diff --git a/Project.toml b/Project.toml index d65199c..13dad4d 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "PlanetaryEphemeris" uuid = "d83715d0-7e5f-11e9-1a59-4137b20d8363" authors = ["Jorge A. Pérez Hernández", "Luis Benet", "Luis Eduardo Ramírez Montoya"] -version = "0.7.8" +version = "0.8.0" [deps] ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63" @@ -23,6 +23,6 @@ DelimitedFiles = "1" JLD2 = "0.4" PrecompileTools = "1.1" Quadmath = "0.5" -TaylorIntegration = "0.14" -TaylorSeries = "0.15, 0.16" +TaylorIntegration = "0.15" +TaylorSeries = "0.17" julia = "1.6" diff --git a/src/dynamics/jetcoeffs.jl b/src/dynamics/jetcoeffs.jl index 73274ec..58d9e90 100644 --- a/src/dynamics/jetcoeffs.jl +++ b/src/dynamics/jetcoeffs.jl @@ -163,158 +163,158 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr ϕ_m = Taylor1(identity(constant_term(q[6N + 1])), order) θ_m = Taylor1(identity(constant_term(q[6N + 2])), order) ψ_m = Taylor1(identity(constant_term(q[6N + 3])), order) - tmp2911 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3645 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2912 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3646 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2913 = Taylor1(constant_term(tmp2911) * constant_term(tmp2912), order) - tmp2914 = Taylor1(cos(constant_term(θ_m)), order) - tmp3647 = Taylor1(sin(constant_term(θ_m)), order) - tmp2915 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3648 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2916 = Taylor1(constant_term(tmp2914) * constant_term(tmp2915), order) - tmp2917 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3649 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2918 = Taylor1(constant_term(tmp2916) * constant_term(tmp2917), order) - RotM[1, 1, mo] = Taylor1(constant_term(tmp2913) - constant_term(tmp2918), order) - tmp2920 = Taylor1(cos(constant_term(θ_m)), order) - tmp3650 = Taylor1(sin(constant_term(θ_m)), order) - tmp2921 = Taylor1(-(constant_term(tmp2920)), order) - tmp2922 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3651 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2923 = Taylor1(constant_term(tmp2921) * constant_term(tmp2922), order) - tmp2924 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3652 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2925 = Taylor1(constant_term(tmp2923) * constant_term(tmp2924), order) - tmp2926 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3653 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2927 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3654 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2928 = Taylor1(constant_term(tmp2926) * constant_term(tmp2927), order) - RotM[2, 1, mo] = Taylor1(constant_term(tmp2925) - constant_term(tmp2928), order) - tmp2930 = Taylor1(sin(constant_term(θ_m)), order) - tmp3655 = Taylor1(cos(constant_term(θ_m)), order) - tmp2931 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3656 = Taylor1(cos(constant_term(ϕ_m)), order) - RotM[3, 1, mo] = Taylor1(constant_term(tmp2930) * constant_term(tmp2931), order) - tmp2933 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3657 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2934 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3658 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2935 = Taylor1(constant_term(tmp2933) * constant_term(tmp2934), order) - tmp2936 = Taylor1(cos(constant_term(θ_m)), order) - tmp3659 = Taylor1(sin(constant_term(θ_m)), order) - tmp2937 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3660 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2938 = Taylor1(constant_term(tmp2936) * constant_term(tmp2937), order) - tmp2939 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3661 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2940 = Taylor1(constant_term(tmp2938) * constant_term(tmp2939), order) - RotM[1, 2, mo] = Taylor1(constant_term(tmp2935) + constant_term(tmp2940), order) - tmp2942 = Taylor1(cos(constant_term(θ_m)), order) - tmp3662 = Taylor1(sin(constant_term(θ_m)), order) - tmp2943 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3663 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2944 = Taylor1(constant_term(tmp2942) * constant_term(tmp2943), order) - tmp2945 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3664 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2946 = Taylor1(constant_term(tmp2944) * constant_term(tmp2945), order) - tmp2947 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3665 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2948 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3666 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2949 = Taylor1(constant_term(tmp2947) * constant_term(tmp2948), order) - RotM[2, 2, mo] = Taylor1(constant_term(tmp2946) - constant_term(tmp2949), order) - tmp2951 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3667 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2952 = Taylor1(-(constant_term(tmp2951)), order) - tmp2953 = Taylor1(sin(constant_term(θ_m)), order) - tmp3668 = Taylor1(cos(constant_term(θ_m)), order) - RotM[3, 2, mo] = Taylor1(constant_term(tmp2952) * constant_term(tmp2953), order) - tmp2955 = Taylor1(sin(constant_term(θ_m)), order) - tmp3669 = Taylor1(cos(constant_term(θ_m)), order) - tmp2956 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3670 = Taylor1(cos(constant_term(ψ_m)), order) - RotM[1, 3, mo] = Taylor1(constant_term(tmp2955) * constant_term(tmp2956), order) - tmp2958 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3671 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2959 = Taylor1(sin(constant_term(θ_m)), order) - tmp3672 = Taylor1(cos(constant_term(θ_m)), order) - RotM[2, 3, mo] = Taylor1(constant_term(tmp2958) * constant_term(tmp2959), order) + tmp1133 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1867 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1134 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1868 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1135 = Taylor1(constant_term(tmp1133) * constant_term(tmp1134), order) + tmp1136 = Taylor1(cos(constant_term(θ_m)), order) + tmp1869 = Taylor1(sin(constant_term(θ_m)), order) + tmp1137 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1870 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1138 = Taylor1(constant_term(tmp1136) * constant_term(tmp1137), order) + tmp1139 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1871 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1140 = Taylor1(constant_term(tmp1138) * constant_term(tmp1139), order) + RotM[1, 1, mo] = Taylor1(constant_term(tmp1135) - constant_term(tmp1140), order) + tmp1142 = Taylor1(cos(constant_term(θ_m)), order) + tmp1872 = Taylor1(sin(constant_term(θ_m)), order) + tmp1143 = Taylor1(-(constant_term(tmp1142)), order) + tmp1144 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1873 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1145 = Taylor1(constant_term(tmp1143) * constant_term(tmp1144), order) + tmp1146 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1874 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1147 = Taylor1(constant_term(tmp1145) * constant_term(tmp1146), order) + tmp1148 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1875 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1149 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1876 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1150 = Taylor1(constant_term(tmp1148) * constant_term(tmp1149), order) + RotM[2, 1, mo] = Taylor1(constant_term(tmp1147) - constant_term(tmp1150), order) + tmp1152 = Taylor1(sin(constant_term(θ_m)), order) + tmp1877 = Taylor1(cos(constant_term(θ_m)), order) + tmp1153 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1878 = Taylor1(cos(constant_term(ϕ_m)), order) + RotM[3, 1, mo] = Taylor1(constant_term(tmp1152) * constant_term(tmp1153), order) + tmp1155 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1879 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1156 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1880 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1157 = Taylor1(constant_term(tmp1155) * constant_term(tmp1156), order) + tmp1158 = Taylor1(cos(constant_term(θ_m)), order) + tmp1881 = Taylor1(sin(constant_term(θ_m)), order) + tmp1159 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1882 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1160 = Taylor1(constant_term(tmp1158) * constant_term(tmp1159), order) + tmp1161 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1883 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1162 = Taylor1(constant_term(tmp1160) * constant_term(tmp1161), order) + RotM[1, 2, mo] = Taylor1(constant_term(tmp1157) + constant_term(tmp1162), order) + tmp1164 = Taylor1(cos(constant_term(θ_m)), order) + tmp1884 = Taylor1(sin(constant_term(θ_m)), order) + tmp1165 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1885 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1166 = Taylor1(constant_term(tmp1164) * constant_term(tmp1165), order) + tmp1167 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1886 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1168 = Taylor1(constant_term(tmp1166) * constant_term(tmp1167), order) + tmp1169 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1887 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1170 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1888 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1171 = Taylor1(constant_term(tmp1169) * constant_term(tmp1170), order) + RotM[2, 2, mo] = Taylor1(constant_term(tmp1168) - constant_term(tmp1171), order) + tmp1173 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1889 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1174 = Taylor1(-(constant_term(tmp1173)), order) + tmp1175 = Taylor1(sin(constant_term(θ_m)), order) + tmp1890 = Taylor1(cos(constant_term(θ_m)), order) + RotM[3, 2, mo] = Taylor1(constant_term(tmp1174) * constant_term(tmp1175), order) + tmp1177 = Taylor1(sin(constant_term(θ_m)), order) + tmp1891 = Taylor1(cos(constant_term(θ_m)), order) + tmp1178 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1892 = Taylor1(cos(constant_term(ψ_m)), order) + RotM[1, 3, mo] = Taylor1(constant_term(tmp1177) * constant_term(tmp1178), order) + tmp1180 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1893 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1181 = Taylor1(sin(constant_term(θ_m)), order) + tmp1894 = Taylor1(cos(constant_term(θ_m)), order) + RotM[2, 