j - 2]).coeffs[1]) - (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) - (dq[3j - 1]).coeffs[2:order + 1] .= zero((dq[3j - 1]).coeffs[1]) - (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) - (dq[3j]).coeffs[2:order + 1] .= zero((dq[3j]).coeffs[1]) - end - for j = 1:N_ext - (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) - (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) - (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) - end - for j = 1:N - for i = 1:N - if i == j - continue - else - (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) - (X[i, j]).coeffs[2:order + 1] .= zero((X[i, j]).coeffs[1]) - (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) - (Y[i, j]).coeffs[2:order + 1] .= zero((Y[i, j]).coeffs[1]) - (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) - (Z[i, j]).coeffs[2:order + 1] .= zero((Z[i, j]).coeffs[1]) - (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) - (U[i, j]).coeffs[2:order + 1] .= zero((U[i, j]).coeffs[1]) - (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) - (V[i, j]).coeffs[2:order + 1] .= zero((V[i, j]).coeffs[1]) - (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) - (W[i, j]).coeffs[2:order + 1] .= zero((W[i, j]).coeffs[1]) - (tmp1326[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) - (tmp1326[3j - 2]).coeffs[2:order + 1] .= zero((tmp1326[3j - 2]).coeffs[1]) - (tmp1328[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) - (tmp1328[3i - 2]).coeffs[2:order + 1] .= zero((tmp1328[3i - 2]).coeffs[1]) - (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp1326[3j - 2]) - constant_term(tmp1328[3i - 2]) - (_4U_m_3X[i, j]).coeffs[2:order + 1] .= zero((_4U_m_3X[i, j]).coeffs[1]) - (tmp1331[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) - (tmp1331[3j - 1]).coeffs[2:order + 1] .= zero((tmp1331[3j - 1]).coeffs[1]) - (tmp1333[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) - (tmp1333[3i - 1]).coeffs[2:order + 1] .= zero((tmp1333[3i - 1]).coeffs[1]) - (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp1331[3j - 1]) - constant_term(tmp1333[3i - 1]) - (_4V_m_3Y[i, j]).coeffs[2:order + 1] .= zero((_4V_m_3Y[i, j]).coeffs[1]) - (tmp1336[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) - (tmp1336[3j]).coeffs[2:order + 1] .= zero((tmp1336[3j]).coeffs[1]) - (tmp1338[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) - (tmp1338[3i]).coeffs[2:order + 1] .= zero((tmp1338[3i]).coeffs[1]) - (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp1336[3j]) - constant_term(tmp1338[3i]) - (_4W_m_3Z[i, j]).coeffs[2:order + 1] .= zero((_4W_m_3Z[i, j]).coeffs[1]) - (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) - (pn2x[i, j]).coeffs[2:order + 1] .= zero((pn2x[i, j]).coeffs[1]) - (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) - (pn2y[i, j]).coeffs[2:order + 1] .= zero((pn2y[i, j]).coeffs[1]) - (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) - (pn2z[i, j]).coeffs[2:order + 1] .= zero((pn2z[i, j]).coeffs[1]) - (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) - (UU[i, j]).coeffs[2:order + 1] .= zero((UU[i, j]).coeffs[1]) - (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) - (VV[i, j]).coeffs[2:order + 1] .= zero((VV[i, j]).coeffs[1]) - (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) - (WW[i, j]).coeffs[2:order + 1] .= zero((WW[i, j]).coeffs[1]) - (tmp1346[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) - (tmp1346[i, j]).coeffs[2:order + 1] .= zero((tmp1346[i, j]).coeffs[1]) - (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp1346[i, j]) + constant_term(WW[i, j]) - (vi_dot_vj[i, j]).coeffs[2:order + 1] .= zero((vi_dot_vj[i, j]).coeffs[1]) - (tmp1349[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) - (tmp1349[i, j]).coeffs[2:order + 1] .= zero((tmp1349[i, j]).coeffs[1]) - (tmp1351[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) - (tmp1351[i, j]).coeffs[2:order + 1] .= zero((tmp1351[i, j]).coeffs[1]) - (tmp1352[i, j]).coeffs[1] = constant_term(tmp1349[i, j]) + constant_term(tmp1351[i, j]) - (tmp1352[i, j]).coeffs[2:order + 1] .= zero((tmp1352[i, j]).coeffs[1]) - (tmp1354[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) - (tmp1354[i, j]).coeffs[2:order + 1] .= zero((tmp1354[i, j]).coeffs[1]) - (r_p2[i, j]).coeffs[1] = constant_term(tmp1352[i, j]) + constant_term(tmp1354[i, j]) - (r_p2[i, j]).coeffs[2:order + 1] .= zero((r_p2[i, j]).coeffs[1]) - (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) - (r_p1d2[i, j]).coeffs[2:order + 1] .= zero((r_p1d2[i, j]).coeffs[1]) - (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) - (r_p3d2[i, j]).coeffs[2:order + 1] .= zero((r_p3d2[i, j]).coeffs[1]) - (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) - (r_p7d2[i, j]).coeffs[2:order + 1] .= zero((r_p7d2[i, j]).coeffs[1]) - (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) - (newtonianCoeff[i, j]).coeffs[2:order + 1] .= zero((newtonianCoeff[i, j]).coeffs[1]) - (tmp1362[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) - (tmp1362[i, j]).coeffs[2:order + 1] .= zero((tmp1362[i, j]).coeffs[1]) - (tmp1363[i, j]).coeffs[1] = constant_term(tmp1362[i, j]) + constant_term(pn2z[i, j]) - (tmp1363[i, j]).coeffs[2:order + 1] .= zero((tmp1363[i, j]).coeffs[1]) - (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp1363[i, j]) - (pn2[i, j]).coeffs[2:order + 1] .= zero((pn2[i, j]).coeffs[1]) - (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_X[i, j]).coeffs[2:order + 1] .= zero((newton_acc_X[i, j]).coeffs[1]) - (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_Y[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Y[i, j]).coeffs[1]) - (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_Z[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Z[i, j]).coeffs[1]) - (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) - (newtonian1b_Potential[i, j]).coeffs[2:order + 1] .= zero((newtonian1b_Potential[i, j]).coeffs[1]) - (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) - (pn3[i, j]).coeffs[2:order + 1] .= zero((pn3[i, j]).coeffs[1]) - (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) - (U_t_pn2[i, j]).coeffs[2:order + 1] .= zero((U_t_pn2[i, j]).coeffs[1]) - (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) - (V_t_pn2[i, j]).coeffs[2:order + 1] .= zero((V_t_pn2[i, j]).coeffs[1]) - (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) - (W_t_pn2[i, j]).coeffs[2:order + 1] .= zero((W_t_pn2[i, j]).coeffs[1]) - (tmp1374[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp1374[i, j]).coeffs[2:order + 1] .= zero((tmp1374[i, j]).coeffs[1]) - (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp1374[i, j]) - (temp_001[i, j]).coeffs[2:order + 1] .= zero((temp_001[i, j]).coeffs[1]) - (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) - (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) - (tmp1376[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp1376[i, j]).coeffs[2:order + 1] .= zero((tmp1376[i, j]).coeffs[1]) - (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp1376[i, j]) - (temp_002[i, j]).coeffs[2:order + 1] .= zero((temp_002[i, j]).coeffs[1]) - (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) - (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) - (tmp1378[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp1378[i, j]).coeffs[2:order + 1] .= zero((tmp1378[i, j]).coeffs[1]) - (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp1378[i, j]) - (temp_003[i, j]).coeffs[2:order + 1] .= zero((temp_003[i, j]).coeffs[1]) - (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) - (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) - (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) - (temp_004[i, j]).coeffs[2:order + 1] .= zero((temp_004[i, j]).coeffs[1]) - (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) - (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) - end - end - (tmp1382[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) - (tmp1382[3j - 2]).coeffs[2:order + 1] .= zero((tmp1382[3j - 2]).coeffs[1]) - (tmp1384[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) - (tmp1384[3j - 1]).coeffs[2:order + 1] .= zero((tmp1384[3j - 1]).coeffs[1]) - (tmp1385[3j - 2]).coeffs[1] = constant_term(tmp1382[3j - 2]) + constant_term(tmp1384[3j - 1]) - (tmp1385[3j - 2]).coeffs[2:order + 1] .= zero((tmp1385[3j - 2]).coeffs[1]) - (tmp1387[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) - (tmp1387[3j]).coeffs[2:order + 1] .= zero((tmp1387[3j]).coeffs[1]) - (v2[j]).coeffs[1] = constant_term(tmp1385[3j - 2]) + constant_term(tmp1387[3j]) - (v2[j]).coeffs[2:order + 1] .= zero((v2[j]).coeffs[1]) - end - tmp1389.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) - tmp1389.coeffs[2:order + 1] .= zero(tmp1389.coeffs[1]) - tmp1391.coeffs[1] = constant_term(tmp1389) / constant_term(2) - tmp1391.coeffs[2:order + 1] .= zero(tmp1391.coeffs[1]) - tmp1392.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp1391) - tmp1392.coeffs[2:order + 1] .= zero(tmp1392.coeffs[1]) - J2M_t.coeffs[1] = constant_term(tmp1392) / constant_term(μ[mo]) - J2M_t.coeffs[2:order + 1] .= zero(J2M_t.coeffs[1]) - tmp1394.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) - tmp1394.coeffs[2:order + 1] .= zero(tmp1394.coeffs[1]) - tmp1395.coeffs[1] = constant_term(tmp1394) / constant_term(μ[mo]) - tmp1395.coeffs[2:order + 1] .= zero(tmp1395.coeffs[1]) - C22M_t.coeffs[1] = constant_term(tmp1395) / constant_term(4) - C22M_t.coeffs[2:order + 1] .= zero(C22M_t.coeffs[1]) - tmp1398.coeffs[1] = -(constant_term(I_M_t[1, 3])) - tmp1398.coeffs[2:order + 1] .= zero(tmp1398.coeffs[1]) - C21M_t.coeffs[1] = constant_term(tmp1398) / constant_term(μ[mo]) - C21M_t.coeffs[2:order + 1] .= zero(C21M_t.coeffs[1]) - tmp1400.coeffs[1] = -(constant_term(I_M_t[3, 2])) - tmp1400.coeffs[2:order + 1] .= zero(tmp1400.coeffs[1]) - S21M_t.coeffs[1] = constant_term(tmp1400) / constant_term(μ[mo]) - S21M_t.coeffs[2:order + 1] .= zero(S21M_t.coeffs[1]) - tmp1402.coeffs[1] = -(constant_term(I_M_t[2, 1])) - tmp1402.coeffs[2:order + 1] .= zero(tmp1402.coeffs[1]) - tmp1403.coeffs[1] = constant_term(tmp1402) / constant_term(μ[mo]) - tmp1403.coeffs[2:order + 1] .= zero(tmp1403.coeffs[1]) - S22M_t.coeffs[1] = constant_term(tmp1403) / constant_term(2) - S22M_t.coeffs[2:order + 1] .= zero(S22M_t.coeffs[1]) - (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) - (J2_t[mo]).coeffs[2:order + 1] .= zero((J2_t[mo]).coeffs[1]) - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) - (X_bf_1[i, j]).coeffs[2:order + 1] .= zero((X_bf_1[i, j]).coeffs[1]) - (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) - (X_bf_2[i, j]).coeffs[2:order + 1] .= zero((X_bf_2[i, j]).coeffs[1]) - (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) - (X_bf_3[i, j]).coeffs[2:order + 1] .= zero((X_bf_3[i, j]).coeffs[1]) - (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) - (Y_bf_1[i, j]).coeffs[2:order + 1] .= zero((Y_bf_1[i, j]).coeffs[1]) - (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) - (Y_bf_2[i, j]).coeffs[2:order + 1] .= zero((Y_bf_2[i, j]).coeffs[1]) - (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) - (Y_bf_3[i, j]).coeffs[2:order + 1] .= zero((Y_bf_3[i, j]).coeffs[1]) - (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) - (Z_bf_1[i, j]).coeffs[2:order + 1] .= zero((Z_bf_1[i, j]).coeffs[1]) - (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) - (Z_bf_2[i, j]).coeffs[2:order + 1] .= zero((Z_bf_2[i, j]).coeffs[1]) - (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) - (Z_bf_3[i, j]).coeffs[2:order + 1] .= zero((Z_bf_3[i, j]).coeffs[1]) - (tmp1415[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) - (tmp1415[i, j]).coeffs[2:order + 1] .= zero((tmp1415[i, j]).coeffs[1]) - (X_bf[i, j]).coeffs[1] = constant_term(tmp1415[i, j]) + constant_term(X_bf_3[i, j]) - (X_bf[i, j]).coeffs[2:order + 1] .= zero((X_bf[i, j]).coeffs[1]) - (tmp1417[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) - (tmp1417[i, j]).coeffs[2:order + 1] .= zero((tmp1417[i, j]).coeffs[1]) - (Y_bf[i, j]).coeffs[1] = constant_term(tmp1417[i, j]) + constant_term(Y_bf_3[i, j]) - (Y_bf[i, j]).coeffs[2:order + 1] .= zero((Y_bf[i, j]).coeffs[1]) - (tmp1419[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) - (tmp1419[i, j]).coeffs[2:order + 1] .= zero((tmp1419[i, j]).coeffs[1]) - (Z_bf[i, j]).coeffs[1] = constant_term(tmp1419[i, j]) + constant_term(Z_bf_3[i, j]) - (Z_bf[i, j]).coeffs[2:order + 1] .= zero((Z_bf[i, j]).coeffs[1]) - (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) - (sin_ϕ[i, j]).coeffs[2:order + 1] .= zero((sin_ϕ[i, j]).coeffs[1]) - (tmp1423[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) - (tmp1423[i, j]).coeffs[2:order + 1] .= zero((tmp1423[i, j]).coeffs[1]) - (tmp1425[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) - (tmp1425[i, j]).coeffs[2:order + 1] .= zero((tmp1425[i, j]).coeffs[1]) - (tmp1426[i, j]).coeffs[1] = constant_term(tmp1423[i, j]) + constant_term(tmp1425[i, j]) - (tmp1426[i, j]).coeffs[2:order + 1] .= zero((tmp1426[i, j]).coeffs[1]) - (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp1426[i, j])) - (r_xy[i, j]).coeffs[2:order + 1] .= zero((r_xy[i, j]).coeffs[1]) - (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) - (cos_ϕ[i, j]).coeffs[2:order + 1] .= zero((cos_ϕ[i, j]).coeffs[1]) - (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) - (sin_λ[i, j]).coeffs[2:order + 1] .= zero((sin_λ[i, j]).coeffs[1]) - (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) - (cos_λ[i, j]).coeffs[2:order + 1] .= zero((cos_λ[i, j]).coeffs[1]) - (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) - (P_n[i, j, 1]).coeffs[2:order + 1] .= zero((P_n[i, j, 1]).coeffs[1]) - (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - (P_n[i, j, 2]).coeffs[2:order + 1] .= zero((P_n[i, j, 2]).coeffs[1]) - (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) - (dP_n[i, j, 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, 1]).coeffs[1]) - (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) - (dP_n[i, j, 2]).coeffs[2:order + 1] .= zero((dP_n[i, j, 2]).coeffs[1]) - for n = 2:n1SEM[j] - (tmp1431[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - (tmp1431[i, j, n]).coeffs[2:order + 1] .= zero((tmp1431[i, j, n]).coeffs[1]) - (tmp1432[i, j, n]).coeffs[1] = constant_term(tmp1431[i, j, n]) * constant_term(fact1_jsem[n]) - (tmp1432[i, j, n]).coeffs[2:order + 1] .= zero((tmp1432[i, j, n]).coeffs[1]) - (tmp1433[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) - (tmp1433[i, j, n - 1]).coeffs[2:order + 1] .= zero((tmp1433[i, j, n - 1]).coeffs[1]) - (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1432[i, j, n]) - constant_term(tmp1433[i, j, n - 1]) - (P_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((P_n[i, j, n + 1]).coeffs[1]) - (tmp1435[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - (tmp1435[i, j, n]).coeffs[2:order + 1] .= zero((tmp1435[i, j, n]).coeffs[1]) - (tmp1436[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) - (tmp1436[i, j, n]).coeffs[2:order + 1] .= zero((tmp1436[i, j, n]).coeffs[1]) - (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1435[i, j, n]) + constant_term(tmp1436[i, j, n]) - (dP_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, n + 1]).coeffs[1]) - (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) - (temp_rn[i, j, n]).coeffs[2:order + 1] .= zero((temp_rn[i, j, n]).coeffs[1]) - end - (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) - (r_p4[i, j]).coeffs[2:order + 1] .= zero((r_p4[i, j]).coeffs[1]) - (tmp1441[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) - (tmp1441[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1441[i, j, 3]).coeffs[1]) - (tmp1442[i, j, 3]).coeffs[1] = constant_term(tmp1441[i, j, 3]) * constant_term(J2_t[j]) - (tmp1442[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1442[i, j, 3]).coeffs[1]) - (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp1442[i, j, 3]) / constant_term(r_p4[i, j]) - (F_J_ξ[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ[i, j]).coeffs[1]) - (tmp1444[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) - (tmp1444[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1444[i, j, 3]).coeffs[1]) - (tmp1445[i, j, 3]).coeffs[1] = constant_term(tmp1444[i, j, 3]) * constant_term(cos_ϕ[i, j]) - (tmp1445[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1445[i, j, 3]).coeffs[1]) - (tmp1446[i, j, 3]).coeffs[1] = constant_term(tmp1445[i, j, 3]) * constant_term(J2_t[j]) - (tmp1446[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1446[i, j, 3]).coeffs[1]) - (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp1446[i, j, 3]) / constant_term(r_p4[i, j]) - (F_J_ζ[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ[i, j]).coeffs[1]) - (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) - (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) - for n = 3:n1SEM[j] - (tmp1448[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) - (tmp1448[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1448[i, j, n + 1]).coeffs[1]) - (tmp1449[i, j, n + 1]).coeffs[1] = constant_term(tmp1448[i, j, n + 1]) * constant_term(JSEM[j, n]) - (tmp1449[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1449[i, j, n + 1]).coeffs[1]) - (tmp1450[i, j, n + 1]).coeffs[1] = constant_term(tmp1449[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - (tmp1450[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1450[i, j, n + 1]).coeffs[1]) - (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp1450[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) - (temp_fjξ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjξ[i, j, n]).coeffs[1]) - (tmp1452[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) - (tmp1452[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1452[i, j, n + 1]).coeffs[1]) - (tmp1453[i, j, n + 1]).coeffs[1] = constant_term(tmp1452[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) - (tmp1453[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1453[i, j, n + 1]).coeffs[1]) - (tmp1454[i, j, n + 1]).coeffs[1] = constant_term(tmp1453[i, j, n + 1]) * constant_term(JSEM[j, n]) - (tmp1454[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1454[i, j, n + 1]).coeffs[1]) - (tmp1455[i, j, n + 1]).coeffs[1] = constant_term(tmp1454[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - (tmp1455[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1455[i, j, n + 1]).coeffs[1]) - (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp1455[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) - (temp_fjζ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjζ[i, j, n]).coeffs[1]) - (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) - (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) - (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) - (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) - end - if j == mo - for m = 1:n1SEM[mo] - if m == 1 - (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) - (sin_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, 1]).coeffs[1]) - (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - (cos_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, 1]).coeffs[1]) - (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) - (secϕ_P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, 1, 1]).coeffs[1]) - (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - (P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((P_nm[i, j, 1, 1]).coeffs[1]) - (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) - (cosϕ_dP_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, 1, 1]).coeffs[1]) - else - (tmp1458[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - (tmp1458[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1458[i, j, m - 1]).coeffs[1]) - (tmp1459[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - (tmp1459[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1459[i, j, m - 1]).coeffs[1]) - (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp1458[i, j, m - 1]) + constant_term(tmp1459[i, j, m - 1]) - (sin_mλ[i, j, m]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, m]).coeffs[1]) - (tmp1461[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - (tmp1461[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1461[i, j, m - 1]).coeffs[1]) - (tmp1462[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - (tmp1462[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1462[i, j, m - 1]).coeffs[1]) - (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp1461[i, j, m - 1]) - constant_term(tmp1462[i, j, m - 1]) - (cos_mλ[i, j, m]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, m]).coeffs[1]) - (tmp1464[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) - (tmp1464[i, j, m - 1, m - 1]).coeffs[2:order + 1] .