3, mo] = Taylor1(constant_term(tmp1180) * constant_term(tmp1181), order) RotM[3, 3, mo] = Taylor1(cos(constant_term(θ_m)), order) - tmp3673 = Taylor1(sin(constant_term(θ_m)), order) + tmp1895 = Taylor1(sin(constant_term(θ_m)), order) mantlef2coref = Array{S}(undef, 3, 3) ϕ_c = Taylor1(identity(constant_term(q[6N + 7])), order) - tmp2962 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3674 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2963 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp2962), order) - tmp2964 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3675 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2965 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp2964), order) - mantlef2coref[1, 1] = Taylor1(constant_term(tmp2963) + constant_term(tmp2965), order) - tmp2967 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) - tmp2968 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3676 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2969 = Taylor1(constant_term(tmp2967) * constant_term(tmp2968), order) - tmp2970 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3677 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2971 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp2970), order) - mantlef2coref[2, 1] = Taylor1(constant_term(tmp2969) + constant_term(tmp2971), order) + tmp1184 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1896 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1185 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp1184), order) + tmp1186 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1897 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1187 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1186), order) + mantlef2coref[1, 1] = Taylor1(constant_term(tmp1185) + constant_term(tmp1187), order) + tmp1189 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) + tmp1190 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1898 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1191 = Taylor1(constant_term(tmp1189) * constant_term(tmp1190), order) + tmp1192 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1899 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1193 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1192), order) + mantlef2coref[2, 1] = Taylor1(constant_term(tmp1191) + constant_term(tmp1193), order) mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) - tmp2973 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3678 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2974 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp2973), order) - tmp2975 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3679 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2976 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp2975), order) - mantlef2coref[1, 2] = Taylor1(constant_term(tmp2974) + constant_term(tmp2976), order) - tmp2978 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) - tmp2979 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3680 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2980 = Taylor1(constant_term(tmp2978) * constant_term(tmp2979), order) - tmp2981 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3681 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2982 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp2981), order) - mantlef2coref[2, 2] = Taylor1(constant_term(tmp2980) + constant_term(tmp2982), order) + tmp1195 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1900 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1196 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp1195), order) + tmp1197 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1901 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1198 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1197), order) + mantlef2coref[1, 2] = Taylor1(constant_term(tmp1196) + constant_term(tmp1198), order) + tmp1200 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) + tmp1201 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1902 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1202 = Taylor1(constant_term(tmp1200) * constant_term(tmp1201), order) + tmp1203 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1903 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1204 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1203), order) + mantlef2coref[2, 2] = Taylor1(constant_term(tmp1202) + constant_term(tmp1204), order) mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) - tmp2984 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3682 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2985 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp2984), order) - tmp2986 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3683 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2987 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp2986), order) - mantlef2coref[1, 3] = Taylor1(constant_term(tmp2985) + constant_term(tmp2987), order) - tmp2989 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) - tmp2990 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3684 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2991 = Taylor1(constant_term(tmp2989) * constant_term(tmp2990), order) - tmp2992 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3685 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2993 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp2992), order) - mantlef2coref[2, 3] = Taylor1(constant_term(tmp2991) + constant_term(tmp2993), order) + tmp1206 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1904 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1207 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp1206), order) + tmp1208 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1905 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1209 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1208), order) + mantlef2coref[1, 3] = Taylor1(constant_term(tmp1207) + constant_term(tmp1209), order) + tmp1211 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) + tmp1212 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1906 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1213 = Taylor1(constant_term(tmp1211) * constant_term(tmp1212), order) + tmp1214 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1907 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1215 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1214), order) + mantlef2coref[2, 3] = Taylor1(constant_term(tmp1213) + constant_term(tmp1215), order) mantlef2coref[3, 3] = Taylor1(identity(constant_term(RotM[3, 3, mo])), order) - tmp2995 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) - tmp2996 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) - tmp2997 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) - tmp2998 = Taylor1(constant_term(tmp2996) + constant_term(tmp2997), order) - ω_c_CE_1 = Taylor1(constant_term(tmp2995) + constant_term(tmp2998), order) - tmp3000 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) - tmp3001 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) - tmp3002 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) - tmp3003 = Taylor1(constant_term(tmp3001) + constant_term(tmp3002), order) - ω_c_CE_2 = Taylor1(constant_term(tmp3000) + constant_term(tmp3003), order) - tmp3005 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) - tmp3006 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) - tmp3007 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) - tmp3008 = Taylor1(constant_term(tmp3006) + constant_term(tmp3007), order) - ω_c_CE_3 = Taylor1(constant_term(tmp3005) + constant_term(tmp3008), order) + tmp1217 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) + tmp1218 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) + tmp1219 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) + tmp1220 = Taylor1(constant_term(tmp1218) + constant_term(tmp1219), order) + ω_c_CE_1 = Taylor1(constant_term(tmp1217) + constant_term(tmp1220), order) + tmp1222 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) + tmp1223 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) + tmp1224 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) + tmp1225 = Taylor1(constant_term(tmp1223) + constant_term(tmp1224), order) + ω_c_CE_2 = Taylor1(constant_term(tmp1222) + constant_term(tmp1225), order) + tmp1227 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) + tmp1228 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) + tmp1229 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) + tmp1230 = Taylor1(constant_term(tmp1228) + constant_term(tmp1229), order) + ω_c_CE_3 = Taylor1(constant_term(tmp1227) + constant_term(tmp1230), order) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t J2_t = Array{S}(undef, 5) J2_t[su] = Taylor1(identity(constant_term(J2S_t)), order) J2_t[ea] = Taylor1(identity(constant_term(J2E_t)), order) local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:307 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:309 =# Threads.@threads for j = 1:N newtonX[j] = Taylor1(identity(constant_term(zero_q_1)), order) newtonY[j] = Taylor1(identity(constant_term(zero_q_1)), order) newtonZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -323,66 +323,120 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr dq[3j - 1] = Taylor1(identity(constant_term(q[3 * (N + j) - 1])), order) dq[3j] = Taylor1(identity(constant_term(q[3 * (N + j)])), order) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:319 =# Threads.@threads for j = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:321 =# Threads.@threads for j = 1:N_ext accX[j] = Taylor1(identity(constant_term(zero_q_1)), order) accY[j] = Taylor1(identity(constant_term(zero_q_1)), order) accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp3073 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3073 .= Taylor1(zero(_S), order) - tmp3075 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3075 .= Taylor1(zero(_S), order) - tmp3076 = Array{Taylor1{_S}}(undef, size(tmp3073)) - tmp3076 .= Taylor1(zero(_S), order) - tmp3078 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3078 .= Taylor1(zero(_S), order) - tmp3017 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3017 .= Taylor1(zero(_S), order) - tmp3019 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3019 .= Taylor1(zero(_S), order) - tmp3022 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3022 .= Taylor1(zero(_S), order) - tmp3024 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3024 .= Taylor1(zero(_S), order) - tmp3027 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3027 .