= zero((tmp1464[i, j, m - 1, m - 1]).coeffs[1]) - (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1464[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) - (secϕ_P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, m, m]).coeffs[1]) - (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) - (P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, m, m]).coeffs[1]) - (tmp1467[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) - (tmp1467[i, j, m, m]).coeffs[2:order + 1] .= zero((tmp1467[i, j, m, m]).coeffs[1]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1467[i, j, m, m]) * constant_term(lnm3[m]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, m, m]).coeffs[1]) - end - for n = m + 1:n1SEM[mo] - if n == m + 1 - (tmp1469[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - (tmp1469[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1469[i, j, n - 1, m]).coeffs[1]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1469[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) - else - (tmp1471[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - (tmp1471[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1471[i, j, n - 1, m]).coeffs[1]) - (tmp1472[i, j, n - 1, m]).coeffs[1] = constant_term(tmp1471[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - (tmp1472[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1472[i, j, n - 1, m]).coeffs[1]) - (tmp1473[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) - (tmp1473[i, j, n - 2, m]).coeffs[2:order + 1] .= zero((tmp1473[i, j, n - 2, m]).coeffs[1]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1472[i, j, n - 1, m]) + constant_term(tmp1473[i, j, n - 2, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) - end - (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) - (P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, n, m]).coeffs[1]) - (tmp1476[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) - (tmp1476[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1476[i, j, n, m]).coeffs[1]) - (tmp1477[i, j, n, m]).coeffs[1] = constant_term(tmp1476[i, j, n, m]) * constant_term(lnm3[n]) - (tmp1477[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1477[i, j, n, m]).coeffs[1]) - (tmp1478[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) - (tmp1478[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1478[i, j, n - 1, m]).coeffs[1]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1477[i, j, n, m]) + constant_term(tmp1478[i, j, n - 1, m]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, n, m]).coeffs[1]) - end - end - (tmp1480[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) - (tmp1480[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1480[i, j, 2, 1]).coeffs[1]) - (tmp1481[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp1481[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1481[i, j, 1]).coeffs[1]) - (tmp1482[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp1482[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1482[i, j, 1]).coeffs[1]) - (tmp1483[i, j, 1]).coeffs[1] = constant_term(tmp1481[i, j, 1]) + constant_term(tmp1482[i, j, 1]) - (tmp1483[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1483[i, j, 1]).coeffs[1]) - (tmp1484[i, j, 2, 1]).coeffs[1] = constant_term(tmp1480[i, j, 2, 1]) * constant_term(tmp1483[i, j, 1]) - (tmp1484[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1484[i, j, 2, 1]).coeffs[1]) - (tmp1485[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) - (tmp1485[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1485[i, j, 2, 2]).coeffs[1]) - (tmp1486[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp1486[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1486[i, j, 2]).coeffs[1]) - (tmp1487[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp1487[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1487[i, j, 2]).coeffs[1]) - (tmp1488[i, j, 2]).coeffs[1] = constant_term(tmp1486[i, j, 2]) + constant_term(tmp1487[i, j, 2]) - (tmp1488[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1488[i, j, 2]).coeffs[1]) - (tmp1489[i, j, 2, 2]).coeffs[1] = constant_term(tmp1485[i, j, 2, 2]) * constant_term(tmp1488[i, j, 2]) - (tmp1489[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1489[i, j, 2, 2]).coeffs[1]) - (tmp1490[i, j, 2, 1]).coeffs[1] = constant_term(tmp1484[i, j, 2, 1]) + constant_term(tmp1489[i, j, 2, 2]) - (tmp1490[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1490[i, j, 2, 1]).coeffs[1]) - (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp1490[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ[i, j]).coeffs[1]) - (tmp1492[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) - (tmp1492[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1492[i, j, 2, 1]).coeffs[1]) - (tmp1493[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp1493[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1493[i, j, 1]).coeffs[1]) - (tmp1494[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp1494[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1494[i, j, 1]).coeffs[1]) - (tmp1495[i, j, 1]).coeffs[1] = constant_term(tmp1493[i, j, 1]) - constant_term(tmp1494[i, j, 1]) - (tmp1495[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1495[i, j, 1]).coeffs[1]) - (tmp1496[i, j, 2, 1]).coeffs[1] = constant_term(tmp1492[i, j, 2, 1]) * constant_term(tmp1495[i, j, 1]) - (tmp1496[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1496[i, j, 2, 1]).coeffs[1]) - (tmp1497[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) - (tmp1497[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1497[i, j, 2, 2]).coeffs[1]) - (tmp1498[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp1498[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1498[i, j, 2]).coeffs[1]) - (tmp1499[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp1499[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1499[i, j, 2]).coeffs[1]) - (tmp1500[i, j, 2]).coeffs[1] = constant_term(tmp1498[i, j, 2]) - constant_term(tmp1499[i, j, 2]) - (tmp1500[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1500[i, j, 2]).coeffs[1]) - (tmp1501[i, j, 2, 2]).coeffs[1] = constant_term(tmp1497[i, j, 2, 2]) * constant_term(tmp1500[i, j, 2]) - (tmp1501[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1501[i, j, 2, 2]).coeffs[1]) - (tmp1502[i, j, 2, 1]).coeffs[1] = constant_term(tmp1496[i, j, 2, 1]) + constant_term(tmp1501[i, j, 2, 2]) - (tmp1502[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1502[i, j, 2, 1]).coeffs[1]) - (F_CS_η[i, j]).coeffs[1] = constant_term(tmp1502[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_η[i, j]).coeffs[2:order + 1] .= zero((F_CS_η[i, j]).coeffs[1]) - (tmp1504[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp1504[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1504[i, j, 1]).coeffs[1]) - (tmp1505[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp1505[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1505[i, j, 1]).coeffs[1]) - (tmp1506[i, j, 1]).coeffs[1] = constant_term(tmp1504[i, j, 1]) + constant_term(tmp1505[i, j, 1]) - (tmp1506[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1506[i, j, 1]).coeffs[1]) - (tmp1507[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1506[i, j, 1]) - (tmp1507[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1507[i, j, 2, 1]).coeffs[1]) - (tmp1508[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp1508[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1508[i, j, 2]).coeffs[1]) - (tmp1509[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp1509[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1509[i, j, 2]).coeffs[1]) - (tmp1510[i, j, 2]).coeffs[1] = constant_term(tmp1508[i, j, 2]) + constant_term(tmp1509[i, j, 2]) - (tmp1510[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1510[i, j, 2]).coeffs[1]) - (tmp1511[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1510[i, j, 2]) - (tmp1511[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1511[i, j, 2, 2]).coeffs[1]) - (tmp1512[i, j, 2, 1]).coeffs[1] = constant_term(tmp1507[i, j, 2, 1]) + constant_term(tmp1511[i, j, 2, 2]) - (tmp1512[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1512[i, j, 2, 1]).coeffs[1]) - (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp1512[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ[i, j]).coeffs[1]) - (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) - (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) - (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) - for n = 3:n2M - for m = 1:n - (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) - (Cnm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_cosmλ[i, j, n, m]).coeffs[1]) - (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) - (Cnm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_sinmλ[i, j, n, m]).coeffs[1]) - (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) - (Snm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_cosmλ[i, j, n, m]).coeffs[1]) - (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) - (Snm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_sinmλ[i, j, n, m]).coeffs[1]) - (tmp1518[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) - (tmp1518[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1518[i, j, n, m]).coeffs[1]) - (tmp1519[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - (tmp1519[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1519[i, j, n, m]).coeffs[1]) - (tmp1520[i, j, n, m]).coeffs[1] = constant_term(tmp1518[i, j, n, m]) * constant_term(tmp1519[i, j, n, m]) - (tmp1520[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1520[i, j, n, m]).coeffs[1]) - (tmp1521[i, j, n, m]).coeffs[1] = constant_term(tmp1520[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp1521[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1521[i, j, n, m]).coeffs[1]) - (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp1521[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) - (temp_CS_ξ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ξ[i, j, n, m]).coeffs[1]) - (tmp1523[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) - (tmp1523[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1523[i, j, n, m]).coeffs[1]) - (tmp1524[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) - (tmp1524[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1524[i, j, n, m]).coeffs[1]) - (tmp1525[i, j, n, m]).coeffs[1] = constant_term(tmp1523[i, j, n, m]) * constant_term(tmp1524[i, j, n, m]) - (tmp1525[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1525[i, j, n, m]).coeffs[1]) - (tmp1526[i, j, n, m]).coeffs[1] = constant_term(tmp1525[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp1526[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1526[i, j, n, m]).coeffs[1]) - (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp1526[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) - (temp_CS_η[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_η[i, j, n, m]).coeffs[1]) - (tmp1528[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - (tmp1528[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1528[i, j, n, m]).coeffs[1]) - (tmp1529[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1528[i, j, n, m]) - (tmp1529[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1529[i, j, n, m]).coeffs[1]) - (tmp1530[i, j, n, m]).coeffs[1] = constant_term(tmp1529[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp1530[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1530[i, j, n, m]).coeffs[1]) - (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp1530[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) - (temp_CS_ζ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ζ[i, j, n, m]).coeffs[1]) - (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) - (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) - (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) - (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) - (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) - (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) - end - end - (tmp1532[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - (tmp1532[i, j]).coeffs[2:order + 1] .= zero((tmp1532[i, j]).coeffs[1]) - (tmp1533[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) - (tmp1533[i, j]).coeffs[2:order + 1] .= zero((tmp1533[i, j]).coeffs[1]) - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp1532[i, j]) + constant_term(tmp1533[i, j]) - (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) - (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) - (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) - (tmp1536[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - (tmp1536[i, j]).coeffs[2:order + 1] .= zero((tmp1536[i, j]).coeffs[1]) - (tmp1537[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) - (tmp1537[i, j]).coeffs[2:order + 1] .= zero((tmp1537[i, j]).coeffs[1]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp1536[i, j]) + constant_term(tmp1537[i, j]) - (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) - else - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) - (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) - end - (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) - (Rb2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 1]).coeffs[1]) - (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) - (Rb2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 1]).coeffs[1]) - (tmp1543[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - (tmp1543[i, j]).coeffs[2:order + 1] .= zero((tmp1543[i, j]).coeffs[1]) - (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1543[i, j]) * constant_term(cos_λ[i, j]) - (Rb2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 1]).coeffs[1]) - (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) - (Rb2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 2]).coeffs[1]) - (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - (Rb2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 2]).coeffs[1]) - (tmp1546[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - (tmp1546[i, j]).coeffs[2:order + 1] .= zero((tmp1546[i, j]).coeffs[1]) - (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1546[i, j]) * constant_term(sin_λ[i, j]) - (Rb2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 2]).coeffs[1]) - (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - (Rb2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 3]).coeffs[1]) - (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) - (Rb2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 3]).coeffs[1]) - (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - (Rb2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 3]).coeffs[1]) - (tmp1548[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) - (tmp1548[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1548[i, j, 1, 1]).coeffs[1]) - (tmp1549[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) - (tmp1549[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1549[i, j, 1, 2]).coeffs[1]) - (tmp1550[i, j, 1, 1]).coeffs[1] = constant_term(tmp1548[i, j, 1, 1]) + constant_term(tmp1549[i, j, 1, 2]) - (tmp1550[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1550[i, j, 1, 1]).coeffs[1]) - (tmp1551[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) - (tmp1551[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1551[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp1550[i, j, 1, 1]) + constant_term(tmp1551[i, j, 1, 3]) - (Gc2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 1]).coeffs[1]) - (tmp1553[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) - (tmp1553[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1553[i, j, 2, 1]).coeffs[1]) - (tmp1554[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) - (tmp1554[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1554[i, j, 2, 2]).coeffs[1]) - (tmp1555[i, j, 2, 1]).coeffs[1] = constant_term(tmp1553[i, j, 2, 1]) + constant_term(tmp1554[i, j, 2, 2]) - (tmp1555[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1555[i, j, 2, 1]).coeffs[1]) - (tmp1556[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) - (tmp1556[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1556[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp1555[i, j, 2, 1]) + constant_term(tmp1556[i, j, 2, 3]) - (Gc2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 1]).coeffs[1]) - (tmp1558[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) - (tmp1558[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1558[i, j, 3, 1]).coeffs[1]) - (tmp1559[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) - (tmp1559[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1559[i, j, 3, 2]).coeffs[1]) - (tmp1560[i, j, 3, 1]).coeffs[1] = constant_term(tmp1558[i, j, 3, 1]) + constant_term(tmp1559[i, j, 3, 2]) - (tmp1560[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1560[i, j, 3, 1]).coeffs[1]) - (tmp1561[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) - (tmp1561[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1561[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1560[i, j, 3, 1]) + constant_term(tmp1561[i, j, 3, 3]) - (Gc2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 1]).coeffs[1]) - (tmp1563[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) - (tmp1563[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1563[i, j, 1, 1]).coeffs[1]) - (tmp1564[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) - (tmp1564[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1564[i, j, 1, 2]).coeffs[1]) - (tmp1565[i, j, 1, 1]).coeffs[1] = constant_term(tmp1563[i, j, 1, 1]) + constant_term(tmp1564[i, j, 1, 2]) - (tmp1565[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1565[i, j, 1, 1]).coeffs[1]) - (tmp1566[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) - (tmp1566[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1566[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp1565[i, j, 1, 1]) + constant_term(tmp1566[i, j, 1, 3]) - (Gc2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 2]).coeffs[1]) - (tmp1568[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) - (tmp1568[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1568[i, j, 2, 1]).coeffs[1]) - (tmp1569[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) - (tmp1569[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1569[i, j, 2, 2]).coeffs[1]) - (tmp1570[i, j, 2, 1]).coeffs[1] = constant_term(tmp1568[i, j, 2, 1]) + constant_term(tmp1569[i, j, 2, 2]) - (tmp1570[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1570[i, j, 2, 1]).coeffs[1]) - (tmp1571[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) - (tmp1571[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1571[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp1570[i, j, 2, 1]) + constant_term(tmp1571[i, j, 2, 3]) - (Gc2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 2]).coeffs[1]) - (tmp1573[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) - (tmp1573[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1573[i, j, 3, 1]).coeffs[1]) - (tmp1574[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) - (tmp1574[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1574[i, j, 3, 2]).coeffs[1]) - (tmp1575[i, j, 3, 1]).coeffs[1] = constant_term(tmp1573[i, j, 3, 1]) + constant_term(tmp1574[i, j, 3, 2]) - (tmp1575[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1575[i, j, 3, 1]).coeffs[1]) - (tmp1576[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) - (tmp1576[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1576[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1575[i, j, 3, 1]) + constant_term(tmp1576[i, j, 3, 3]) - (Gc2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 2]).coeffs[1]) - (tmp1578[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) - (tmp1578[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1578[i, j, 1, 1]).coeffs[1]) - (tmp1579[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) - (tmp1579[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1579[i, j, 1, 2]).coeffs[1]) - (tmp1580[i, j, 1, 1]).coeffs[1] = constant_term(tmp1578[i, j, 1, 1]) + constant_term(tmp1579[i, j, 1, 2]) - (tmp1580[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1580[i, j, 1, 1]).coeffs[1]) - (tmp1581[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) - (tmp1581[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1581[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp1580[i, j, 1, 1]) + constant_term(tmp1581[i, j, 1, 3]) - (Gc2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 3]).coeffs[1]) - (tmp1583[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) - (tmp1583[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1583[i, j, 2, 1]).coeffs[1]) - (tmp1584[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) - (tmp1584[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1584[i, j, 2, 2]).coeffs[1]) - (tmp1585[i, j, 2, 1]).coeffs[1] = constant_term(tmp1583[i, j, 2, 1]) + constant_term(tmp1584[i, j, 2, 2]) - (tmp1585[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1585[i, j, 2, 1]).coeffs[1]) - (tmp1586[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) - (tmp1586[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1586[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp1585[i, j, 2, 1]) + constant_term(tmp1586[i, j, 2, 3]) - (Gc2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 3]).coeffs[1]) - (tmp1588[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) - (tmp1588[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1588[i, j, 3, 1]).coeffs[1]) - (tmp1589[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) - (tmp1589[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1589[i, j, 3, 2]).coeffs[1]) - (tmp1590[i, j, 3, 1]).coeffs[1] = constant_term(tmp1588[i, j, 3, 1]) + constant_term(tmp1589[i, j, 3, 2]) - (tmp1590[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1590[i, j, 3, 1]).coeffs[1]) - (tmp1591[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) - (tmp1591[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1591[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp1590[i, j, 3, 1]) + constant_term(tmp1591[i, j, 3, 3]) - (Gc2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 3]).coeffs[1]) - (tmp1593[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) - (tmp1593[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1593[i, j, 1, 1]).coeffs[1]) - (tmp1594[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) - (tmp1594[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1594[i, j, 2, 1]).coeffs[1]) - (tmp1595[i, j, 1, 1]).coeffs[1] = constant_term(tmp1593[i, j, 1, 1]) + constant_term(tmp1594[i, j, 2, 1]) - (tmp1595[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1595[i, j, 1, 1]).coeffs[1]) - (tmp1596[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) - (tmp1596[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1596[i, j, 3, 1]).coeffs[1]) - (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp1595[i, j, 1, 1]) + constant_term(tmp1596[i, j, 3, 1]) - (F_JCS_x[i, j]).coeffs[2:order + 1] .= zero((F_JCS_x[i, j]).coeffs[1]) - (tmp1598[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) - (tmp1598[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1598[i, j, 1, 2]).coeffs[1]) - (tmp1599[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) - (tmp1599[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1599[i, j, 2, 2]).coeffs[1]) - (tmp1600[i, j, 1, 2]).coeffs[1] = constant_term(tmp1598[i, j, 1, 2]) + constant_term(tmp1599[i, j, 2, 2]) - (tmp1600[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1600[i, j, 1, 2]).coeffs[1]) - (tmp1601[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) - (tmp1601[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1601[i, j, 3, 2]).coeffs[1]) - (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp1600[i, j, 1, 2]) + constant_term(tmp1601[i, j, 3, 2]) - (F_JCS_y[i, j]).coeffs[2:order + 1] .= zero((F_JCS_y[i, j]).coeffs[1]) - (tmp1603[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) - (tmp1603[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1603[i, j, 1, 3]).coeffs[1]) - (tmp1604[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) - (tmp1604[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1604[i, j, 2, 3]).coeffs[1]) - (tmp1605[i, j, 1, 3]).coeffs[1] = constant_term(tmp1603[i, j, 1, 3]) + constant_term(tmp1604[i, j, 2, 3]) - (tmp1605[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1605[i, j, 1, 3]).coeffs[1]) - (tmp1606[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) - (tmp1606[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1606[i, j, 3, 3]).coeffs[1]) - (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp1605[i, j, 1, 3]) + constant_term(tmp1606[i, j, 3, 3]) - (F_JCS_z[i, j]).coeffs[2:order + 1] .= zero((F_JCS_z[i, j]).coeffs[1]) - end - end - end - end - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - (tmp1608[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) - (tmp1608[i, j]).coeffs[2:order + 1] .= zero((tmp1608[i, j]).coeffs[1]) - (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp1608[i, j]) - (temp_accX_j[i, j]).coeffs[2:order + 1] .= zero((temp_accX_j[i, j]).coeffs[1]) - (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) - (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) - (tmp1610[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) - (tmp1610[i, j]).coeffs[2:order + 1] .= zero((tmp1610[i, j]).coeffs[1]) - (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp1610[i, j]) - (temp_accY_j[i, j]).coeffs[2:order + 1] .= zero((temp_accY_j[i, j]).coeffs[1]) - (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) - (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) - (tmp1612[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) - (tmp1612[i, j]).coeffs[2:order + 1] .= zero((tmp1612[i, j]).coeffs[1]) - (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp1612[i, j]) - (temp_accZ_j[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_j[i, j]).coeffs[1]) - (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) - (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) - (tmp1614[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) - (tmp1614[i, j]).coeffs[2:order + 1] .= zero((tmp1614[i, j]).coeffs[1]) - (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp1614[i, j]) - (temp_accX_i[i, j]).coeffs[2:order + 1] .= zero((temp_accX_i[i, j]).coeffs[1]) - (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) - (accX[i]).coeffs[2:order + 1] .= zero((accX[i]).coeffs[1]) - (tmp1616[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) - (tmp1616[i, j]).coeffs[2:order + 1] .= zero((tmp1616[i, j]).coeffs[1]) - (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp1616[i, j]) - (temp_accY_i[i, j]).coeffs[2:order + 1] .= zero((temp_accY_i[i, j]).coeffs[1]) - (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) - (accY[i]).coeffs[2:order + 1] .= zero((accY[i]).coeffs[1]) - (tmp1618[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) - (tmp1618[i, j]).coeffs[2:order + 1] .= zero((tmp1618[i, j]).coeffs[1]) - (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp1618[i, j]) - (temp_accZ_i[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_i[i, j]).coeffs[1]) - (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) - (accZ[i]).coeffs[2:order + 1] .= zero((accZ[i]).coeffs[1]) - if j == mo - (tmp1620[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) - (tmp1620[i, j]).coeffs[2:order + 1] .= zero((tmp1620[i, j]).coeffs[1]) - (tmp1621[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) - (tmp1621[i, j]).coeffs[2:order + 1] .= zero((tmp1621[i, j]).coeffs[1]) - (tmp1622[i, j]).coeffs[1] = constant_term(tmp1620[i, j]) - constant_term(tmp1621[i, j]) - (tmp1622[i, j]).coeffs[2:order + 1] .= zero((tmp1622[i, j]).coeffs[1]) - (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1622[i, j]) - (N_MfigM_pmA_x[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_x[i]).coeffs[1]) - (tmp1624[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) - (tmp1624[i, j]).coeffs[2:order + 1] .= zero((tmp1624[i, j]).coeffs[1]) - (tmp1625[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) - (tmp1625[i, j]).coeffs[2:order + 1] .= zero((tmp1625[i, j]).coeffs[1]) - (tmp1626[i, j]).coeffs[1] = constant_term(tmp1624[i, j]) - constant_term(tmp1625[i, j]) - (tmp1626[i, j]).coeffs[2:order + 1] .= zero((tmp1626[i, j]).coeffs[1]) - (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1626[i, j]) - (N_MfigM_pmA_y[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_y[i]).coeffs[1]) - (tmp1628[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) - (tmp1628[i, j]).coeffs[2:order + 1] .= zero((tmp1628[i, j]).coeffs[1]) - (tmp1629[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) - (tmp1629[i, j]).coeffs[2:order + 1] .= zero((tmp1629[i, j]).coeffs[1]) - (tmp1630[i, j]).coeffs[1] = constant_term(tmp1628[i, j]) - constant_term(tmp1629[i, j]) - (tmp1630[i, j]).coeffs[2:order + 1] .= zero((tmp1630[i, j]).coeffs[1]) - (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1630[i, j]) - (N_MfigM_pmA_z[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_z[i]).coeffs[1]) - (tmp1632[i]).coeffs[1] = constant_term(N_MfigM_pmA_x[i]) * constant_term(μ[j]) - (tmp1632[i]).coeffs[2:order + 1] .= zero((tmp1632[i]).coeffs[1]) - (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(tmp1632[i]) - (temp_N_M_x[i]).coeffs[2:order + 1] .= zero((temp_N_M_x[i]).coeffs[1]) - (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) - (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) - (tmp1634[i]).coeffs[1] = constant_term(N_MfigM_pmA_y[i]) * constant_term(μ[j]) - (tmp1634[i]).coeffs[2:order + 1] .= zero((tmp1634[i]).coeffs[1]) - (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(tmp1634[i]) - (temp_N_M_y[i]).coeffs[2:order + 1] .= zero((temp_N_M_y[i]).coeffs[1]) - (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) - (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) - (tmp1636[i]).coeffs[1] = constant_term(N_MfigM_pmA_z[i]) * constant_term(μ[j]) - (tmp1636[i]).coeffs[2:order + 1] .= zero((tmp1636[i]).coeffs[1]) - (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(tmp1636[i]) - (temp_N_M_z[i]).coeffs[2:order + 1] .= zero((temp_N_M_z[i]).coeffs[1]) - (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) - (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) - end - end - end - end - end - for j = 1:N - for i = 1:N - if i == j - continue - else - (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) - (_4ϕj[i, j]).coeffs[2:order + 1] .= zero((_4ϕj[i, j]).coeffs[1]) - (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) - (ϕi_plus_4ϕj[i, j]).coeffs[2:order + 1] .= zero((ϕi_plus_4ϕj[i, j]).coeffs[1]) - (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) - (_2v2[i, j]).coeffs[2:order + 1] .= zero((_2v2[i, j]).coeffs[1]) - (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) - (sj2_plus_2si2[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2[i, j]).coeffs[1]) - (tmp1645[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) - (tmp1645[i, j]).coeffs[2:order + 1] .= zero((tmp1645[i, j]).coeffs[1]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1645[i, j]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1]) - (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) - (ϕs_and_vs[i, j]).coeffs[2:order + 1] .= zero((ϕs_and_vs[i, j]).coeffs[1]) - (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) - (Xij_t_Ui[i, j]).coeffs[2:order + 1] .= zero((Xij_t_Ui[i, j]).coeffs[1]) - (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) - (Yij_t_Vi[i, j]).coeffs[2:order + 1] .= zero((Yij_t_Vi[i, j]).coeffs[1]) - (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) - (Zij_t_Wi[i, j]).coeffs[2:order + 1] .= zero((Zij_t_Wi[i, j]).coeffs[1]) - (tmp1651[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) - (tmp1651[i, j]).coeffs[2:order + 1] .= zero((tmp1651[i, j]).coeffs[1]) - (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp1651[i, j]) + constant_term(Zij_t_Wi[i, j]) - (Rij_dot_Vi[i, j]).coeffs[2:order + 1] .= zero((Rij_dot_Vi[i, j]).coeffs[1]) - (tmp1654[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) - (tmp1654[i, j]).coeffs[2:order + 1] .= zero((tmp1654[i, j]).coeffs[1]) - (pn1t7[i, j]).coeffs[1] = constant_term(tmp1654[i, j]) / constant_term(r_p2[i, j]) - (pn1t7[i, j]).coeffs[2:order + 1] .= zero((pn1t7[i, j]).coeffs[1]) - (tmp1657[i, j]).coeffs[1] = constant_term(1.5) * constant_term(pn1t7[i, j]) - (tmp1657[i, j]).coeffs[2:order + 1] .= zero((tmp1657[i, j]).coeffs[1]) - (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1657[i, j]) - (pn1t2_7[i, j]).coeffs[2:order + 1] .= zero((pn1t2_7[i, j]).coeffs[1]) - (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) - (pn1t1_7[i, j]).coeffs[2:order + 1] .= zero((pn1t1_7[i, j]).coeffs[1]) - end - end - (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) - (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) - (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) - end - for j = 1:N - for i = 1:N - if i == j - continue - else - (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) - (pNX_t_X[i, j]).coeffs[2:order + 1] .= zero((pNX_t_X[i, j]).coeffs[1]) - (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) - (pNY_t_Y[i, j]).coeffs[2:order + 1] .= zero((pNY_t_Y[i, j]).coeffs[1]) - (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) - (pNZ_t_Z[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_Z[i, j]).coeffs[1]) - (tmp1664[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) - (tmp1664[i, j]).coeffs[2:order + 1] .= zero((tmp1664[i, j]).coeffs[1]) - (tmp1665[i, j]).coeffs[1] = constant_term(tmp1664[i, j]) + constant_term(pNZ_t_Z[i, j]) - (tmp1665[i, j]).coeffs[2:order + 1] .= zero((tmp1665[i, j]).coeffs[1]) - (tmp1666[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp1665[i, j]) - (tmp1666[i, j]).coeffs[2:order + 1] .= zero((tmp1666[i, j]).coeffs[1]) - (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp1666[i, j]) - (pn1[i, j]).coeffs[2:order + 1] .= zero((pn1[i, j]).coeffs[1]) - (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) - (X_t_pn1[i, j]).coeffs[2:order + 1] .= zero((X_t_pn1[i, j]).coeffs[1]) - (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) - (Y_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Y_t_pn1[i, j]).coeffs[1]) - (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) - (Z_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Z_t_pn1[i, j]).coeffs[1]) - (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) - (pNX_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNX_t_pn3[i, j]).coeffs[1]) - (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) - (pNY_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNY_t_pn3[i, j]).coeffs[1]) - (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) - (pNZ_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_pn3[i, j]).coeffs[1]) - (tmp1674[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) - (tmp1674[i, j]).coeffs[2:order + 1] .= zero((tmp1674[i, j]).coeffs[1]) - (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp1674[i, j]) - (termpnx[i, j]).coeffs[2:order + 1] .= zero((termpnx[i, j]).coeffs[1]) - (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) - (sumpnx[i, j]).coeffs[2:order + 1] .= zero((sumpnx[i, j]).coeffs[1]) - (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) - (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) - (tmp1677[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) - (tmp1677[i, j]).coeffs[2:order + 1] .= zero((tmp1677[i, j]).coeffs[1]) - (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp1677[i, j]) - (termpny[i, j]).coeffs[2:order + 1] .= zero((termpny[i, j]).coeffs[1]) - (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) - (sumpny[i, j]).coeffs[2:order + 1] .= zero((sumpny[i, j]).coeffs[1]) - (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) - (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) - (tmp1680[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) - (tmp1680[i, j]).coeffs[2:order + 1] .= zero((tmp1680[i, j]).coeffs[1]) - (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp1680[i, j]) - (termpnz[i, j]).coeffs[2:order + 1] .= zero((termpnz[i, j]).coeffs[1]) - (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) - (sumpnz[i, j]).coeffs[2:order + 1] .= zero((sumpnz[i, j]).coeffs[1]) - (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) - (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) - end - end - (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) - (postNewtonX[j]).coeffs[2:order + 1] .= zero((postNewtonX[j]).coeffs[1]) - (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) - (postNewtonY[j]).coeffs[2:order + 1] .= zero((postNewtonY[j]).coeffs[1]) - (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) - (postNewtonZ[j]).coeffs[2:order + 1] .