= Taylor1(zero(_S), order) - tmp3029 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3029 .= Taylor1(zero(_S), order) + tmp1295 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1295) + tmp1295[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1297 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1297) + tmp1297[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1298 = Array{Taylor1{_S}}(undef, size(tmp1295)) + for i = CartesianIndices(tmp1298) + tmp1298[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1300 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1300) + tmp1300[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1239 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1239) + tmp1239[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1241 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1241) + tmp1241[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1244 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1244) + tmp1244[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1246 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1246) + tmp1246[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1249 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1249) + tmp1249[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1251 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp1251) + tmp1251[i] = Taylor1(zero(constant_term(q[1])), order) + end pn2x = Array{Taylor1{_S}}(undef, size(X)) - pn2x .= Taylor1(zero(_S), order) + for i = CartesianIndices(pn2x) + pn2x[i] = Taylor1(zero(constant_term(q[1])), order) + end pn2y = Array{Taylor1{_S}}(undef, size(Y)) - pn2y .= Taylor1(zero(_S), order) + for i = CartesianIndices(pn2y) + pn2y[i] = Taylor1(zero(constant_term(q[1])), order) + end pn2z = Array{Taylor1{_S}}(undef, size(Z)) - pn2z .= Taylor1(zero(_S), order) - tmp3037 = Array{Taylor1{_S}}(undef, size(UU)) - tmp3037 .= Taylor1(zero(_S), order) - tmp3040 = Array{Taylor1{_S}}(undef, size(X)) - tmp3040 .= Taylor1(zero(_S), order) - tmp3042 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3042 .= Taylor1(zero(_S), order) - tmp3043 = Array{Taylor1{_S}}(undef, size(tmp3040)) - tmp3043 .= Taylor1(zero(_S), order) - tmp3045 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3045 .= Taylor1(zero(_S), order) - tmp3053 = Array{Taylor1{_S}}(undef, size(pn2x)) - tmp3053 .= Taylor1(zero(_S), order) - tmp3054 = Array{Taylor1{_S}}(undef, size(tmp3053)) - tmp3054 .= Taylor1(zero(_S), order) - tmp3065 = Array{Taylor1{_S}}(undef, size(X)) - tmp3065 .= Taylor1(zero(_S), order) - temp_001 = Array{Taylor1{_S}}(undef, size(tmp3065)) - temp_001 .= Taylor1(zero(_S), order) - tmp3067 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3067 .= Taylor1(zero(_S), order) - temp_002 = Array{Taylor1{_S}}(undef, size(tmp3067)) - temp_002 .= Taylor1(zero(_S), order) - tmp3069 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3069 .= Taylor1(zero(_S), order) - temp_003 = Array{Taylor1{_S}}(undef, size(tmp3069)) - temp_003 .= Taylor1(zero(_S), order) + for i = CartesianIndices(pn2z) + pn2z[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1259 = Array{Taylor1{_S}}(undef, size(UU)) + for i = CartesianIndices(tmp1259) + tmp1259[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1262 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp1262) + tmp1262[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1264 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp1264) + tmp1264[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1265 = Array{Taylor1{_S}}(undef, size(tmp1262)) + for i = CartesianIndices(tmp1265) + tmp1265[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1267 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp1267) + tmp1267[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1275 = Array{Taylor1{_S}}(undef, size(pn2x)) + for i = CartesianIndices(tmp1275) + tmp1275[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1276 = Array{Taylor1{_S}}(undef, size(tmp1275)) + for i = CartesianIndices(tmp1276) + tmp1276[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1287 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp1287) + tmp1287[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_001 = Array{Taylor1{_S}}(undef, size(tmp1287)) + for i = CartesianIndices(temp_001) + temp_001[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1289 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp1289) + tmp1289[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_002 = Array{Taylor1{_S}}(undef, size(tmp1289)) + for i = CartesianIndices(temp_002) + temp_002[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1291 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp1291) + tmp1291[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_003 = Array{Taylor1{_S}}(undef, size(tmp1291)) + for i = CartesianIndices(temp_003) + temp_003[i] = Taylor1(zero(constant_term(q[1])), order) + end temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) - temp_004 .= Taylor1(zero(_S), order) - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:325 =# Threads.