= zero((postNewtonZ[j]).coeffs[1]) - end - for i = 1:N_ext - (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) - (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) - (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) - (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) - (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) - (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) - end - for i = N_ext + 1:N - (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) - (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) - (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) - (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) - (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) - (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) - end - tmp1689.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) - tmp1689.coeffs[2:order + 1] .= zero(tmp1689.coeffs[1]) - tmp1690.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) - tmp1690.coeffs[2:order + 1] .= zero(tmp1690.coeffs[1]) - tmp1691.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) - tmp1691.coeffs[2:order + 1] .= zero(tmp1691.coeffs[1]) - tmp1692.coeffs[1] = constant_term(tmp1690) + constant_term(tmp1691) - tmp1692.coeffs[2:order + 1] .= zero(tmp1692.coeffs[1]) - Iω_x.coeffs[1] = constant_term(tmp1689) + constant_term(tmp1692) - Iω_x.coeffs[2:order + 1] .= zero(Iω_x.coeffs[1]) - tmp1694.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) - tmp1694.coeffs[2:order + 1] .= zero(tmp1694.coeffs[1]) - tmp1695.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) - tmp1695.coeffs[2:order + 1] .= zero(tmp1695.coeffs[1]) - tmp1696.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) - tmp1696.coeffs[2:order + 1] .= zero(tmp1696.coeffs[1]) - tmp1697.coeffs[1] = constant_term(tmp1695) + constant_term(tmp1696) - tmp1697.coeffs[2:order + 1] .= zero(tmp1697.coeffs[1]) - Iω_y.coeffs[1] = constant_term(tmp1694) + constant_term(tmp1697) - Iω_y.coeffs[2:order + 1] .= zero(Iω_y.coeffs[1]) - tmp1699.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) - tmp1699.coeffs[2:order + 1] .= zero(tmp1699.coeffs[1]) - tmp1700.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) - tmp1700.coeffs[2:order + 1] .= zero(tmp1700.coeffs[1]) - tmp1701.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) - tmp1701.coeffs[2:order + 1] .= zero(tmp1701.coeffs[1]) - tmp1702.coeffs[1] = constant_term(tmp1700) + constant_term(tmp1701) - tmp1702.coeffs[2:order + 1] .= zero(tmp1702.coeffs[1]) - Iω_z.coeffs[1] = constant_term(tmp1699) + constant_term(tmp1702) - Iω_z.coeffs[2:order + 1] .= zero(Iω_z.coeffs[1]) - tmp1704.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) - tmp1704.coeffs[2:order + 1] .= zero(tmp1704.coeffs[1]) - tmp1705.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) - tmp1705.coeffs[2:order + 1] .= zero(tmp1705.coeffs[1]) - ωxIω_x.coeffs[1] = constant_term(tmp1704) - constant_term(tmp1705) - ωxIω_x.coeffs[2:order + 1] .= zero(ωxIω_x.coeffs[1]) - tmp1707.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) - tmp1707.coeffs[2:order + 1] .= zero(tmp1707.coeffs[1]) - tmp1708.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) - tmp1708.coeffs[2:order + 1] .= zero(tmp1708.coeffs[1]) - ωxIω_y.coeffs[1] = constant_term(tmp1707) - constant_term(tmp1708) - ωxIω_y.coeffs[2:order + 1] .= zero(ωxIω_y.coeffs[1]) - tmp1710.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) - tmp1710.coeffs[2:order + 1] .= zero(tmp1710.coeffs[1]) - tmp1711.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) - tmp1711.coeffs[2:order + 1] .= zero(tmp1711.coeffs[1]) - ωxIω_z.coeffs[1] = constant_term(tmp1710) - constant_term(tmp1711) - ωxIω_z.coeffs[2:order + 1] .= zero(ωxIω_z.coeffs[1]) - tmp1713.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) - tmp1713.coeffs[2:order + 1] .= zero(tmp1713.coeffs[1]) - tmp1714.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) - tmp1714.coeffs[2:order + 1] .= zero(tmp1714.coeffs[1]) - tmp1715.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) - tmp1715.coeffs[2:order + 1] .= zero(tmp1715.coeffs[1]) - tmp1716.coeffs[1] = constant_term(tmp1714) + constant_term(tmp1715) - tmp1716.coeffs[2:order + 1] .= zero(tmp1716.coeffs[1]) - dIω_x.coeffs[1] = constant_term(tmp1713) + constant_term(tmp1716) - dIω_x.coeffs[2:order + 1] .= zero(dIω_x.coeffs[1]) - tmp1718.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) - tmp1718.coeffs[2:order + 1] .= zero(tmp1718.coeffs[1]) - tmp1719.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) - tmp1719.coeffs[2:order + 1] .= zero(tmp1719.coeffs[1]) - tmp1720.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) - tmp1720.coeffs[2:order + 1] .= zero(tmp1720.coeffs[1]) - tmp1721.coeffs[1] = constant_term(tmp1719) + constant_term(tmp1720) - tmp1721.coeffs[2:order + 1] .= zero(tmp1721.coeffs[1]) - dIω_y.coeffs[1] = constant_term(tmp1718) + constant_term(tmp1721) - dIω_y.coeffs[2:order + 1] .= zero(dIω_y.coeffs[1]) - tmp1723.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) - tmp1723.coeffs[2:order + 1] .= zero(tmp1723.coeffs[1]) - tmp1724.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) - tmp1724.coeffs[2:order + 1] .= zero(tmp1724.coeffs[1]) - tmp1725.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) - tmp1725.coeffs[2:order + 1] .= zero(tmp1725.coeffs[1]) - tmp1726.coeffs[1] = constant_term(tmp1724) + constant_term(tmp1725) - tmp1726.coeffs[2:order + 1] .= zero(tmp1726.coeffs[1]) - dIω_z.coeffs[1] = constant_term(tmp1723) + constant_term(tmp1726) - dIω_z.coeffs[2:order + 1] .= zero(dIω_z.coeffs[1]) - er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_1.coeffs[2:order + 1] .= zero(er_EM_I_1.coeffs[1]) - er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_2.coeffs[2:order + 1] .= zero(er_EM_I_2.coeffs[1]) - er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_3.coeffs[2:order + 1] .= zero(er_EM_I_3.coeffs[1]) - p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) - p_E_I_1.coeffs[2:order + 1] .= zero(p_E_I_1.coeffs[1]) - p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) - p_E_I_2.coeffs[2:order + 1] .= zero(p_E_I_2.coeffs[1]) - p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) - p_E_I_3.coeffs[2:order + 1] .= zero(p_E_I_3.coeffs[1]) - tmp1731.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) - tmp1731.coeffs[2:order + 1] .= zero(tmp1731.coeffs[1]) - tmp1732.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) - tmp1732.coeffs[2:order + 1] .= zero(tmp1732.coeffs[1]) - tmp1733.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) - tmp1733.coeffs[2:order + 1] .= zero(tmp1733.coeffs[1]) - tmp1734.coeffs[1] = constant_term(tmp1732) + constant_term(tmp1733) - tmp1734.coeffs[2:order + 1] .= zero(tmp1734.coeffs[1]) - er_EM_1.coeffs[1] = constant_term(tmp1731) + constant_term(tmp1734) - er_EM_1.coeffs[2:order + 1] .= zero(er_EM_1.coeffs[1]) - tmp1736.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) - tmp1736.coeffs[2:order + 1] .= zero(tmp1736.coeffs[1]) - tmp1737.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) - tmp1737.coeffs[2:order + 1] .= zero(tmp1737.coeffs[1]) - tmp1738.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) - tmp1738.coeffs[2:order + 1] .= zero(tmp1738.coeffs[1]) - tmp1739.coeffs[1] = constant_term(tmp1737) + constant_term(tmp1738) - tmp1739.coeffs[2:order + 1] .= zero(tmp1739.coeffs[1]) - er_EM_2.coeffs[1] = constant_term(tmp1736) + constant_term(tmp1739) - er_EM_2.coeffs[2:order + 1] .= zero(er_EM_2.coeffs[1]) - tmp1741.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) - tmp1741.coeffs[2:order + 1] .= zero(tmp1741.coeffs[1]) - tmp1742.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) - tmp1742.coeffs[2:order + 1] .= zero(tmp1742.coeffs[1]) - tmp1743.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) - tmp1743.coeffs[2:order + 1] .= zero(tmp1743.coeffs[1]) - tmp1744.coeffs[1] = constant_term(tmp1742) + constant_term(tmp1743) - tmp1744.coeffs[2:order + 1] .= zero(tmp1744.coeffs[1]) - er_EM_3.coeffs[1] = constant_term(tmp1741) + constant_term(tmp1744) - er_EM_3.coeffs[2:order + 1] .= zero(er_EM_3.coeffs[1]) - tmp1746.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) - tmp1746.coeffs[2:order + 1] .= zero(tmp1746.coeffs[1]) - tmp1747.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) - tmp1747.coeffs[2:order + 1] .= zero(tmp1747.coeffs[1]) - tmp1748.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) - tmp1748.coeffs[2:order + 1] .= zero(tmp1748.coeffs[1]) - tmp1749.coeffs[1] = constant_term(tmp1747) + constant_term(tmp1748) - tmp1749.coeffs[2:order + 1] .= zero(tmp1749.coeffs[1]) - p_E_1.coeffs[1] = constant_term(tmp1746) + constant_term(tmp1749) - p_E_1.coeffs[2:order + 1] .= zero(p_E_1.coeffs[1]) - tmp1751.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) - tmp1751.coeffs[2:order + 1] .= zero(tmp1751.coeffs[1]) - tmp1752.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) - tmp1752.coeffs[2:order + 1] .= zero(tmp1752.coeffs[1]) - tmp1753.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) - tmp1753.coeffs[2:order + 1] .= zero(tmp1753.coeffs[1]) - tmp1754.coeffs[1] = constant_term(tmp1752) + constant_term(tmp1753) - tmp1754.coeffs[2:order + 1] .= zero(tmp1754.coeffs[1]) - p_E_2.coeffs[1] = constant_term(tmp1751) + constant_term(tmp1754) - p_E_2.coeffs[2:order + 1] .= zero(p_E_2.coeffs[1]) - tmp1756.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) - tmp1756.coeffs[2:order + 1] .= zero(tmp1756.coeffs[1]) - tmp1757.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) - tmp1757.coeffs[2:order + 1] .= zero(tmp1757.coeffs[1]) - tmp1758.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) - tmp1758.coeffs[2:order + 1] .= zero(tmp1758.coeffs[1]) - tmp1759.coeffs[1] = constant_term(tmp1757) + constant_term(tmp1758) - tmp1759.coeffs[2:order + 1] .= zero(tmp1759.coeffs[1]) - p_E_3.coeffs[1] = constant_term(tmp1756) + constant_term(tmp1759) - p_E_3.coeffs[2:order + 1] .= zero(p_E_3.coeffs[1]) - tmp1761.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) - tmp1761.coeffs[2:order + 1] .= zero(tmp1761.coeffs[1]) - tmp1762.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) - tmp1762.coeffs[2:order + 1] .= zero(tmp1762.coeffs[1]) - tmp1763.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) - tmp1763.coeffs[2:order + 1] .= zero(tmp1763.coeffs[1]) - tmp1764.coeffs[1] = constant_term(tmp1762) + constant_term(tmp1763) - tmp1764.coeffs[2:order + 1] .= zero(tmp1764.coeffs[1]) - I_er_EM_1.coeffs[1] = constant_term(tmp1761) + constant_term(tmp1764) - I_er_EM_1.coeffs[2:order + 1] .= zero(I_er_EM_1.coeffs[1]) - tmp1766.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) - tmp1766.coeffs[2:order + 1] .= zero(tmp1766.coeffs[1]) - tmp1767.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) - tmp1767.coeffs[2:order + 1] .= zero(tmp1767.coeffs[1]) - tmp1768.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) - tmp1768.coeffs[2:order + 1] .= zero(tmp1768.coeffs[1]) - tmp1769.coeffs[1] = constant_term(tmp1767) + constant_term(tmp1768) - tmp1769.coeffs[2:order + 1] .= zero(tmp1769.coeffs[1]) - I_er_EM_2.coeffs[1] = constant_term(tmp1766) + constant_term(tmp1769) - I_er_EM_2.coeffs[2:order + 1] .= zero(I_er_EM_2.coeffs[1]) - tmp1771.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) - tmp1771.coeffs[2:order + 1] .= zero(tmp1771.coeffs[1]) - tmp1772.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) - tmp1772.coeffs[2:order + 1] .= zero(tmp1772.coeffs[1]) - tmp1773.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) - tmp1773.coeffs[2:order + 1] .= zero(tmp1773.coeffs[1]) - tmp1774.coeffs[1] = constant_term(tmp1772) + constant_term(tmp1773) - tmp1774.coeffs[2:order + 1] .= zero(tmp1774.coeffs[1]) - I_er_EM_3.coeffs[1] = constant_term(tmp1771) + constant_term(tmp1774) - I_er_EM_3.coeffs[2:order + 1] .= zero(I_er_EM_3.coeffs[1]) - tmp1776.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) - tmp1776.coeffs[2:order + 1] .= zero(tmp1776.coeffs[1]) - tmp1777.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) - tmp1777.coeffs[2:order + 1] .= zero(tmp1777.coeffs[1]) - tmp1778.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) - tmp1778.coeffs[2:order + 1] .= zero(tmp1778.coeffs[1]) - tmp1779.coeffs[1] = constant_term(tmp1777) + constant_term(tmp1778) - tmp1779.coeffs[2:order + 1] .= zero(tmp1779.coeffs[1]) - I_p_E_1.coeffs[1] = constant_term(tmp1776) + constant_term(tmp1779) - I_p_E_1.coeffs[2:order + 1] .= zero(I_p_E_1.coeffs[1]) - tmp1781.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) - tmp1781.coeffs[2:order + 1] .= zero(tmp1781.coeffs[1]) - tmp1782.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) - tmp1782.coeffs[2:order + 1] .= zero(tmp1782.coeffs[1]) - tmp1783.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) - tmp1783.coeffs[2:order + 1] .= zero(tmp1783.coeffs[1]) - tmp1784.coeffs[1] = constant_term(tmp1782) + constant_term(tmp1783) - tmp1784.coeffs[2:order + 1] .= zero(tmp1784.coeffs[1]) - I_p_E_2.coeffs[1] = constant_term(tmp1781) + constant_term(tmp1784) - I_p_E_2.coeffs[2:order + 1] .= zero(I_p_E_2.coeffs[1]) - tmp1786.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) - tmp1786.coeffs[2:order + 1] .= zero(tmp1786.coeffs[1]) - tmp1787.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) - tmp1787.coeffs[2:order + 1] .= zero(tmp1787.coeffs[1]) - tmp1788.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) - tmp1788.coeffs[2:order + 1] .= zero(tmp1788.coeffs[1]) - tmp1789.coeffs[1] = constant_term(tmp1787) + constant_term(tmp1788) - tmp1789.coeffs[2:order + 1] .= zero(tmp1789.coeffs[1]) - I_p_E_3.coeffs[1] = constant_term(tmp1786) + constant_term(tmp1789) - I_p_E_3.coeffs[2:order + 1] .= zero(I_p_E_3.coeffs[1]) - tmp1791.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) - tmp1791.coeffs[2:order + 1] .= zero(tmp1791.coeffs[1]) - tmp1792.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) - tmp1792.coeffs[2:order + 1] .= zero(tmp1792.coeffs[1]) - er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1791) - constant_term(tmp1792) - er_EM_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_1.coeffs[1]) - tmp1794.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) - tmp1794.coeffs[2:order + 1] .= zero(tmp1794.coeffs[1]) - tmp1795.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) - tmp1795.coeffs[2:order + 1] .= zero(tmp1795.coeffs[1]) - er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1794) - constant_term(tmp1795) - er_EM_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_2.coeffs[1]) - tmp1797.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) - tmp1797.coeffs[2:order + 1] .= zero(tmp1797.coeffs[1]) - tmp1798.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) - tmp1798.coeffs[2:order + 1] .= zero(tmp1798.coeffs[1]) - er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1797) - constant_term(tmp1798) - er_EM_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_3.coeffs[1]) - tmp1800.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) - tmp1800.coeffs[2:order + 1] .= zero(tmp1800.coeffs[1]) - tmp1801.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) - tmp1801.coeffs[2:order + 1] .= zero(tmp1801.coeffs[1]) - er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp1800) - constant_term(tmp1801) - er_EM_cross_I_p_E_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_1.coeffs[1]) - tmp1803.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) - tmp1803.coeffs[2:order + 1] .= zero(tmp1803.coeffs[1]) - tmp1804.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) - tmp1804.coeffs[2:order + 1] .= zero(tmp1804.coeffs[1]) - er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp1803) - constant_term(tmp1804) - er_EM_cross_I_p_E_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_2.coeffs[1]) - tmp1806.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) - tmp1806.coeffs[2:order + 1] .= zero(tmp1806.coeffs[1]) - tmp1807.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) - tmp1807.coeffs[2:order + 1] .= zero(tmp1807.coeffs[1]) - er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp1806) - constant_term(tmp1807) - er_EM_cross_I_p_E_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_3.coeffs[1]) - tmp1809.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) - tmp1809.coeffs[2:order + 1] .= zero(tmp1809.coeffs[1]) - tmp1810.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) - tmp1810.coeffs[2:order + 1] .= zero(tmp1810.coeffs[1]) - p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1809) - constant_term(tmp1810) - p_E_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_1.coeffs[1]) - tmp1812.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) - tmp1812.coeffs[2:order + 1] .= zero(tmp1812.coeffs[1]) - tmp1813.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) - tmp1813.coeffs[2:order + 1] .= zero(tmp1813.coeffs[1]) - p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1812) - constant_term(tmp1813) - p_E_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_2.coeffs[1]) - tmp1815.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) - tmp1815.coeffs[2:order + 1] .= zero(tmp1815.coeffs[1]) - tmp1816.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) - tmp1816.coeffs[2:order + 1] .= zero(tmp1816.coeffs[1]) - p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1815) - constant_term(tmp1816) - p_E_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_3.coeffs[1]) - tmp1818.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) - tmp1818.coeffs[2:order + 1] .= zero(tmp1818.coeffs[1]) - tmp1819.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) - tmp1819.coeffs[2:order + 1] .= zero(tmp1819.coeffs[1]) - p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp1818) - constant_term(tmp1819) - p_E_cross_I_p_E_1.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_1.coeffs[1]) - tmp1821.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) - tmp1821.coeffs[2:order + 1] .= zero(tmp1821.coeffs[1]) - tmp1822.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) - tmp1822.coeffs[2:order + 1] .= zero(tmp1822.coeffs[1]) - p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp1821) - constant_term(tmp1822) - p_E_cross_I_p_E_2.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_2.coeffs[1]) - tmp1824.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) - tmp1824.coeffs[2:order + 1] .= zero(tmp1824.coeffs[1]) - tmp1825.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) - tmp1825.coeffs[2:order + 1] .= zero(tmp1825.coeffs[1]) - p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp1824) - constant_term(tmp1825) - p_E_cross_I_p_E_3.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_3.coeffs[1]) - tmp1829.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) - tmp1829.coeffs[2:order + 1] .= zero(tmp1829.coeffs[1]) - tmp1830.coeffs[1] = constant_term(7) * constant_term(tmp1829) - tmp1830.coeffs[2:order + 1] .= zero(tmp1830.coeffs[1]) - one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp1830) - one_minus_7sin2ϕEM.coeffs[2:order + 1] .= zero(one_minus_7sin2ϕEM.coeffs[1]) - two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) - two_sinϕEM.coeffs[2:order + 1] .= zero(two_sinϕEM.coeffs[1]) - tmp1835.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) - tmp1835.coeffs[2:order + 1] .= zero(tmp1835.coeffs[1]) - N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp1835) - N_MfigM_figE_factor_div_rEMp5.coeffs[2:order + 1] .= zero(N_MfigM_figE_factor_div_rEMp5.coeffs[1]) - tmp1837.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) - tmp1837.coeffs[2:order + 1] .= zero(tmp1837.coeffs[1]) - tmp1838.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) - tmp1838.coeffs[2:order + 1] .= zero(tmp1838.coeffs[1]) - tmp1839.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1838) - tmp1839.coeffs[2:order + 1] .= zero(tmp1839.coeffs[1]) - tmp1840.coeffs[1] = constant_term(tmp1837) + constant_term(tmp1839) - tmp1840.coeffs[2:order + 1] .= zero(tmp1840.coeffs[1]) - tmp1842.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) - tmp1842.coeffs[2:order + 1] .= zero(tmp1842.coeffs[1]) - tmp1843.coeffs[1] = constant_term(tmp1840) - constant_term(tmp1842) - tmp1843.coeffs[2:order + 1] .= zero(tmp1843.coeffs[1]) - N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1843) - N_MfigM_figE_1.coeffs[2:order + 1] .= zero(N_MfigM_figE_1.coeffs[1]) - tmp1845.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) - tmp1845.coeffs[2:order + 1] .= zero(tmp1845.coeffs[1]) - tmp1846.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) - tmp1846.coeffs[2:order + 1] .= zero(tmp1846.coeffs[1]) - tmp1847.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1846) - tmp1847.coeffs[2:order + 1] .= zero(tmp1847.coeffs[1]) - tmp1848.coeffs[1] = constant_term(tmp1845) + constant_term(tmp1847) - tmp1848.coeffs[2:order + 1] .= zero(tmp1848.coeffs[1]) - tmp1850.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) - tmp1850.coeffs[2:order + 1] .= zero(tmp1850.coeffs[1]) - tmp1851.coeffs[1] = constant_term(tmp1848) - constant_term(tmp1850) - tmp1851.coeffs[2:order + 1] .= zero(tmp1851.coeffs[1]) - N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1851) - N_MfigM_figE_2.coeffs[2:order + 1] .= zero(N_MfigM_figE_2.coeffs[1]) - tmp1853.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) - tmp1853.coeffs[2:order + 1] .= zero(tmp1853.coeffs[1]) - tmp1854.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) - tmp1854.coeffs[2:order + 1] .= zero(tmp1854.coeffs[1]) - tmp1855.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1854) - tmp1855.coeffs[2:order + 1] .= zero(tmp1855.coeffs[1]) - tmp1856.coeffs[1] = constant_term(tmp1853) + constant_term(tmp1855) - tmp1856.coeffs[2:order + 1] .= zero(tmp1856.coeffs[1]) - tmp1858.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) - tmp1858.coeffs[2:order + 1] .= zero(tmp1858.coeffs[1]) - tmp1859.coeffs[1] = constant_term(tmp1856) - constant_term(tmp1858) - tmp1859.coeffs[2:order + 1] .= zero(tmp1859.coeffs[1]) - N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1859) - N_MfigM_figE_3.coeffs[2:order + 1] .= zero(N_MfigM_figE_3.coeffs[1]) - tmp1861.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) - tmp1861.coeffs[2:order + 1] .= zero(tmp1861.coeffs[1]) - tmp1862.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) - tmp1862.coeffs[2:order + 1] .= zero(tmp1862.coeffs[1]) - tmp1863.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) - tmp1863.coeffs[2:order + 1] .= zero(tmp1863.coeffs[1]) - tmp1864.coeffs[1] = constant_term(tmp1862) + constant_term(tmp1863) - tmp1864.coeffs[2:order + 1] .= zero(tmp1864.coeffs[1]) - N_1_LMF.coeffs[1] = constant_term(tmp1861) + constant_term(tmp1864) - N_1_LMF.coeffs[2:order + 1] .= zero(N_1_LMF.coeffs[1]) - tmp1866.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) - tmp1866.coeffs[2:order + 1] .= zero(tmp1866.coeffs[1]) - tmp1867.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) - tmp1867.coeffs[2:order + 1] .= zero(tmp1867.coeffs[1]) - tmp1868.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) - tmp1868.coeffs[2:order + 1] .= zero(tmp1868.coeffs[1]) - tmp1869.coeffs[1] = constant_term(tmp1867) + constant_term(tmp1868) - tmp1869.coeffs[2:order + 1] .= zero(tmp1869.coeffs[1]) - N_2_LMF.coeffs[1] = constant_term(tmp1866) + constant_term(tmp1869) - N_2_LMF.coeffs[2:order + 1] .= zero(N_2_LMF.coeffs[1]) - tmp1871.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) - tmp1871.coeffs[2:order + 1] .= zero(tmp1871.coeffs[1]) - tmp1872.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) - tmp1872.coeffs[2:order + 1] .= zero(tmp1872.coeffs[1]) - tmp1873.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) - tmp1873.coeffs[2:order + 1] .= zero(tmp1873.coeffs[1]) - tmp1874.coeffs[1] = constant_term(tmp1872) + constant_term(tmp1873) - tmp1874.coeffs[2:order + 1] .= zero(tmp1874.coeffs[1]) - N_3_LMF.coeffs[1] = constant_term(tmp1871) + constant_term(tmp1874) - N_3_LMF.coeffs[2:order + 1] .= zero(N_3_LMF.coeffs[1]) - tmp1876.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) - tmp1876.coeffs[2:order + 1] .= zero(tmp1876.coeffs[1]) - tmp1877.coeffs[1] = constant_term(k_ν) * constant_term(tmp1876) - tmp1877.coeffs[2:order + 1] .= zero(tmp1877.coeffs[1]) - tmp1878.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - tmp1878.coeffs[2:order + 1] .= zero(tmp1878.coeffs[1]) - tmp1879.coeffs[1] = constant_term(tmp1878) * constant_term(q[6N + 11]) - tmp1879.coeffs[2:order + 1] .= zero(tmp1879.coeffs[1]) - N_cmb_1.coeffs[1] = constant_term(tmp1877) - constant_term(tmp1879) - N_cmb_1.coeffs[2:order + 1] .= zero(N_cmb_1.coeffs[1]) - tmp1881.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) - tmp1881.coeffs[2:order + 1] .= zero(tmp1881.coeffs[1]) - tmp1882.coeffs[1] = constant_term(k_ν) * constant_term(tmp1881) - tmp1882.coeffs[2:order + 1] .= zero(tmp1882.coeffs[1]) - tmp1883.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - tmp1883.coeffs[2:order + 1] .= zero(tmp1883.coeffs[1]) - tmp1884.coeffs[1] = constant_term(tmp1883) * constant_term(q[6N + 10]) - tmp1884.coeffs[2:order + 1] .= zero(tmp1884.coeffs[1]) - N_cmb_2.coeffs[1] = constant_term(tmp1882) + constant_term(tmp1884) - N_cmb_2.coeffs[2:order + 1] .= zero(N_cmb_2.coeffs[1]) - tmp1886.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) - tmp1886.coeffs[2:order + 1] .= zero(tmp1886.coeffs[1]) - N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp1886) - N_cmb_3.coeffs[2:order + 1] .= zero(N_cmb_3.coeffs[1]) - tmp1888.coeffs[1] = constant_term(N_1_LMF) + constant_term(N_MfigM_figE_1) - tmp1888.coeffs[2:order + 1] .= zero(tmp1888.coeffs[1]) - tmp1889.coeffs[1] = constant_term(tmp1888) + constant_term(N_cmb_1) - tmp1889.coeffs[2:order + 1] .= zero(tmp1889.coeffs[1]) - tmp1890.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) - tmp1890.coeffs[2:order + 1] .= zero(tmp1890.coeffs[1]) - I_dω_1.coeffs[1] = constant_term(tmp1889) - constant_term(tmp1890) - I_dω_1.coeffs[2:order + 1] .= zero(I_dω_1.coeffs[1]) - tmp1892.coeffs[1] = constant_term(N_2_LMF) + constant_term(N_MfigM_figE_2) - tmp1892.coeffs[2:order + 1] .= zero(tmp1892.coeffs[1]) - tmp1893.coeffs[1] = constant_term(tmp1892) + constant_term(N_cmb_2) - tmp1893.coeffs[2:order + 1] .= zero(tmp1893.coeffs[1]) - tmp1894.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) - tmp1894.coeffs[2:order + 1] .= zero(tmp1894.coeffs[1]) - I_dω_2.coeffs[1] = constant_term(tmp1893) - constant_term(tmp1894) - I_dω_2.coeffs[2:order + 1] .= zero(I_dω_2.coeffs[1]) - tmp1896.coeffs[1] = constant_term(N_3_LMF) + constant_term(N_MfigM_figE_3) - tmp1896.coeffs[2:order + 1] .= zero(tmp1896.coeffs[1]) - tmp1897.coeffs[1] = constant_term(tmp1896) + constant_term(N_cmb_3) - tmp1897.coeffs[2:order + 1] .= zero(tmp1897.coeffs[1]) - tmp1898.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) - tmp1898.coeffs[2:order + 1] .= zero(tmp1898.coeffs[1]) - I_dω_3.coeffs[1] = constant_term(tmp1897) - constant_term(tmp1898) - I_dω_3.coeffs[2:order + 1] .= zero(I_dω_3.coeffs[1]) - Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) - Ic_ωc_1.coeffs[2:order + 1] .= zero(Ic_ωc_1.coeffs[1]) - Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) - Ic_ωc_2.coeffs[2:order + 1] .= zero(Ic_ωc_2.coeffs[1]) - Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) - Ic_ωc_3.coeffs[2:order + 1] .= zero(Ic_ωc_3.coeffs[1]) - tmp1903.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) - tmp1903.coeffs[2:order + 1] .= zero(tmp1903.coeffs[1]) - tmp1904.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) - tmp1904.coeffs[2:order + 1] .= zero(tmp1904.coeffs[1]) - m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp1903) - constant_term(tmp1904) - m_ωm_x_Icωc_1.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_1.coeffs[1]) - tmp1906.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) - tmp1906.coeffs[2:order + 1] .= zero(tmp1906.coeffs[1]) - tmp1907.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) - tmp1907.coeffs[2:order + 1] .= zero(tmp1907.coeffs[1]) - m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp1906) - constant_term(tmp1907) - m_ωm_x_Icωc_2.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_2.coeffs[1]) - tmp1909.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) - tmp1909.coeffs[2:order + 1] .= zero(tmp1909.coeffs[1]) - tmp1910.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) - tmp1910.coeffs[2:order + 1] .= zero(tmp1910.coeffs[1]) - m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp1909) - constant_term(tmp1910) - m_ωm_x_Icωc_3.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_3.coeffs[1]) - Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) - Ic_dωc_1.coeffs[2:order + 1] .= zero(Ic_dωc_1.coeffs[1]) - Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) - Ic_dωc_2.coeffs[2:order + 1] .= zero(Ic_dωc_2.coeffs[1]) - Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) - Ic_dωc_3.coeffs[2:order + 1] .= zero(Ic_dωc_3.coeffs[1]) - tmp1915.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp1915.coeffs[2:order + 1] .= zero(tmp1915.coeffs[1]) - tmp1995.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp1995.coeffs[2:order + 1] .= zero(tmp1995.coeffs[1]) - tmp1916.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1915) - tmp1916.coeffs[2:order + 1] .= zero(tmp1916.coeffs[1]) - tmp1917.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp1917.coeffs[2:order + 1] .= zero(tmp1917.coeffs[1]) - tmp1996.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp1996.coeffs[2:order + 1] .= zero(tmp1996.coeffs[1]) - tmp1918.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1917) - tmp1918.coeffs[2:order + 1] .= zero(tmp1918.coeffs[1]) - tmp1919.coeffs[1] = constant_term(tmp1916) + constant_term(tmp1918) - tmp1919.coeffs[2:order + 1] .= zero(tmp1919.coeffs[1]) - tmp1920.coeffs[1] = sin(constant_term(q[6N + 2])) - tmp1920.coeffs[2:order + 1] .= zero(tmp1920.coeffs[1]) - tmp1997.coeffs[1] = cos(constant_term(q[6N + 2])) - tmp1997.coeffs[2:order + 1] .= zero(tmp1997.coeffs[1]) - (dq[6N + 1]).coeffs[1] = constant_term(tmp1919) / constant_term(tmp1920) - (dq[6N + 1]).coeffs[2:order + 1] .= zero((dq[6N + 1]).coeffs[1]) - tmp1922.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp1922.coeffs[2:order + 1] .= zero(tmp1922.coeffs[1]) - tmp1998.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp1998.coeffs[2:order + 1] .= zero(tmp1998.coeffs[1]) - tmp1923.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1922) - tmp1923.coeffs[2:order + 1] .= zero(tmp1923.coeffs[1]) - tmp1924.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp1924.coeffs[2:order + 1] .= zero(tmp1924.coeffs[1]) - tmp1999.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp1999.coeffs[2:order + 1] .= zero(tmp1999.coeffs[1]) - tmp1925.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1924) - tmp1925.coeffs[2:order + 1] .= zero(tmp1925.coeffs[1]) - (dq[6N + 2]).coeffs[1] = constant_term(tmp1923) - constant_term(tmp1925) - (dq[6N + 2]).coeffs[2:order + 1] .= zero((dq[6N + 2]).coeffs[1]) - tmp1927.coeffs[1] = cos(constant_term(q[6N + 2])) - tmp1927.coeffs[2:order + 1] .= zero(tmp1927.coeffs[1]) - tmp2000.coeffs[1] = sin(constant_term(q[6N + 2])) - tmp2000.coeffs[2:order + 1] .= zero(tmp2000.coeffs[1]) - tmp1928.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp1927) - tmp1928.coeffs[2:order + 1] .= zero(tmp1928.coeffs[1]) - (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp1928) - (dq[6N + 3]).coeffs[2:order + 1] .= zero((dq[6N + 3]).coeffs[1]) - tmp1930.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) - tmp1930.coeffs[2:order + 1] .= zero(tmp1930.coeffs[1]) - tmp1931.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) - tmp1931.coeffs[2:order + 1] .= zero(tmp1931.coeffs[1]) - tmp1932.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) - tmp1932.coeffs[2:order + 1] .= zero(tmp1932.coeffs[1]) - tmp1933.coeffs[1] = constant_term(tmp1931) + constant_term(tmp1932) - tmp1933.coeffs[2:order + 1] .= zero(tmp1933.coeffs[1]) - (dq[6N + 4]).coeffs[1] = constant_term(tmp1930) + constant_term(tmp1933) - (dq[6N + 4]).coeffs[2:order + 1] .= zero((dq[6N + 4]).coeffs[1]) - tmp1935.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) - tmp1935.coeffs[2:order + 1] .= zero(tmp1935.coeffs[1]) - tmp1936.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) - tmp1936.coeffs[2:order + 1] .= zero(tmp1936.coeffs[1]) - tmp1937.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) - tmp1937.coeffs[2:order + 1] .= zero(tmp1937.coeffs[1]) - tmp1938.coeffs[1] = constant_term(tmp1936) + constant_term(tmp1937) - tmp1938.coeffs[2:order + 1] .= zero(tmp1938.coeffs[1]) - (dq[6N + 5]).coeffs[1] = constant_term(tmp1935) + constant_term(tmp1938) - (dq[6N + 5]).coeffs[2:order + 1] .= zero((dq[6N + 5]).coeffs[1]) - tmp1940.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) - tmp1940.coeffs[2:order + 1] .= zero(tmp1940.coeffs[1]) - tmp1941.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) - tmp1941.coeffs[2:order + 1] .= zero(tmp1941.coeffs[1]) - tmp1942.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) - tmp1942.coeffs[2:order + 1] .= zero(tmp1942.coeffs[1]) - tmp1943.coeffs[1] = constant_term(tmp1941) + constant_term(tmp1942) - tmp1943.coeffs[2:order + 1] .= zero(tmp1943.coeffs[1]) - (dq[6N + 6]).coeffs[1] = constant_term(tmp1940) + constant_term(tmp1943) - (dq[6N + 6]).coeffs[2:order + 1] .= zero((dq[6N + 6]).coeffs[1]) - tmp1945.coeffs[1] = sin(constant_term(q[6N + 8])) - tmp1945.coeffs[2:order + 1] .= zero(tmp1945.coeffs[1]) - tmp2001.coeffs[1] = cos(constant_term(q[6N + 8])) - tmp2001.coeffs[2:order + 1] .= zero(tmp2001.coeffs[1]) - tmp1946.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp1945) - tmp1946.coeffs[2:order + 1] .= zero(tmp1946.coeffs[1]) - (dq[6N + 9]).coeffs[1] = -(constant_term(tmp1946)) - (dq[6N + 9]).coeffs[2:order + 1] .= zero((dq[6N + 9]).coeffs[1]) - tmp1948.coeffs[1] = cos(constant_term(q[6N + 8])) - tmp1948.coeffs[2:order + 1] .= zero(tmp1948.coeffs[1]) - tmp2002.coeffs[1] = sin(constant_term(q[6N + 8])) - tmp2002.coeffs[2:order + 1] .= zero(tmp2002.coeffs[1]) - tmp1949.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp1948) - tmp1949.coeffs[2:order + 1] .= zero(tmp1949.coeffs[1]) - (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp1949) - (dq[6N + 7]).coeffs[2:order + 1] .= zero((dq[6N + 7]).coeffs[1]) - (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) - (dq[6N + 8]).coeffs[2:order + 1] .= zero((dq[6N + 8]).coeffs[1]) - (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) - (dq[6N + 10]).coeffs[2:order + 1] .= zero((dq[6N + 10]).coeffs[1]) - (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) - (dq[6N + 11]).coeffs[2:order + 1] .= zero((dq[6N + 11]).coeffs[1]) - (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) - (dq[6N + 12]).coeffs[2:order + 1] .= zero((dq[6N + 12]).coeffs[1]) - (dq[6N + 13]).coeffs[1] = identity(constant_term(zero_q_1)) - (dq[6N + 13]).coeffs[2:order + 1] .= zero((dq[6N + 13]).coeffs[1]) - for __idx = eachindex(q) - (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] - end - for ord = 1:order - 1 - ordnext = ord + 1 - TaylorSeries.identity!(N_MfigM[1], zero_q_1, ord) - TaylorSeries.identity!(N_MfigM[2], zero_q_1, ord) - TaylorSeries.identity!(N_MfigM[3], zero_q_1, ord) - TaylorSeries.identity!(ϕ_m, q[6N + 1], ord) - TaylorSeries.identity!(θ_m, q[6N + 2], ord) - TaylorSeries.identity!(ψ_m, q[6N + 3], ord) - TaylorSeries.sincos!(tmp1954, tmp1220, ϕ_m, ord) - TaylorSeries.sincos!(tmp1955, tmp1221, ψ_m, ord) - TaylorSeries.mul!(tmp1222, tmp1220, tmp1221, ord) - TaylorSeries.sincos!(tmp1956, tmp1223, θ_m, ord) - TaylorSeries.sincos!(tmp1224, tmp1957, ϕ_m, ord) - TaylorSeries.mul!(tmp1225, tmp1223, tmp1224, ord) - TaylorSeries.sincos!(tmp1226, tmp1958, ψ_m, ord) - TaylorSeries.mul!(tmp1227, tmp1225, tmp1226, ord) - TaylorSeries.subst!(RotM[1, 1, mo], tmp1222, tmp1227, ord) - TaylorSeries.sincos!(tmp1959, tmp1229, θ_m, ord) - TaylorSeries.subst!(tmp1230, tmp1229, ord) - TaylorSeries.sincos!(tmp1960, tmp1231, ψ_m, ord) - TaylorSeries.mul!(tmp1232, tmp1230, tmp1231, ord) - TaylorSeries.sincos!(tmp1233, tmp1961, ϕ_m, ord) - TaylorSeries.mul!(tmp1234, tmp1232, tmp1233, ord) - TaylorSeries.sincos!(tmp1962, tmp1235, ϕ_m, ord) - TaylorSeries.sincos!(tmp1236, tmp1963, ψ_m, ord) - TaylorSeries.mul!(tmp1237, tmp1235, tmp1236, ord) - TaylorSeries.subst!(RotM[2, 1, mo], tmp1234, tmp1237, ord) - TaylorSeries.sincos!(tmp1239, tmp1964, θ_m, ord) - TaylorSeries.sincos!(tmp1240, tmp1965, ϕ_m, ord) - TaylorSeries.mul!(RotM[3, 1, mo], tmp1239, tmp1240, ord) - TaylorSeries.sincos!(tmp1966, tmp1242, ψ_m, ord) - TaylorSeries.sincos!(tmp1243, tmp1967, ϕ_m, ord) - TaylorSeries.mul!(tmp1244, tmp1242, tmp1243, ord) - TaylorSeries.sincos!(tmp1968, tmp1245, θ_m, ord) - TaylorSeries.sincos!(tmp1969, tmp1246, ϕ_m, ord) - TaylorSeries.mul!(tmp1247, tmp1245, tmp1246, ord) - TaylorSeries.sincos!(tmp1248, tmp1970, ψ_m, ord) - TaylorSeries.mul!(tmp1249, tmp1247, tmp1248, ord) - TaylorSeries.add!(RotM[1, 2, mo], tmp1244, tmp1249, ord) - TaylorSeries.sincos!(tmp1971, tmp1251, θ_m, ord) - TaylorSeries.sincos!(tmp1972, tmp1252, ϕ_m, ord) - TaylorSeries.mul!(tmp1253, tmp1251, tmp1252, ord) - TaylorSeries.sincos!(tmp1973, tmp1254, ψ_m, ord) - TaylorSeries.mul!(tmp1255, tmp1253, tmp1254, ord) - TaylorSeries.sincos!(tmp1256, tmp1974, ϕ_m, ord) - TaylorSeries.sincos!(tmp1257, tmp1975, ψ_m, ord) - TaylorSeries.mul!(tmp1258, tmp1256, tmp1257, ord) - TaylorSeries.subst!(RotM[2, 2, mo], tmp1255, tmp1258, ord) - TaylorSeries.sincos!(tmp1976, tmp1260, ϕ_m, ord) - TaylorSeries.subst!(tmp1261, tmp1260, ord) - TaylorSeries.sincos!(tmp1262, tmp1977, θ_m, ord) - TaylorSeries.mul!(RotM[3, 2, mo], tmp1261, tmp1262, ord) - TaylorSeries.sincos!(tmp1264, tmp1978, θ_m, ord) - TaylorSeries.sincos!(tmp1265, tmp1979, ψ_m, ord) - TaylorSeries.mul!(RotM[1, 3, mo], tmp1264, tmp1265, ord) - TaylorSeries.sincos!(tmp1980, tmp1267, ψ_m, ord) - TaylorSeries.sincos!(tmp1268, tmp1981, θ_m, ord) - TaylorSeries.mul!(RotM[2, 3, mo], tmp1267, tmp1268, ord) - TaylorSeries.sincos!(tmp1982, RotM[3, 3, mo], θ_m, ord) - TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) - TaylorSeries.sincos!(tmp1983, tmp1271, ϕ_c, ord) - TaylorSeries.mul!(tmp1272, RotM[1, 1, mo], tmp1271, ord) - TaylorSeries.sincos!(tmp1273, tmp1984, ϕ_c, ord) - TaylorSeries.mul!(tmp1274, RotM[1, 2, mo], tmp1273, ord) - TaylorSeries.add!(mantlef2coref[1, 1], tmp1272, tmp1274, ord) - TaylorSeries.subst!(tmp1276, RotM[1, 1, mo], ord) - TaylorSeries.sincos!(tmp1277, tmp1985, ϕ_c, ord) - TaylorSeries.mul!(tmp1278, tmp1276, tmp1277, ord) - TaylorSeries.sincos!(tmp1986, tmp1279, ϕ_c, ord) - TaylorSeries.mul!(tmp1280, RotM[1, 2, mo], tmp1279, ord) - TaylorSeries.add!(mantlef2coref[2, 1], tmp1278, tmp1280, ord) - TaylorSeries.identity!(mantlef2coref[3, 1], RotM[1, 3, mo], ord) - TaylorSeries.sincos!(tmp1987, tmp1282, ϕ_c, ord) - TaylorSeries.mul!(tmp1283, RotM[2, 1, mo], tmp1282, ord) - TaylorSeries.sincos!