@threads for j = 1:N + for i = CartesianIndices(temp_004) + temp_004[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:327 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -393,35 +447,35 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr U[i, j] = Taylor1(constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]), order) V[i, j] = Taylor1(constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]), order) W[i, j] = Taylor1(constant_term(dq[3i]) - constant_term(dq[3j]), order) - tmp3017[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) - tmp3019[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) - _4U_m_3X[i, j] = Taylor1(constant_term(tmp3017[3j - 2]) - constant_term(tmp3019[3i - 2]), order) - tmp3022[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) - tmp3024[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) - _4V_m_3Y[i, j] = Taylor1(constant_term(tmp3022[3j - 1]) - constant_term(tmp3024[3i - 1]), order) - tmp3027[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) - tmp3029[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) - _4W_m_3Z[i, j] = Taylor1(constant_term(tmp3027[3j]) - constant_term(tmp3029[3i]), order) + tmp1239[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) + tmp1241[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) + _4U_m_3X[i, j] = Taylor1(constant_term(tmp1239[3j - 2]) - constant_term(tmp1241[3i - 2]), order) + tmp1244[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) + tmp1246[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) + _4V_m_3Y[i, j] = Taylor1(constant_term(tmp1244[3j - 1]) - constant_term(tmp1246[3i - 1]), order) + tmp1249[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) + tmp1251[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) + _4W_m_3Z[i, j] = Taylor1(constant_term(tmp1249[3j]) - constant_term(tmp1251[3i]), order) pn2x[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]), order) pn2y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]), order) pn2z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]), order) UU[i, j] = Taylor1(constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]), order) VV[i, j] = Taylor1(constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]), order) WW[i, j] = Taylor1(constant_term(dq[3i]) * constant_term(dq[3j]), order) - tmp3037[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) - vi_dot_vj[i, j] = Taylor1(constant_term(tmp3037[i, j]) + constant_term(WW[i, j]), order) - tmp3040[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) - tmp3042[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) - tmp3043[i, j] = Taylor1(constant_term(tmp3040[i, j]) + constant_term(tmp3042[i, j]), order) - tmp3045[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) - r_p2[i, j] = Taylor1(constant_term(tmp3043[i, j]) + constant_term(tmp3045[i, j]), order) + tmp1259[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) + vi_dot_vj[i, j] = Taylor1(constant_term(tmp1259[i, j]) + constant_term(WW[i, j]), order) + tmp1262[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) + tmp1264[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) + tmp1265[i, j] = Taylor1(constant_term(tmp1262[i, j]) + constant_term(tmp1264[i, j]), order) + tmp1267[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) + r_p2[i, j] = Taylor1(constant_term(tmp1265[i, j]) + constant_term(tmp1267[i, j]), order) r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) - tmp3053[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) - tmp3054[i, j] = Taylor1(constant_term(tmp3053[i, j]) + constant_term(pn2z[i, j]), order) - pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp3054[i, j]), order) + tmp1275[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) + tmp1276[i, j] = Taylor1(constant_term(tmp1275[i, j]) + constant_term(pn2z[i, j]), order) + pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp1276[i, j]), order) newton_acc_X[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) @@ -430,305 +484,569 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr U_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(U[i, j]), order) V_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(V[i, j]), order) W_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(W[i, j]), order) - tmp3065[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp3065[i, j]), order) + tmp1287[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp1287[i, j]), order) newtonX[j] = Taylor1(identity(constant_term(temp_001[i, j])), order) - tmp3067[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp3067[i, j]), order) + tmp1289[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp1289[i, j]), order) newtonY[j] = Taylor1(identity(constant_term(temp_002[i, j])), order) - tmp3069[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp3069[i, j]), order) + tmp1291[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp1291[i, j]), order) newtonZ[j] = Taylor1(identity(constant_term(temp_003[i, j])), order) temp_004[i, j] = Taylor1(constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]), order) newtonianNb_Potential[j] = Taylor1(identity(constant_term(temp_004[i, j])), order) end end - tmp3073[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) - tmp3075[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) - tmp3076[3j - 2] = Taylor1(constant_term(tmp3073[3j - 2]) + constant_term(tmp3075[3j - 1]), order) - tmp3078[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) - v2[j] = Taylor1(constant_term(tmp3076[3j - 2]) + constant_term(tmp3078[3j]), order) + tmp1295[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) + tmp1297[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) + tmp1298[3j - 2] = Taylor1(constant_term(tmp1295[3j - 2]) + constant_term(tmp1297[3j - 1]), order) + tmp1300[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) + v2[j] = Taylor1(constant_term(tmp1298[3j - 2]) + constant_term(tmp1300[3j]), order) end - tmp3080 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) - tmp3082 = Taylor1(constant_term(tmp3080) / constant_term(2), order) - tmp3083 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp3082), order) - J2M_t = Taylor1(constant_term(tmp3083) / constant_term(μ[mo]), order) - tmp3085 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) - tmp3086 = Taylor1(constant_term(tmp3085) / constant_term(μ[mo]), order) - C22M_t = Taylor1(constant_term(tmp3086) / constant_term(4), order) - tmp3089 = Taylor1(-(constant_term(I_M_t[1, 3])), order) - C21M_t = Taylor1(constant_term(tmp3089) / constant_term(μ[mo]), order) - tmp3091 = Taylor1(-(constant_term(I_M_t[3, 2])), order) - S21M_t = Taylor1(constant_term(tmp3091) / constant_term(μ[mo]), order) - tmp3093 = Taylor1(-(constant_term(I_M_t[2, 1])), order) - tmp3094 = Taylor1(constant_term(tmp3093) / constant_term(μ[mo]), order) - S22M_t = Taylor1(constant_term(tmp3094) / constant_term(2), order) + tmp1302 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) + tmp1304 = Taylor1(constant_term(tmp1302) / constant_term(2), order) + tmp1305 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp1304), order) + J2M_t = Taylor1(constant_term(tmp1305) / constant_term(μ[mo]), order) + tmp1307 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) + tmp1308 = Taylor1(constant_term(tmp1307) / constant_term(μ[mo]), order) + C22M_t = Taylor1(constant_term(tmp1308) / constant_term(4), order) + tmp1311 = Taylor1(-(constant_term(I_M_t[1, 3])), order) + C21M_t = Taylor1(constant_term(tmp1311) / constant_term(μ[mo]), order) + tmp1313 = Taylor1(-(constant_term(I_M_t[3, 2])), order) + S21M_t = Taylor1(constant_term(tmp1313) / constant_term(μ[mo]), order) + tmp1315 = Taylor1(-(constant_term(I_M_t[2, 1])), order) + tmp1316 = Taylor1(constant_term(tmp1315) / constant_term(μ[mo]), order) + S22M_t = Taylor1(constant_term(tmp1316) / constant_term(2), order) J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) - tmp3106 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - tmp3106 .= Taylor1(zero(_S), order) - tmp3108 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - tmp3108 .= Taylor1(zero(_S), order) - tmp3110 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - tmp3110 .= Taylor1(zero(_S), order) - tmp3114 = Array{Taylor1{_S}}(undef, size(X_bf)) - tmp3114 .= Taylor1(zero(_S), order) - tmp3116 = Array{Taylor1{_S}}(undef, size(Y_bf)) - tmp3116 .= Taylor1(zero(_S), order) - tmp3117 = Array{Taylor1{_S}}(undef, size(tmp3114)) - tmp3117 .= Taylor1(zero(_S), order) - tmp3132 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3132 .= Taylor1(zero(_S), order) - tmp3133 = Array{Taylor1{_S}}(undef, size(tmp3132)) - tmp3133 .= Taylor1(zero(_S), order) - tmp3135 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3135 .= Taylor1(zero(_S), order) - tmp3136 = Array{Taylor1{_S}}(undef, size(tmp3135)) - tmp3136 .= Taylor1(zero(_S), order) - tmp3137 = Array{Taylor1{_S}}(undef, size(tmp3136)) - tmp3137 .= Taylor1(zero(_S), order) - tmp3234 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp3234 .= Taylor1(zero(_S), order) - tmp3237 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp3237 .= Taylor1(zero(_S), order) - tmp3239 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3239 .= Taylor1(zero(_S), order) - tmp3240 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3240 .= Taylor1(zero(_S), order) - tmp3241 = Array{Taylor1{_S}}(undef, size(tmp3239)) - tmp3241 .= Taylor1(zero(_S), order) - tmp3242 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3242 .= Taylor1(zero(_S), order) - tmp3244 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3244 .= Taylor1(zero(_S), order) - tmp3245 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3245 .= Taylor1(zero(_S), order) - tmp3246 = Array{Taylor1{_S}}(undef, size(tmp3244)) - tmp3246 .= Taylor1(zero(_S), order) - tmp3247 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3247 .= Taylor1(zero(_S), order) - tmp3249 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3249 .= Taylor1(zero(_S), order) - tmp3250 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3250 .= Taylor1(zero(_S), order) - tmp3251 = Array{Taylor1{_S}}(undef, size(tmp3249)) - tmp3251 .= Taylor1(zero(_S), order) - tmp3252 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3252 .= Taylor1(zero(_S), order) - tmp3254 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3254 .= Taylor1(zero(_S), order) - tmp3255 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3255 .= Taylor1(zero(_S), order) - tmp3256 = Array{Taylor1{_S}}(undef, size(tmp3254)) - tmp3256 .= Taylor1(zero(_S), order) - tmp3257 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3257 .= Taylor1(zero(_S), order) - tmp3259 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3259 .= Taylor1(zero(_S), order) - tmp3260 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3260 .