(tmp1284, tmp1988, ϕ_c, ord) - TaylorSeries.mul!(tmp1285, RotM[2, 2, mo], tmp1284, ord) - TaylorSeries.add!(mantlef2coref[1, 2], tmp1283, tmp1285, ord) - TaylorSeries.subst!(tmp1287, RotM[2, 1, mo], ord) - TaylorSeries.sincos!(tmp1288, tmp1989, ϕ_c, ord) - TaylorSeries.mul!(tmp1289, tmp1287, tmp1288, ord) - TaylorSeries.sincos!(tmp1990, tmp1290, ϕ_c, ord) - TaylorSeries.mul!(tmp1291, RotM[2, 2, mo], tmp1290, ord) - TaylorSeries.add!(mantlef2coref[2, 2], tmp1289, tmp1291, ord) - TaylorSeries.identity!(mantlef2coref[3, 2], RotM[2, 3, mo], ord) - TaylorSeries.sincos!(tmp1991, tmp1293, ϕ_c, ord) - TaylorSeries.mul!(tmp1294, RotM[3, 1, mo], tmp1293, ord) - TaylorSeries.sincos!(tmp1295, tmp1992, ϕ_c, ord) - TaylorSeries.mul!(tmp1296, RotM[3, 2, mo], tmp1295, ord) - TaylorSeries.add!(mantlef2coref[1, 3], tmp1294, tmp1296, ord) - TaylorSeries.subst!(tmp1298, RotM[3, 1, mo], ord) - TaylorSeries.sincos!(tmp1299, tmp1993, ϕ_c, ord) - TaylorSeries.mul!(tmp1300, tmp1298, tmp1299, ord) - TaylorSeries.sincos!(tmp1994, tmp1301, ϕ_c, ord) - TaylorSeries.mul!(tmp1302, RotM[3, 2, mo], tmp1301, ord) - TaylorSeries.add!(mantlef2coref[2, 3], tmp1300, tmp1302, ord) - TaylorSeries.identity!(mantlef2coref[3, 3], RotM[3, 3, mo], ord) - TaylorSeries.mul!(tmp1304, mantlef2coref[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp1305, mantlef2coref[1, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp1306, mantlef2coref[1, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp1307, tmp1305, tmp1306, ord) - TaylorSeries.add!(ω_c_CE_1, tmp1304, tmp1307, ord) - TaylorSeries.mul!(tmp1309, mantlef2coref[2, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp1310, mantlef2coref[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp1311, mantlef2coref[2, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp1312, tmp1310, tmp1311, ord) - TaylorSeries.add!(ω_c_CE_2, tmp1309, tmp1312, ord) - TaylorSeries.mul!(tmp1314, mantlef2coref[3, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp1315, mantlef2coref[3, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp1316, mantlef2coref[3, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp1317, tmp1315, tmp1316, ord) - TaylorSeries.add!(ω_c_CE_3, tmp1314, tmp1317, ord) - TaylorSeries.identity!(J2_t[su], J2S_t, ord) - TaylorSeries.identity!(J2_t[ea], J2E_t, ord) - for j = 1:N - TaylorSeries.identity!(newtonX[j], zero_q_1, ord) - TaylorSeries.identity!(newtonY[j], zero_q_1, ord) - TaylorSeries.identity!(newtonZ[j], zero_q_1, ord) - TaylorSeries.identity!(newtonianNb_Potential[j], zero_q_1, ord) - TaylorSeries.identity!(dq[3j - 2], q[3 * (N + j) - 2], ord) - TaylorSeries.identity!(dq[3j - 1], q[3 * (N + j) - 1], ord) - TaylorSeries.identity!(dq[3j], q[3 * (N + j)], ord) - end - for j = 1:N_ext - TaylorSeries.identity!(accX[j], zero_q_1, ord) - TaylorSeries.identity!(accY[j], zero_q_1, ord) - TaylorSeries.identity!(accZ[j], zero_q_1, ord) - end - for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.subst!(X[i, j], q[3i - 2], q[3j - 2], ord) - TaylorSeries.subst!(Y[i, j], q[3i - 1], q[3j - 1], ord) - TaylorSeries.subst!(Z[i, j], q[3i], q[3j], ord) - TaylorSeries.subst!(U[i, j], dq[3i - 2], dq[3j - 2], ord) - TaylorSeries.subst!(V[i, j], dq[3i - 1], dq[3j - 1], ord) - TaylorSeries.subst!(W[i, j], dq[3i], dq[3j], ord) - TaylorSeries.mul!(tmp1326[3j - 2], 4, dq[3j - 2], ord) - TaylorSeries.mul!(tmp1328[3i - 2], 3, dq[3i - 2], ord) - TaylorSeries.subst!(_4U_m_3X[i, j], tmp1326[3j - 2], tmp1328[3i - 2], ord) - TaylorSeries.mul!(tmp1331[3j - 1], 4, dq[3j - 1], ord) - TaylorSeries.mul!(tmp1333[3i - 1], 3, dq[3i - 1], ord) - TaylorSeries.subst!(_4V_m_3Y[i, j], tmp1331[3j - 1], tmp1333[3i - 1], ord) - TaylorSeries.mul!(tmp1336[3j], 4, dq[3j], ord) - TaylorSeries.mul!(tmp1338[3i], 3, dq[3i], ord) - TaylorSeries.subst!(_4W_m_3Z[i, j], tmp1336[3j], tmp1338[3i], ord) - TaylorSeries.mul!(pn2x[i, j], X[i, j], _4U_m_3X[i, j], ord) - TaylorSeries.mul!(pn2y[i, j], Y[i, j], _4V_m_3Y[i, j], ord) - TaylorSeries.mul!(pn2z[i, j], Z[i, j], _4W_m_3Z[i, j], ord) - TaylorSeries.mul!(UU[i, j], dq[3i - 2], dq[3j - 2], ord) - TaylorSeries.mul!(VV[i, j], dq[3i - 1], dq[3j - 1], ord) - TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) - TaylorSeries.add!(tmp1346[i, j], UU[i, j], VV[i, j], ord) - TaylorSeries.add!(vi_dot_vj[i, j], tmp1346[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp1349[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp1351[i, j], Y[i, j], 2, ord) - TaylorSeries.add!(tmp1352[i, j], tmp1349[i, j], tmp1351[i, j], ord) - TaylorSeries.pow!(tmp1354[i, j], Z[i, j], 2, ord) - TaylorSeries.add!(r_p2[i, j], tmp1352[i, j], tmp1354[i, j], ord) - TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) - TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) - TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) - TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) - TaylorSeries.add!(tmp1362[i, j], pn2x[i, j], pn2y[i, j], ord) - TaylorSeries.add!(tmp1363[i, j], tmp1362[i, j], pn2z[i, j], ord) - TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp1363[i, j], ord) - TaylorSeries.mul!(newton_acc_X[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.mul!(newton_acc_Y[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.mul!(newton_acc_Z[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.div!(newtonian1b_Potential[i, j], μ[i], r_p1d2[i, j], ord) - TaylorSeries.mul!(pn3[i, j], 3.5, newtonian1b_Potential[i, j], ord) - TaylorSeries.mul!(U_t_pn2[i, j], pn2[i, j], U[i, j], ord) - TaylorSeries.mul!(V_t_pn2[i, j], pn2[i, j], V[i, j], ord) - TaylorSeries.mul!(W_t_pn2[i, j], pn2[i, j], W[i, j], ord) - TaylorSeries.mul!(tmp1374[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp1374[i, j], ord) - TaylorSeries.identity!(newtonX[j], temp_001[i, j], ord) - TaylorSeries.mul!(tmp1376[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp1376[i, j], ord) - TaylorSeries.identity!(newtonY[j], temp_002[i, j], ord) - TaylorSeries.mul!(tmp1378[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp1378[i, j], ord) - TaylorSeries.identity!(newtonZ[j], temp_003[i, j], ord) - TaylorSeries.add!(temp_004[i, j], newtonianNb_Potential[j], newtonian1b_Potential[i, j], ord) - TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) - end - end - TaylorSeries.pow!(tmp1382[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp1384[3j - 1], dq[3j - 1], 2, ord) - TaylorSeries.add!(tmp1385[3j - 2], tmp1382[3j - 2], tmp1384[3j - 1], ord) - TaylorSeries.pow!(tmp1387[3j], dq[3j], 2, ord) - TaylorSeries.add!(v2[j], tmp1385[3j - 2], tmp1387[3j], ord) - end - TaylorSeries.add!(tmp1389, I_M_t[1, 1], I_M_t[2, 2], ord) - TaylorSeries.div!(tmp1391, tmp1389, 2, ord) - TaylorSeries.subst!(tmp1392, I_M_t[3, 3], tmp1391, ord) - TaylorSeries.div!(J2M_t, tmp1392, μ[mo], ord) - TaylorSeries.subst!(tmp1394, I_M_t[2, 2], I_M_t[1, 1], ord) - TaylorSeries.div!(tmp1395, tmp1394, μ[mo], ord) - TaylorSeries.div!(C22M_t, tmp1395, 4, ord) - TaylorSeries.subst!(tmp1398, I_M_t[1, 3], ord) - TaylorSeries.div!(C21M_t, tmp1398, μ[mo], ord) - TaylorSeries.subst!(tmp1400, I_M_t[3, 2], ord) - TaylorSeries.div!(S21M_t, tmp1400, μ[mo], ord) - TaylorSeries.subst!(tmp1402, I_M_t[2, 1], ord) - TaylorSeries.div!(tmp1403, tmp1402, μ[mo], ord) - TaylorSeries.div!(S22M_t, tmp1403, 2, ord) - TaylorSeries.identity!(J2_t[mo], J2M_t, ord) - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - TaylorSeries.mul!(X_bf_1[i, j], X[i, j], RotM[1, 1, j], ord) - TaylorSeries.mul!(X_bf_2[i, j], Y[i, j], RotM[1, 2, j], ord) - TaylorSeries.mul!(X_bf_3[i, j], Z[i, j], RotM[1, 3, j], ord) - TaylorSeries.mul!(Y_bf_1[i, j], X[i, j], RotM[2, 1, j], ord) - TaylorSeries.mul!(Y_bf_2[i, j], Y[i, j], RotM[2, 2, j], ord) - TaylorSeries.mul!(Y_bf_3[i, j], Z[i, j], RotM[2, 3, j], ord) - TaylorSeries.mul!(Z_bf_1[i, j], X[i, j], RotM[3, 1, j], ord) - TaylorSeries.mul!(Z_bf_2[i, j], Y[i, j], RotM[3, 2, j], ord) - TaylorSeries.mul!(Z_bf_3[i, j], Z[i, j], RotM[3, 3, j], ord) - TaylorSeries.add!(tmp1415[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) - TaylorSeries.add!(X_bf[i, j], tmp1415[i, j], X_bf_3[i, j], ord) - TaylorSeries.add!(tmp1417[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) - TaylorSeries.add!(Y_bf[i, j], tmp1417[i, j], Y_bf_3[i, j], ord) - TaylorSeries.add!(tmp1419[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) - TaylorSeries.add!(Z_bf[i, j], tmp1419[i, j], Z_bf_3[i, j], ord) - TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp1423[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp1425[i, j], Y_bf[i, j], 2, ord) - TaylorSeries.add!(tmp1426[i, j], tmp1423[i, j], tmp1425[i, j], ord) - TaylorSeries.sqrt!(r_xy[i, j], tmp1426[i, j], ord) - TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) - TaylorSeries.div!(sin_λ[i, j], Y_bf[i, j], r_xy[i, j], ord) - TaylorSeries.div!(cos_λ[i, j], X_bf[i, j], r_xy[i, j], ord) - TaylorSeries.identity!(P_n[i, j, 1], one_t, ord) - TaylorSeries.identity!(P_n[i, j, 2], sin_ϕ[i, j], ord) - TaylorSeries.identity!(dP_n[i, j, 1], zero_q_1, ord) - TaylorSeries.identity!(dP_n[i, j, 2], one_t, ord) - for n = 2:n1SEM[j] - TaylorSeries.mul!(tmp1431[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1432[i, j, n], tmp1431[i, j, n], fact1_jsem[n], ord) - TaylorSeries.mul!(tmp1433[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) - TaylorSeries.subst!(P_n[i, j, n + 1], tmp1432[i, j, n], tmp1433[i, j, n - 1], ord) - TaylorSeries.mul!(tmp1435[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1436[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) - TaylorSeries.add!(dP_n[i, j, n + 1], tmp1435[i, j, n], tmp1436[i, j, n], ord) - TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) - end - TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) - TaylorSeries.mul!(tmp1441[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) - TaylorSeries.mul!(tmp1442[i, j, 3], tmp1441[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ξ[i, j], tmp1442[i, j, 3], r_p4[i, j], ord) - TaylorSeries.subst!(tmp1444[i, j, 3], dP_n[i, j, 3], ord) - TaylorSeries.mul!(tmp1445[i, j, 3], tmp1444[i, j, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1446[i, j, 3], tmp1445[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ζ[i, j], tmp1446[i, j, 3], r_p4[i, j], ord) - TaylorSeries.identity!(F_J_ξ_36[i, j], zero_q_1, ord) - TaylorSeries.identity!(F_J_ζ_36[i, j], zero_q_1, ord) - for n = 3:n1SEM[j] - TaylorSeries.mul!(tmp1448[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) - TaylorSeries.mul!(tmp1449[i, j, n + 1], tmp1448[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp1450[i, j, n + 1], tmp1449[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjξ[i, j, n], tmp1450[i, j, n + 1], F_J_ξ_36[i, j], ord) - TaylorSeries.subst!(tmp1452[i, j, n + 1], dP_n[i, j, n + 1], ord) - TaylorSeries.mul!(tmp1453[i, j, n + 1], tmp1452[i, j, n + 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1454[i, j, n + 1], tmp1453[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp1455[i, j, n + 1], tmp1454[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjζ[i, j, n], tmp1455[i, j, n + 1], F_J_ζ_36[i, j], ord) - TaylorSeries.identity!(F_J_ξ_36[i, j], temp_fjξ[i, j, n], ord) - TaylorSeries.identity!(F_J_ζ_36[i, j], temp_fjζ[i, j, n], ord) - end - if j == mo - for m = 1:n1SEM[mo] - if m == 1 - TaylorSeries.identity!(sin_mλ[i, j, 1], sin_λ[i, j], ord) - TaylorSeries.identity!(cos_mλ[i, j, 1], cos_λ[i, j], ord) - TaylorSeries.identity!(secϕ_P_nm[i, j, 1, 1], one_t, ord) - TaylorSeries.identity!(P_nm[i, j, 1, 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, 1, 1], sin_ϕ[i, j], lnm3[1], ord) - else - TaylorSeries.mul!(tmp1458[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1459[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.add!(sin_mλ[i, j, m], tmp1458[i, j, m - 1], tmp1459[i, j, m - 1], ord) - TaylorSeries.mul!(tmp1461[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1462[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(cos_mλ[i, j, m], tmp1461[i, j, m - 1], tmp1462[i, j, m - 1], ord) - TaylorSeries.mul!(tmp1464[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp1464[i, j, m - 1, m - 1], lnm5[m], ord) - TaylorSeries.mul!(P_nm[i, j, m, m], secϕ_P_nm[i, j, m, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1467[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp1467[i, j, m, m], lnm3[m], ord) - end - for n = m + 1:n1SEM[mo] - if n == m + 1 - TaylorSeries.mul!(tmp1469[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp1469[i, j, n - 1, m], lnm1[n, m], ord) - else - TaylorSeries.mul!(tmp1471[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1472[i, j, n - 1, m], tmp1471[i, j, n - 1, m], lnm1[n, m], ord) - TaylorSeries.mul!(tmp1473[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) - TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp1472[i, j, n - 1, m], tmp1473[i, j, n - 2, m], ord) - end - TaylorSeries.mul!(P_nm[i, j, n, m], secϕ_P_nm[i, j, n, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1476[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1477[i, j, n, m], tmp1476[i, j, n, m], lnm3[n], ord) - TaylorSeries.mul!(tmp1478[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) - TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp1477[i, j, n, m], tmp1478[i, j, n - 1, m], ord) - end - end - TaylorSeries.mul!(tmp1480[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) - TaylorSeries.mul!(tmp1481[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1482[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp1483[i, j, 1], tmp1481[i, j, 1], tmp1482[i, j, 1], ord) - TaylorSeries.mul!(tmp1484[i, j, 2, 1], tmp1480[i, j, 2, 1], tmp1483[i, j, 1], ord) - TaylorSeries.mul!(tmp1485[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) - TaylorSeries.mul!(tmp1486[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp1487[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp1488[i, j, 2], tmp1486[i, j, 2], tmp1487[i, j, 2], ord) - TaylorSeries.mul!(tmp1489[i, j, 2, 2], tmp1485[i, j, 2, 2], tmp1488[i, j, 2], ord) - TaylorSeries.add!(tmp1490[i, j, 2, 1], tmp1484[i, j, 2, 1], tmp1489[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ξ[i, j], tmp1490[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp1492[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) - TaylorSeries.mul!(tmp1493[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1494[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(tmp1495[i, j, 1], tmp1493[i, j, 1], tmp1494[i, j, 1], ord) - TaylorSeries.mul!(tmp1496[i, j, 2, 1], tmp1492[i, j, 2, 1], tmp1495[i, j, 1], ord) - TaylorSeries.mul!(tmp1497[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) - TaylorSeries.mul!(tmp1498[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp1499[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.subst!(tmp1500[i, j, 2], tmp1498[i, j, 2], tmp1499[i, j, 2], ord) - TaylorSeries.mul!(tmp1501[i, j, 2, 2], tmp1497[i, j, 2, 2], tmp1500[i, j, 2], ord) - TaylorSeries.add!(tmp1502[i, j, 2, 1], tmp1496[i, j, 2, 1], tmp1501[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_η[i, j], tmp1502[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp1504[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1505[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp1506[i, j, 1], tmp1504[i, j, 1], tmp1505[i, j, 1], ord) - TaylorSeries.mul!(tmp1507[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp1506[i, j, 1], ord) - TaylorSeries.mul!(tmp1508[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp1509[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp1510[i, j, 2], tmp1508[i, j, 2], tmp1509[i, j, 2], ord) - TaylorSeries.mul!(tmp1511[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp1510[i, j, 2], ord) - TaylorSeries.add!(tmp1512[i, j, 2, 1], tmp1507[i, j, 2, 1], tmp1511[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ζ[i, j], tmp1512[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.identity!(F_CS_ξ_36[i, j], zero_q_1, ord) - TaylorSeries.identity!(F_CS_η_36[i, j], zero_q_1, ord) - TaylorSeries.identity!(F_CS_ζ_36[i, j], zero_q_1, ord) - for n = 3:n2M - for m = 1:n - TaylorSeries.mul!(Cnm_cosmλ[i, j, n, m], CM[n, m], cos_mλ[i, j, m], ord) - TaylorSeries.mul!(Cnm_sinmλ[i, j, n, m], CM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(Snm_cosmλ[i, j, n, m], SM[n, m], cos_mλ[i, j, m], ord) - TaylorSeries.mul!(Snm_sinmλ[i, j, n, m], SM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(tmp1518[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) - TaylorSeries.add!(tmp1519[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp1520[i, j, n, m], tmp1518[i, j, n, m], tmp1519[i, j, n, m], ord) - TaylorSeries.div!(tmp1521[i, j, n, m], tmp1520[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp1521[i, j, n, m], F_CS_ξ_36[i, j], ord) - TaylorSeries.mul!(tmp1523[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) - TaylorSeries.subst!(tmp1524[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp1525[i, j, n, m], tmp1523[i, j, n, m], tmp1524[i, j, n, m], ord) - TaylorSeries.div!(tmp1526[i, j, n, m], tmp1525[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp1526[i, j, n, m], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp1528[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp1529[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp1528[i, j, n, m], ord) - TaylorSeries.div!(tmp1530[i, j, n, m], tmp1529[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp1530[i, j, n, m], F_CS_ζ_36[i, j], ord) - TaylorSeries.identity!(F_CS_ξ_36[i, j], temp_CS_ξ[i, j, n, m], ord) - TaylorSeries.identity!(F_CS_η_36[i, j], temp_CS_η[i, j, n, m], ord) - TaylorSeries.identity!(F_CS_ζ_36[i, j], temp_CS_ζ[i, j, n, m], ord) - end - end - TaylorSeries.add!(tmp1532[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.add!(tmp1533[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ξ[i, j], tmp1532[i, j], tmp1533[i, j], ord) - TaylorSeries.add!(F_JCS_η[i, j], F_CS_η[i, j], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp1536[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - TaylorSeries.add!(tmp1537[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ζ[i, j], tmp1536[i, j], tmp1537[i, j], ord) - else - TaylorSeries.add!(F_JCS_ξ[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.identity!(F_JCS_η[i, j], zero_q_1, ord) - TaylorSeries.add!(F_JCS_ζ[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - end - TaylorSeries.mul!(Rb2p[i, j, 1, 1], cos_ϕ[i, j], cos_λ[i, j], ord) - TaylorSeries.subst!(Rb2p[i, j, 2, 1], sin_λ[i, j], ord) - TaylorSeries.subst!(tmp1543[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp1543[i, j], cos_λ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 1, 2], cos_ϕ[i, j], sin_λ[i, j], ord) - TaylorSeries.identity!(Rb2p[i, j, 2, 2], cos_λ[i, j], ord) - TaylorSeries.subst!(tmp1546[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp1546[i, j], sin_λ[i, j], ord) - TaylorSeries.identity!(Rb2p[i, j, 1, 3], sin_ϕ[i, j], ord) - TaylorSeries.identity!(Rb2p[i, j, 2, 3], zero_q_1, ord) - TaylorSeries.identity!(Rb2p[i, j, 3, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1548[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp1549[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp1550[i, j, 1, 1], tmp1548[i, j, 1, 1], tmp1549[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1551[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp1550[i, j, 1, 1], tmp1551[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1553[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp1554[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp1555[i, j, 2, 1], tmp1553[i, j, 2, 1], tmp1554[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1556[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp1555[i, j, 2, 1], tmp1556[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1558[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp1559[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp1560[i, j, 3, 1], tmp1558[i, j, 3, 1], tmp1559[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1561[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp1560[i, j, 3, 1], tmp1561[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp1563[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp1564[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp1565[i, j, 1, 1], tmp1563[i, j, 1, 1], tmp1564[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1566[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp1565[i, j, 1, 1], tmp1566[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1568[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp1569[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp1570[i, j, 2, 1], tmp1568[i, j, 2, 1], tmp1569[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1571[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp1570[i, j, 2, 1], tmp1571[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1573[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp1574[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp1575[i, j, 3, 1], tmp1573[i, j, 3, 1], tmp1574[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1576[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp1575[i, j, 3, 1], tmp1576[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp1578[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp1579[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp1580[i, j, 1, 1], tmp1578[i, j, 1, 1], tmp1579[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1581[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp1580[i, j, 1, 1], tmp1581[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1583[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp1584[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp1585[i, j, 2, 1], tmp1583[i, j, 2, 1], tmp1584[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1586[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp1585[i, j, 2, 1], tmp1586[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1588[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp1589[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp1590[i, j, 3, 1], tmp1588[i, j, 3, 1], tmp1589[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1591[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp1590[i, j, 3, 1], tmp1591[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp1593[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) - TaylorSeries.mul!(tmp1594[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) - TaylorSeries.add!(tmp1595[i, j, 1, 1], tmp1593[i, j, 1, 1], tmp1594[i, j, 2, 1], ord) - TaylorSeries.mul!(tmp1596[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) - TaylorSeries.add!(F_JCS_x[i, j], tmp1595[i, j, 1, 1], tmp1596[i, j, 3, 1], ord) - TaylorSeries.mul!(tmp1598[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1599[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) - TaylorSeries.add!(tmp1600[i, j, 1, 2], tmp1598[i, j, 1, 2], tmp1599[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1601[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) - TaylorSeries.add!(F_JCS_y[i, j], tmp1600[i, j, 1, 2], tmp1601[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1603[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1604[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) - TaylorSeries.add!(tmp1605[i, j, 1, 3], tmp1603[i, j, 1, 3], tmp1604[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1606[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) - TaylorSeries.add!(F_JCS_z[i, j], tmp1605[i, j, 1, 3], tmp1606[i, j, 3, 3], ord) - end - end - end - end - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - TaylorSeries.mul!(tmp1608[i, j], μ[i], F_JCS_x[i, j], ord) - TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp1608[i, j], ord) - TaylorSeries.identity!(accX[j], temp_accX_j[i, j], ord) - TaylorSeries.mul!(tmp1610[i, j], μ[i], F_JCS_y[i, j], ord) - TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp1610[i, j], ord) - TaylorSeries.identity!(accY[j], temp_accY_j[i, j], ord) - TaylorSeries.mul!(tmp1612[i, j], μ[i], F_JCS_z[i, j], ord) - TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp1612[i, j], ord) - TaylorSeries.identity!(accZ[j], temp_accZ_j[i, j], ord) - TaylorSeries.mul!(tmp1614[i, j], μ[j], F_JCS_x[i, j], ord) - TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp1614[i, j], ord) - TaylorSeries.identity!(accX[i], temp_accX_i[i, j], ord) - TaylorSeries.mul!(tmp1616[i, j], μ[j], F_JCS_y[i, j], ord) - TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp1616[i, j], ord) - TaylorSeries.identity!(accY[i], temp_accY_i[i, j], ord) - TaylorSeries.mul!(tmp1618[i, j], μ[j], F_JCS_z[i, j], ord) - TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp1618[i, j], ord) - TaylorSeries.identity!(accZ[i], temp_accZ_i[i, j], ord) - if j == mo - TaylorSeries.mul!(tmp1620[i, j], Y[i, j], F_JCS_z[i, j], ord) - TaylorSeries.mul!(tmp1621[i, j], Z[i, j], F_JCS_y[i, j], ord) - TaylorSeries.subst!(tmp1622[i, j], tmp1620[i, j], tmp1621[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp1622[i, j], ord) - TaylorSeries.mul!(tmp1624[i, j], Z[i, j], F_JCS_x[i, j], ord) - TaylorSeries.mul!(tmp1625[i, j], X[i, j], F_JCS_z[i, j], ord) - TaylorSeries.subst!(tmp1626[i, j], tmp1624[i, j], tmp1625[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp1626[i, j], ord) - TaylorSeries.mul!(tmp1628[i, j], X[i, j], F_JCS_y[i, j], ord) - TaylorSeries.mul!(tmp1629[i, j], Y[i, j], F_JCS_x[i, j], ord) - TaylorSeries.subst!(tmp1630[i, j], tmp1628[i, j], tmp1629[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp1630[i, j], ord) - TaylorSeries.mul!(tmp1632[i], N_MfigM_pmA_x[i], μ[j], ord) - TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], tmp1632[i], ord) - TaylorSeries.identity!(N_MfigM[1], temp_N_M_x[i], ord) - TaylorSeries.mul!(tmp1634[i], N_MfigM_pmA_y[i], μ[j], ord) - TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], tmp1634[i], ord) - TaylorSeries.identity!(N_MfigM[2], temp_N_M_y[i], ord) - TaylorSeries.mul!(tmp1636[i], N_MfigM_pmA_z[i], μ[j], ord) - TaylorSeries.subst!(temp_N_M_z[i], N_MfigM[3], tmp1636[i], ord) - TaylorSeries.identity!(N_MfigM[3], temp_N_M_z[i], ord) - end - end - end - end - end - for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.mul!(_4ϕj[i, j], 4, newtonianNb_Potential[j], ord) - TaylorSeries.add!(ϕi_plus_4ϕj[i, j], newtonianNb_Potential[i], _4ϕj[i, j], ord) - TaylorSeries.mul!(_2v2[i, j], 2, v2[i], ord) - TaylorSeries.add!(sj2_plus_2si2[i, j], v2[j], _2v2[i, j], ord) - TaylorSeries.mul!(tmp1645[i, j], 4, vi_dot_vj[i, j], ord) - TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp1645[i, j], ord) - TaylorSeries.subst!(ϕs_and_vs[i, j], sj2_plus_2si2_minus_4vivj[i, j], ϕi_plus_4ϕj[i, j], ord) - TaylorSeries.mul!(Xij_t_Ui[i, j], X[i, j], dq[3i - 2], ord) - TaylorSeries.mul!(Yij_t_Vi[i, j], Y[i, j], dq[3i - 1], ord) - TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) - TaylorSeries.add!(tmp1651[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) - TaylorSeries.add!(Rij_dot_Vi[i, j], tmp1651[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp1654[i, j], Rij_dot_Vi[i, j], 2, ord) - TaylorSeries.div!(pn1t7[i, j], tmp1654[i, j], r_p2[i, j], ord) - TaylorSeries.mul!(tmp1657[i, j], 1.5, pn1t7[i, j], ord) - TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp1657[i, j], ord) - TaylorSeries.add!(pn1t1_7[i, j], c_p2, pn1t2_7[i, j], ord) - end - end - TaylorSeries.identity!(pntempX[j], zero_q_1, ord) - TaylorSeries.identity!(pntempY[j], zero_q_1, ord) - TaylorSeries.identity!(pntempZ[j], zero_q_1, ord) - end - for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.mul!(pNX_t_X[i, j], newtonX[i], X[i, j], ord) - TaylorSeries.mul!(pNY_t_Y[i, j], newtonY[i], Y[i, j], ord) - TaylorSeries.mul!(pNZ_t_Z[i, j], newtonZ[i], Z[i, j], ord) - TaylorSeries.add!(tmp1664[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) - TaylorSeries.add!(tmp1665[i, j], tmp1664[i, j], pNZ_t_Z[i, j], ord) - TaylorSeries.mul!(tmp1666[i, j], 0.5, tmp1665[i, j], ord) - TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp1666[i, j], ord) - TaylorSeries.mul!(X_t_pn1[i, j], newton_acc_X[i, j], pn1[i, j], ord) - TaylorSeries.mul!(Y_t_pn1[i, j], newton_acc_Y[i, j], pn1[i, j], ord) - TaylorSeries.mul!(Z_t_pn1[i, j], newton_acc_Z[i, j], pn1[i, j], ord) - TaylorSeries.mul!(pNX_t_pn3[i, j], newtonX[i], pn3[i, j], ord) - TaylorSeries.mul!(pNY_t_pn3[i, j], newtonY[i], pn3[i, j], ord) - TaylorSeries.mul!(pNZ_t_pn3[i, j], newtonZ[i], pn3[i, j], ord) - TaylorSeries.add!(tmp1674[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) - TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp1674[i, j], ord) - TaylorSeries.add!(sumpnx[i, j], pntempX[j], termpnx[i, j], ord) - TaylorSeries.identity!(pntempX[j], sumpnx[i, j], ord) - TaylorSeries.add!(tmp1677[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) - TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp1677[i, j], ord) - TaylorSeries.add!(sumpny[i, j], pntempY[j], termpny[i, j], ord) - TaylorSeries.identity!(pntempY[j], sumpny[i, j], ord) - TaylorSeries.add!(tmp1680[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) - TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp1680[i, j], ord) - TaylorSeries.add!(sumpnz[i, j], pntempZ[j], termpnz[i, j], ord) - TaylorSeries.identity!(pntempZ[j], sumpnz[i, j], ord) - end - end - TaylorSeries.mul!(postNewtonX[j], pntempX[j], c_m2, ord) - TaylorSeries.mul!(postNewtonY[j], pntempY[j], c_m2, ord) - TaylorSeries.mul!(postNewtonZ[j], pntempZ[j], c_m2, ord) - end - for i = 1:N_ext - TaylorSeries.add!(dq[3 * (N + i) - 2], postNewtonX[i], accX[i], ord) - TaylorSeries.add!(dq[3 * (N + i) - 1], postNewtonY[i], accY[i], ord) - TaylorSeries.add!(dq[3 * (N + i)], postNewtonZ[i], accZ[i], ord) - end - for i = N_ext + 1:N - TaylorSeries.identity!(dq[3 * (N + i) - 2], postNewtonX[i], ord) - TaylorSeries.identity!(dq[3 * (N + i) - 1], postNewtonY[i], ord) - TaylorSeries.identity!(dq[3 * (N + i)], postNewtonZ[i], ord) - end - TaylorSeries.mul!(tmp1689, I_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1690, I_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1691, I_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1692, tmp1690, tmp1691, ord) - TaylorSeries.add!(Iω_x, tmp1689, tmp1692, ord) - TaylorSeries.mul!(tmp1694, I_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1695, I_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1696, I_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1697, tmp1695, tmp1696, ord) - TaylorSeries.add!(Iω_y, tmp1694, tmp1697, ord) - TaylorSeries.mul!(tmp1699, I_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1700, I_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1701, I_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1702, tmp1700, tmp1701, ord) - TaylorSeries.add!(Iω_z, tmp1699, tmp1702, ord) - TaylorSeries.mul!(tmp1704, q[6N + 5], Iω_z, ord) - TaylorSeries.mul!(tmp1705, q[6N + 6], Iω_y, ord) - TaylorSeries.subst!(ωxIω_x, tmp1704, tmp1705, ord) - TaylorSeries.mul!(tmp1707, q[6N + 6], Iω_x, ord) - TaylorSeries.mul!(tmp1708, q[6N + 4], Iω_z, ord) - TaylorSeries.subst!(ωxIω_y, tmp1707, tmp1708, ord) - TaylorSeries.mul!(tmp1710, q[6N + 4], Iω_y, ord) - TaylorSeries.mul!(tmp1711, q[6N + 5], Iω_x, ord) - TaylorSeries.subst!(ωxIω_z, tmp1710, tmp1711, ord) - TaylorSeries.mul!(tmp1713, dI_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1714, dI_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1715, dI_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1716, tmp1714, tmp1715, ord) - TaylorSeries.add!(dIω_x, tmp1713, tmp1716, ord) - TaylorSeries.mul!(tmp1718, dI_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1719, dI_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1720, dI_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1721, tmp1719, tmp1720, ord) - TaylorSeries.add!(dIω_y, tmp1718, tmp1721, ord) - TaylorSeries.mul!(tmp1723, dI_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1724, dI_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1725, dI_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1726, tmp1724, tmp1725, ord) - TaylorSeries.add!(dIω_z, tmp1723, tmp1726, ord) - TaylorSeries.div!(er_EM_I_1, X[ea, mo], r_p1d2[ea, mo], ord) - TaylorSeries.div!(er_EM_I_2, Y[ea, mo], r_p1d2[ea, mo], ord) - TaylorSeries.div!(er_EM_I_3, Z[ea, mo], r_p1d2[ea, mo], ord) - TaylorSeries.identity!(p_E_I_1, RotM[3, 1, ea], ord) - TaylorSeries.identity!(p_E_I_2, RotM[3, 2, ea], ord) - TaylorSeries.identity!(p_E_I_3, RotM[3, 3, ea], ord) - TaylorSeries.mul!(tmp1731, RotM[1, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp1732, RotM[1, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp1733, RotM[1, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp1734, tmp1732, tmp1733, ord) - TaylorSeries.add!(er_EM_1, tmp1731, tmp1734, ord) - TaylorSeries.mul!(tmp1736, RotM[2, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp1737, RotM[2, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp1738, RotM[2, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp1739, tmp1737, tmp1738, ord) - TaylorSeries.add!(er_EM_2, tmp1736, tmp1739, ord) - TaylorSeries.mul!(tmp1741, RotM[3, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp1742, RotM[3, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp1743, RotM[3, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp1744, tmp1742, tmp1743, ord) - TaylorSeries.add!(er_EM_3, tmp1741, tmp1744, ord) - TaylorSeries.mul!(tmp1746, RotM[1, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp1747, RotM[1, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp1748, RotM[1, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp1749, tmp1747, tmp1748, ord) - TaylorSeries.add!(p_E_1, tmp1746, tmp1749, ord) - TaylorSeries.mul!(tmp1751, RotM[2, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp1752, RotM[2, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp1753, RotM[2, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp1754, tmp1752, tmp1753, ord) - TaylorSeries.add!(p_E_2, tmp1751, tmp1754, ord) - TaylorSeries.mul!(tmp1756, RotM[3, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp1757, RotM[3, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp1758, RotM[3, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp1759, tmp1757, tmp1758, ord) - TaylorSeries.add!(p_E_3, tmp1756, tmp1759, ord) - TaylorSeries.mul!(tmp1761, I_m_t[1, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp1762, I_m_t[1, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp1763, I_m_t[1, 3], er_EM_3, ord) - TaylorSeries.add!(tmp1764, tmp1762, tmp1763, ord) - TaylorSeries.add!(I_er_EM_1, tmp1761, tmp1764, ord) - TaylorSeries.mul!(tmp1766, I_m_t[2, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp1767, I_m_t[2, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp1768, I_m_t[2, 3], er_EM_3, ord) - TaylorSeries.add!(tmp1769, tmp1767, tmp1768, ord) - TaylorSeries.add!(I_er_EM_2, tmp1766, tmp1769, ord) - TaylorSeries.mul!(tmp1771, I_m_t[3, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp1772, I_m_t[3, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp1773, I_m_t[3, 3], er_EM_3, ord) - TaylorSeries.add!(tmp1774, tmp1772, tmp1773, ord) - TaylorSeries.add!(I_er_EM_3, tmp1771, tmp1774, ord) - TaylorSeries.mul!(tmp1776, I_m_t[1, 1], p_E_1, ord) - TaylorSeries.mul!(tmp1777, I_m_t[1, 2], p_E_2, ord) - TaylorSeries.mul!(tmp1778, I_m_t[1, 3], p_E_3, ord) - TaylorSeries.add!(tmp1779, tmp1777, tmp1778, ord) - TaylorSeries.add!(I_p_E_1, tmp1776, tmp1779, ord) - TaylorSeries.mul!(tmp1781, I_m_t[2, 1], p_E_1, ord) - TaylorSeries.mul!(tmp1782, I_m_t[2, 2], p_E_2, ord) - TaylorSeries.mul!(tmp1783, I_m_t[2, 3], p_E_3, ord) - TaylorSeries.add!(tmp1784, tmp1782, tmp1783, ord) - TaylorSeries.add!(I_p_E_2, tmp1781, tmp1784, ord) - TaylorSeries.mul!(tmp1786, I_m_t[3, 1], p_E_1, ord) - TaylorSeries.mul!(tmp1787, I_m_t[3, 2], p_E_2, ord) - TaylorSeries.mul!(tmp1788, I_m_t[3, 3], p_E_3, ord) - TaylorSeries.add!(tmp1789, tmp1787, tmp1788, ord) - TaylorSeries.add!(I_p_E_3, tmp1786, tmp1789, ord) - TaylorSeries.mul!(tmp1791, er_EM_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp1792, er_EM_3, I_er_EM_2, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp1791, tmp1792, ord) - TaylorSeries.mul!(tmp1794, er_EM_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp1795, er_EM_1, I_er_EM_3, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp1794, tmp1795, ord) - TaylorSeries.mul!(tmp1797, er_EM_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp1798, er_EM_2, I_er_EM_1, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp1797, tmp1798, ord) - TaylorSeries.mul!(tmp1800, er_EM_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp1801, er_EM_3, I_p_E_2, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp1800, tmp1801, ord) - TaylorSeries.mul!(tmp1803, er_EM_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp1804, er_EM_1, I_p_E_3, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp1803, tmp1804, ord) - TaylorSeries.mul!(tmp1806, er_EM_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp1807, er_EM_2, I_p_E_1, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp1806, tmp1807, ord) - TaylorSeries.mul!(tmp1809, p_E_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp1810, p_E_3, I_er_EM_2, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp1809, tmp1810, ord) - TaylorSeries.mul!(tmp1812, p_E_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp1813, p_E_1, I_er_EM_3, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp1812, tmp1813, ord) - TaylorSeries.mul!(tmp1815, p_E_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp1816, p_E_2, I_er_EM_1, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp1815, tmp1816, ord) - TaylorSeries.mul!(tmp1818, p_E_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp1819, p_E_3, I_p_E_2, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp1818, tmp1819, ord) - TaylorSeries.mul!(tmp1821, p_E_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp1822, p_E_1, I_p_E_3, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp1821, tmp1822, ord) - TaylorSeries.mul!(tmp1824, p_E_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp1825, p_E_2, I_p_E_1, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp1824, tmp1825, ord) - TaylorSeries.pow!(tmp1829, sin_ϕ[ea, mo], 2, ord) - TaylorSeries.mul!(tmp1830, 7, tmp1829, ord) - TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp1830, ord) - TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp1835, r_p1d2[mo, ea], 5, ord) - TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp1835, ord) - TaylorSeries.mul!(tmp1837, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) - TaylorSeries.add!(tmp1838, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) - TaylorSeries.mul!(tmp1839, two_sinϕEM, tmp1838, ord) - TaylorSeries.add!(tmp1840, tmp1837, tmp1839, ord) - TaylorSeries.mul!(tmp1842, 0.4, p_E_cross_I_p_E_1, ord) - TaylorSeries.subst!(tmp1843, tmp1840, tmp1842, ord) - TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp1843, ord) - TaylorSeries.mul!(tmp1845, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) - TaylorSeries.add!(tmp1846, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) - TaylorSeries.mul!(tmp1847, two_sinϕEM, tmp1846, ord) - TaylorSeries.add!(tmp1848, tmp1845, tmp1847, ord) - TaylorSeries.mul!(tmp1850, 0.4, p_E_cross_I_p_E_2, ord) - TaylorSeries.subst!(tmp1851, tmp1848, tmp1850, ord) - TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp1851, ord) - TaylorSeries.mul!(tmp1853, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) - TaylorSeries.add!(tmp1854, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) - TaylorSeries.mul!(tmp1855, two_sinϕEM, tmp1854, ord) - TaylorSeries.add!(tmp1856, tmp1853, tmp1855, ord) - TaylorSeries.mul!(tmp1858, 0.4, p_E_cross_I_p_E_3, ord) - TaylorSeries.subst!(tmp1859, tmp1856, tmp1858, ord) - TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp1859, ord) - TaylorSeries.mul!(tmp1861, RotM[1, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp1862, RotM[1, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp1863, RotM[1, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp1864, tmp1862, tmp1863, ord) - TaylorSeries.add!(N_1_LMF, tmp1861, tmp1864, ord) - TaylorSeries.mul!(tmp1866, RotM[2, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp1867, RotM[2, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp1868, RotM[2, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp1869, tmp1867, tmp1868, ord) - TaylorSeries.add!(N_2_LMF, tmp1866, tmp1869, ord) - TaylorSeries.mul!(tmp1871, RotM[3, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp1872, RotM[3, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp1873, RotM[3, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp1874, tmp1872, tmp1873, ord) - TaylorSeries.add!(N_3_LMF, tmp1871, tmp1874, ord) - TaylorSeries.subst!(tmp1876, q[6N + 10], q[6N + 4], ord) - TaylorSeries.mul!(tmp1877, k_ν, tmp1876, ord) - TaylorSeries.mul!(tmp1878, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp1879, tmp1878, q[6N + 11], ord) - TaylorSeries.subst!(N_cmb_1, tmp1877, tmp1879, ord) - TaylorSeries.subst!(tmp1881, q[6N + 11], q[6N + 5], ord) - TaylorSeries.mul!(tmp1882, k_ν, tmp1881, ord) - TaylorSeries.mul!(tmp1883, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp1884, tmp1883, q[6N + 10], ord) - TaylorSeries.add!(N_cmb_2, tmp1882, tmp1884, ord) - TaylorSeries.subst!(tmp1886, q[6N + 12], q[6N + 6], ord) - TaylorSeries.mul!(N_cmb_3, k_ν, tmp1886, ord) - TaylorSeries.add!(tmp1888, N_1_LMF, N_MfigM_figE_1, ord) - TaylorSeries.add!(tmp1889, tmp1888, N_cmb_1, ord) - TaylorSeries.add!(tmp1890, dIω_x, ωxIω_x, ord) - TaylorSeries.subst!(I_dω_1, tmp1889, tmp1890, ord) - TaylorSeries.add!(tmp1892, N_2_LMF, N_MfigM_figE_2, ord) - TaylorSeries.add!(tmp1893, tmp1892, N_cmb_2, ord) - TaylorSeries.add!(tmp1894, dIω_y, ωxIω_y, ord) - TaylorSeries.subst!(I_dω_2, tmp1893, tmp1894, ord) - TaylorSeries.add!(tmp1896, N_3_LMF, N_MfigM_figE_3, ord) - TaylorSeries.add!(tmp1897, tmp1896, N_cmb_3, ord) - TaylorSeries.add!(tmp1898, dIω_z, ωxIω_z, ord) - TaylorSeries.subst!(I_dω_3, tmp1897, tmp1898, ord) - TaylorSeries.mul!(Ic_ωc_1, I_c_t[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(Ic_ωc_2, I_c_t[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(Ic_ωc_3, I_c_t[3, 3], q[6N + 12], ord) - TaylorSeries.mul!(tmp1903, q[6N + 6], Ic_ωc_2, ord) - TaylorSeries.mul!(tmp1904, q[6N + 5], Ic_ωc_3, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp1903, tmp1904, ord) - TaylorSeries.mul!(tmp1906, q[6N + 4], Ic_ωc_3, ord) - TaylorSeries.mul!(tmp1907, q[6N + 6], Ic_ωc_1, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp1906, tmp1907, ord) - TaylorSeries.mul!(tmp1909, q[6N + 5], Ic_ωc_1, ord) - TaylorSeries.mul!(tmp1910, q[6N + 4], Ic_ωc_2, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp1909, tmp1910, ord) - TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) - TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) - TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp1915, tmp1995, q[6N + 3], ord) - TaylorSeries.mul!(tmp1916, q[6N + 4], tmp1915, ord) - TaylorSeries.sincos!(tmp1996, tmp1917, q[6N + 3], ord) - TaylorSeries.mul!(tmp1918, q[6N + 5], tmp1917, ord) - TaylorSeries.add!(tmp1919, tmp1916, tmp1918, ord) - TaylorSeries.sincos!(tmp1920, tmp1997, q[6N + 2], ord) - TaylorSeries.div!(dq[6N + 1], tmp1919, tmp1920, ord) - TaylorSeries.sincos!(tmp1998, tmp1922, q[6N + 3], ord) - TaylorSeries.mul!(tmp1923, q[6N + 4], tmp1922, ord) - TaylorSeries.sincos!(tmp1924, tmp1999, q[6N + 3], ord) - TaylorSeries.mul!(tmp1925, q[6N + 5], tmp1924, ord) - TaylorSeries.subst!(dq[6N + 2], tmp1923, tmp1925, ord) - TaylorSeries.sincos!(tmp2000, tmp1927, q[6N + 2], ord) - TaylorSeries.mul!(tmp1928, dq[6N + 1], tmp1927, ord) - TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp1928, ord) - TaylorSeries.mul!(tmp1930, inv_I_m_t[1, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp1931, inv_I_m_t[1, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp1932, inv_I_m_t[1, 3], I_dω_3, ord) - TaylorSeries.add!(tmp1933, tmp1931, tmp1932, ord) - TaylorSeries.add!(dq[6N + 4], tmp1930, tmp1933, ord) - TaylorSeries.mul!(tmp1935, inv_I_m_t[2, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp1936, inv_I_m_t[2, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp1937, inv_I_m_t[2, 3], I_dω_3, ord) - TaylorSeries.add!(tmp1938, tmp1936, tmp1937, ord) - TaylorSeries.add!(dq[6N + 5], tmp1935, tmp1938, ord) - TaylorSeries.mul!(tmp1940, inv_I_m_t[3, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp1941, inv_I_m_t[3, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp1942, inv_I_m_t[3, 3], I_dω_3, ord) - TaylorSeries.add!(tmp1943, tmp1941, tmp1942, ord) - TaylorSeries.add!(dq[6N + 6], tmp1940, tmp1943, ord) - TaylorSeries.sincos!(tmp1945, tmp2001, q[6N + 8], ord) - TaylorSeries.div!(tmp1946, ω_c_CE_2, tmp1945, ord) - TaylorSeries.subst!(dq[6N + 9], tmp1946, ord) - TaylorSeries.sincos!(tmp2002, tmp1948, q[6N + 8], ord) - TaylorSeries.mul!(tmp1949, dq[6N + 9], tmp1948, ord) - TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp1949, ord) - TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) - TaylorSeries.mul!(dq[6N + 10], inv_I_c_t[1, 1], Ic_dωc_1, ord) - TaylorSeries.mul!(dq[6N + 11], inv_I_c_t[2, 2], Ic_dωc_2, ord) - TaylorSeries.mul!(dq[6N + 12], inv_I_c_t[3, 3], Ic_dωc_3, ord) - TaylorSeries.identity!(dq[6N + 13], zero_q_1, ord) - for __idx = eachindex(q) - (q[__idx]).coeffs[ordnext + 1] = (dq[__idx]).coeffs[ordnext] / ordnext - end - end - return nothing -end - # TaylorIntegration._allocate_jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S_threads! function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} order = t.order diff --git a/src/plephinteg.jl b/src/plephinteg.jl deleted file mode 100644 index c828569..0000000 --- a/src/plephinteg.jl +++ /dev/null @@ -1,303 +0,0 @@ -@doc raw""" - evaluate_threads!(x::Vector{Taylor1{T}}, δt::T, x0::Vector{T}) where { T <: Number} - -Threaded version of `TaylorSeries.evaluate!`. - -See also [`TaylorSeries.evaluate!`](@ref). -""" -function evaluate_threads!(x::Vector{Taylor1{T}}, δt::T, x0::Vector{T}) where { T <: Number} - - Threads.@threads for i in eachindex(x) - x0[i] = evaluate( x[i], δt ) - end - - nothing -end - -@doc raw""" - stepsize_threads(q::Vector{Taylor1{U}}, epsilon::T) where {T <: Real, U <: Number} - -Threaded version of `TaylorIntegration.stepsize`. - -See also [`TaylorIntegration.stepsize`](@ref) and [`TaylorIntegration._second_stepsize`](@ref). -""" -function stepsize_threads(q::Vector{Taylor1{U}}, epsilon::T) where {T <: Real, U <: Number} - R = promote_type(typeof(norm(constant_term(q[1]), Inf)), T) - h = convert(R, Inf) - #= Threads.@threads =# for i in eachindex(q) - @inbounds hi = TaylorIntegration.stepsize( q[i], epsilon ) - h = min( h, hi ) - end - # If `isinf(h)==true`, we use the maximum (finite) - # step-size obtained from all coefficients as above. - # Note that the time step is independent from `epsilon`. - if isinf(h) - h = zero(R) - #= Threads.@threads =# for i in eachindex(q) - @inbounds hi = TaylorIntegration._second_stepsize(q[i], epsilon) - h = max( h, hi ) - end - end - return h::R -end - -@doc raw""" - stepsize_jz05(q::AbstractArray{Taylor1{U}, N}, epsilon::T) where {T<:Real, U<:Number, N} - -First step-size control. See section 3.2 of https://doi.org/10.1080/10586458.2005.10128904. - -See also [`stepsize_threads`](@ref) and [`TaylorIntegration.stepsize`](@ref). -""" -function stepsize_jz05(q::AbstractArray{Taylor1{U}, N}, epsilon::T) where - {T<:Real, U<:Number, N} - nbodies = (length(q)-13)÷6 - q0_norminf = norm(constant_term.(q[1:6nbodies]), Inf) - pred = epsilon*q0_norminf ≤ epsilon - - if pred - p_jz05 = Int(ceil(-0.5log(epsilon)+1)) # atol - else - p_jz05 = Int(ceil(-0.5log(epsilon)+1)) # rtol - end - - order = min(p_jz05, q[1].order) # q[1].order - ordm1 = order-1 - invorder = 1/order - invordm1 = 1/ordm1 - qordm1_norminf = norm(getcoeff.(q[1:6nbodies], ordm1), Inf) - qorder_norminf = norm(getcoeff.(q[1:6nbodies], order), Inf) - - if pred - ρ_ordm1 = ( 1/qordm1_norminf )^invordm1 - ρ_order = ( 1/qorder_norminf )^invorder - else - ρ_ordm1 = ( q0_norminf/qordm1_norminf )^invordm1 - ρ_order = ( q0_norminf/qorder_norminf )^invorder - end - ρ = min(ρ_ordm1, ρ_order) - return ρ*exp(-2.0) -end - -# Constant timestep method: set timestep equal to 1 day -# function stepsize_threads(q::AbstractArray{Taylor1{U},1}, epsilon::T) where -# {T<:Real, U<:Number} -# R = promote_type(typeof(norm(constant_term(q[1]), Inf)), T) -# h = convert(R, Inf) -# h = TaylorIntegration.stepsize( q[1], epsilon ) -# return one(h)::R -# end - -@doc raw""" - taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, xaux::Vector{Taylor1{U}}, - abstol::T, params, parse_eqs::Bool=true) where {T<:Real, U<:Number} - taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, abstol::T, params, - rv::TaylorIntegration.RetAlloc{Taylor1{U}}) where {T<:Real, U<:Number} - -Threaded version of `TaylorIntegration.taylorstep`. - -See also [`stepsize_threads`](@ref) and [`TaylorIntegration.taylorstep`](@ref). -""" -function taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, xaux::Vector{Taylor1{U}}, - abstol::T, params) where {T<:Real, U<:Number} - - # Compute the Taylor coefficients - TaylorIntegration.__jetcoeffs!(Val(false), f!, t, x, dx, xaux, params) - - # Compute the step-size of the integration using `abstol` - δt = stepsize_threads(x, abstol) - - return δt -end - -function taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, abstol::T, params, - rv::TaylorIntegration.RetAlloc{Taylor1{U}}) where {T<:Real, U<:Number} - - # Compute the Taylor coefficients - TaylorIntegration.__jetcoeffs!(Val(true), f!, t, x, dx, params, rv) - - # Compute the step-size of the integration using `abstol` - δt = stepsize_threads(x, abstol) - - return δt -end - -@doc raw""" - __determine_parsing!(parse_eqs::Bool, f, t, x, dx, params) - -Specialized method of `TaylorIntegration._determine_parsing!` to avoid invalidations. - -See also [`TaylorIntegration._determine_parsing!`](@ref). -""" -function __determine_parsing!(parse_eqs::Bool, f, t, x, dx, params) - - rv = TaylorIntegration._allocate_jetcoeffs!(t, x, dx, params) - - if parse_eqs - try - rv = TaylorIntegration._allocate_jetcoeffs!(Val(f), t, x, dx, params) - TaylorIntegration.jetcoeffs!(Val(f), t, x, dx, params, rv) - catch - @warn("""Unable to use the parsed method of `jetcoeffs!` for `$f`, - despite of having `parse_eqs=true`, due to some internal error. - Using `parse_eqs = false`.""") - parse_eqs = false - end - end - - return parse_eqs, rv -end - -@doc raw""" - taylorinteg_threads(f!, q0::Array{U,1}, t0::T, tmax::T, order::Int, abstol::T, Val(true/false), - params = nothing; maxsteps::Int=500, parse_eqs::Bool=true) where {T<:Real, U<:Number} - -Threaded version of `TaylorIntegration.taylorinteg`. - -See also [`TaylorIntegration.taylorinteg`](@ref). -""" taylorinteg_threads - -for V in (:(Val{true}), :(Val{false})) - @eval begin - - function taylorinteg_threads(f!, q0::Array{U, 1}, t0::T, tmax::T, order::Int, abstol::T, ::$V, params = nothing; - maxsteps::Int = 500, parse_eqs::Bool = true) where {T <: Real, U <: Number} - - # Initialize the vector of Taylor1 expansions - dof = length(q0) - t = t0 + Taylor1( T, order ) - x = Array{Taylor1{U}}(undef, dof) - dx = Array{Taylor1{U}}(undef, dof) - @inbounds for i in eachindex(q0) - @inbounds x[i] = Taylor1( q0[i], order ) - @inbounds dx[i] = Taylor1( zero(q0[i]), order ) - end - - # Determine if specialized jetcoeffs! method exists - parse_eqs, rv = __determine_parsing!(parse_eqs, f!, t, x, dx, params) - - if parse_eqs - # Re-initialize the Taylor1 expansions - t = t0 + Taylor1( T, order ) - x .= Taylor1.( q0, order ) - return _taylorinteg_threads!(f!, t, x, dx, q0, t0, tmax, abstol, rv, $V(), params, maxsteps = maxsteps) - else - return _taylorinteg_threads!(f!, t, x, dx, q0, t0, tmax, abstol, $V(), params, maxsteps = maxsteps) - end - - end - - function _taylorinteg_threads!(f!, t::Taylor1{T}, x::Array{Taylor1{U}, 1}, dx::Array{Taylor1{U}, 1}, q0::Array{U, 1}, t0::T, - tmax::T, abstol::T, ::$V, params; maxsteps::Int = 500) where {T <: Real, U <: Number} - - # Initialize the vector of Taylor1 expansions - dof = length(q0) - - # Allocation - tv = Array{T}(undef, maxsteps+1) - xv = Array{U}(undef, dof, maxsteps+1) - if $V == Val{true} - psol = Array{Taylor1{U}}(undef, dof, maxsteps) - end - xaux = Array{Taylor1{U}}(undef, dof) - - # Initial conditions - @inbounds t[0] = t0 - # x .= Taylor1.(q0, order) - x0 = deepcopy(q0) - @inbounds tv[1] = t0 - @inbounds xv[:,1] .= q0 - sign_tstep = copysign(1, tmax-t0) - - # Integration - nsteps = 1 - while sign_tstep*t0 < sign_tstep*tmax - δt = taylorstep_threads!(f!, t, x, dx, xaux, abstol, params) # δt is positive! - # Below, δt has the proper sign according to the direction of the integration - δt = sign_tstep * min(δt, sign_tstep*(tmax-t0)) - evaluate_threads!(x, δt, x0) # new initial condition - if $V == Val{true} - # Store the Taylor polynomial solution - @inbounds psol[:,nsteps] .= deepcopy.(x) - end - @inbounds Threads.@threads for i in eachindex(x0) - x[i][0] = x0[i] - dx[i][0] = zero(x0[i]) - end - t0 += δt - @inbounds t[0] = t0 - nsteps += 1 - @inbounds tv[nsteps] = t0 - @inbounds xv[:,nsteps] .= x0 - if nsteps > maxsteps - @warn(""" - Maximum number of integration steps reached; exiting. - """) - break - end - end - - if $V == Val{true} - return TaylorInterpolant(tv[1], view(tv.-tv[1],1:nsteps), view(transpose(view(psol,:,1:nsteps-1)),1:nsteps-1,:)) - elseif $V == Val{false} - return view(tv,1:nsteps), view(transpose(view(xv,:,1:nsteps)),1:nsteps,:) - end - end - - function _taylorinteg_threads!(f!, t::Taylor1{T}, x::Array{Taylor1{U}, 1}, dx::Array{Taylor1{U}, 1}, q0::Array{U, 1}, t0::T, - tmax::T, abstol::T, rv::TaylorIntegration.RetAlloc{Taylor1{U}}, ::$V, params; maxsteps::Int = 500) where {T <: Real, U <: Number} - - # Initialize the vector of Taylor1 expansions - dof = length(q0) - - # Allocation of output - tv = Array{T}(undef, maxsteps+1) - xv = Array{U}(undef, dof, maxsteps+1) - if $V == Val{true} - psol = Array{Taylor1{U}}(undef, dof, maxsteps) - end - - # Initial conditions - @inbounds t[0] = t0 - x0 = deepcopy(q0) - @inbounds tv[1] = t0 - @inbounds xv[:,1] .= q0 - sign_tstep = copysign(1, tmax-t0) - - # Integration - nsteps = 1 - while sign_tstep*t0 < sign_tstep*tmax - δt = taylorstep_threads!(f!, t, x, dx, abstol, params, rv) # δt is positive! - # Below, δt has the proper sign according to the direction of the integration - δt = sign_tstep * min(δt, sign_tstep*(tmax-t0)) - evaluate_threads!(x, δt, x0) # new initial condition - if $V == Val{true} - # Store the Taylor polynomial solution - @inbounds psol[:,nsteps] .= deepcopy.(x) - end - - Threads.@threads for i in eachindex(x0) - x[i][0] = x0[i] - dx[i][0] = zero(x0[i]) - end - t0 += δt - @inbounds t[0] = t0 - nsteps += 1 - @inbounds tv[nsteps] = t0 - @inbounds xv[:,nsteps] .= x0 - if nsteps > maxsteps - @warn(""" - Maximum number of integration steps reached; exiting. - """) - break - end - end - - if $V == Val{true} - return TaylorInterpolant(tv[1], view(tv.-tv[1],1:nsteps), view(transpose(view(psol,:,1:nsteps-1)),1:nsteps-1,:)) - elseif $V == Val{false} - return view(tv,1:nsteps), view(transpose(view(xv,:,1:nsteps)),1:nsteps,:) - end - end - - end -end diff --git a/src/propagation.jl b/src/propagation.jl index 652ab82..db134c8 100644 --- a/src/propagation.jl +++ b/src/propagation.jl @@ -149,32 +149,7 @@ function save2jld2andcheck(outfilename::String, sol) end @doc raw""" - day2sec(x::Matrix{Taylor1{U}}) where {U <: Number} - -Convert `x` from days to seconds. -""" -function day2sec(x::Matrix{Taylor1{U}}) where {U <: Number} - - # Order of Taylor polynomials - order = x[1, 1].order - # Matrix dimensions - m, n = size(x) - # Taylor conversion variable - t = Taylor1(order) / daysec - # Allocate memory - res = Matrix{Taylor1{U}}(undef, m, n) - # Iterate over the matrix - for j in 1:n - for i in 1:m - @inbounds res[i, j] = x[i, j](t) - end - end - - return res -end - -@doc raw""" - propagate(maxsteps::Int, jd0::T, tspan::T, ::Val{false/true}; dynamics::Function = NBP_pN_A_J23E_J23M_J2S!, + propagate(maxsteps::Int, jd0::T, tspan::T, ::Val{false/true}; dynamics::Function = NBP_pN_A_J23E_J23M_J2S_threads!, nast::Int = 343, order::Int = order, abstol::T = abstol, parse_eqs::Bool = true) where {T <: Real} Integrate the Solar System via the Taylor method. @@ -195,7 +170,7 @@ Integrate the Solar System via the Taylor method. for V_dense in (:(Val{true}), :(Val{false})) @eval begin - function propagate(maxsteps::Int, jd0::T, tspan::T, ::$V_dense; dynamics::Function = NBP_pN_A_J23E_J23M_J2S!, + function propagate(maxsteps::Int, jd0::T, tspan::T, ::$V_dense; dynamics::Function = NBP_pN_A_J23E_J23M_J2S_threads!, nast::Int = 343, order::Int = order, abstol::T = abstol, parse_eqs::Bool = true) where {T <: Real} # Total number of bodies (Sun + 8 planets + Moon + Pluto + Asteroid) @@ -214,22 +189,22 @@ for V_dense in (:(Val{true}), :(Val{false})) tmax = t0 + tspan*yr # Integration - sol_ = @time taylorinteg_threads(dynamics, q0, t0, tmax, order, abstol, $V_dense(), params, maxsteps = maxsteps, - parse_eqs = parse_eqs) + sol = @time taylorinteg(dynamics, q0, t0, tmax, order, abstol, $V_dense(), params; + maxsteps, parse_eqs) if $V_dense == Val{true} - return TaylorInterpolant{T, T, 2}(jd0 - J2000, sol_.t, sol_.x) + return TaylorInterpolant{T, T, 2}(jd0 - J2000, sol[1], sol[3]) else - return sol_[1], sol_[2] + return sol end end - function propagate(maxsteps::Int, jd0::T1, tspan::T2, ::$V_dense; dynamics::Function = NBP_pN_A_J23E_J23M_J2S!, + function propagate(maxsteps::Int, jd0::T1, tspan::T2, ::$V_dense; dynamics::Function = NBP_pN_A_J23E_J23M_J2S_threads!, nast::Int = 343, order::Int = order, abstol::T3 = abstol, parse_eqs::Bool = true) where {T1, T2, T3 <: Real} _jd0, _tspan, _abstol = promote(jd0, tspan, abstol)