= Taylor1(zero(_S), order) - tmp3261 = Array{Taylor1{_S}}(undef, size(tmp3259)) - tmp3261 .= Taylor1(zero(_S), order) - tmp3262 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3262 .= Taylor1(zero(_S), order) - tmp3264 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3264 .= Taylor1(zero(_S), order) - tmp3265 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3265 .= Taylor1(zero(_S), order) - tmp3266 = Array{Taylor1{_S}}(undef, size(tmp3264)) - tmp3266 .= Taylor1(zero(_S), order) - tmp3267 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3267 .= Taylor1(zero(_S), order) - tmp3269 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3269 .= Taylor1(zero(_S), order) - tmp3270 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3270 .= Taylor1(zero(_S), order) - tmp3271 = Array{Taylor1{_S}}(undef, size(tmp3269)) - tmp3271 .= Taylor1(zero(_S), order) - tmp3272 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3272 .= Taylor1(zero(_S), order) - tmp3274 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3274 .= Taylor1(zero(_S), order) - tmp3275 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3275 .= Taylor1(zero(_S), order) - tmp3276 = Array{Taylor1{_S}}(undef, size(tmp3274)) - tmp3276 .= Taylor1(zero(_S), order) - tmp3277 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3277 .= Taylor1(zero(_S), order) - tmp3279 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3279 .= Taylor1(zero(_S), order) - tmp3280 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3280 .= Taylor1(zero(_S), order) - tmp3281 = Array{Taylor1{_S}}(undef, size(tmp3279)) - tmp3281 .= Taylor1(zero(_S), order) - tmp3282 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3282 .= Taylor1(zero(_S), order) - tmp3284 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3284 .= Taylor1(zero(_S), order) - tmp3285 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3285 .= Taylor1(zero(_S), order) - tmp3286 = Array{Taylor1{_S}}(undef, size(tmp3284)) - tmp3286 .= Taylor1(zero(_S), order) - tmp3287 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3287 .= Taylor1(zero(_S), order) - tmp3289 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3289 .= Taylor1(zero(_S), order) - tmp3290 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3290 .= Taylor1(zero(_S), order) - tmp3291 = Array{Taylor1{_S}}(undef, size(tmp3289)) - tmp3291 .= Taylor1(zero(_S), order) - tmp3292 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3292 .= Taylor1(zero(_S), order) - tmp3294 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3294 .= Taylor1(zero(_S), order) - tmp3295 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3295 .= Taylor1(zero(_S), order) - tmp3296 = Array{Taylor1{_S}}(undef, size(tmp3294)) - tmp3296 .= Taylor1(zero(_S), order) - tmp3297 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3297 .= Taylor1(zero(_S), order) - tmp3122 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3122 .= Taylor1(zero(_S), order) - tmp3123 = Array{Taylor1{_S}}(undef, size(tmp3122)) - tmp3123 .= Taylor1(zero(_S), order) - tmp3124 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3124 .= Taylor1(zero(_S), order) - tmp3126 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3126 .= Taylor1(zero(_S), order) - tmp3127 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3127 .= Taylor1(zero(_S), order) - tmp3139 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3139 .= Taylor1(zero(_S), order) - tmp3140 = Array{Taylor1{_S}}(undef, size(tmp3139)) - tmp3140 .= Taylor1(zero(_S), order) - tmp3141 = Array{Taylor1{_S}}(undef, size(tmp3140)) - tmp3141 .= Taylor1(zero(_S), order) - tmp3143 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3143 .= Taylor1(zero(_S), order) - tmp3144 = Array{Taylor1{_S}}(undef, size(tmp3143)) - tmp3144 .= Taylor1(zero(_S), order) - tmp3145 = Array{Taylor1{_S}}(undef, size(tmp3144)) - tmp3145 .= Taylor1(zero(_S), order) - tmp3146 = Array{Taylor1{_S}}(undef, size(tmp3145)) - tmp3146 .= Taylor1(zero(_S), order) - tmp3171 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3171 .= Taylor1(zero(_S), order) - tmp3172 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3172 .= Taylor1(zero(_S), order) - tmp3173 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3173 .= Taylor1(zero(_S), order) - tmp3174 = Array{Taylor1{_S}}(undef, size(tmp3172)) - tmp3174 .= Taylor1(zero(_S), order) - tmp3175 = Array{Taylor1{_S}}(undef, size(tmp3171)) - tmp3175 .= Taylor1(zero(_S), order) - tmp3176 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3176 .= Taylor1(zero(_S), order) - tmp3177 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3177 .= Taylor1(zero(_S), order) - tmp3178 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3178 .= Taylor1(zero(_S), order) - tmp3179 = Array{Taylor1{_S}}(undef, size(tmp3177)) - tmp3179 .= Taylor1(zero(_S), order) - tmp3180 = Array{Taylor1{_S}}(undef, size(tmp3176)) - tmp3180 .= Taylor1(zero(_S), order) - tmp3181 = Array{Taylor1{_S}}(undef, size(tmp3175)) - tmp3181 .= Taylor1(zero(_S), order) - tmp3183 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3183 .= Taylor1(zero(_S), order) - tmp3184 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3184 .= Taylor1(zero(_S), order) - tmp3185 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3185 .= Taylor1(zero(_S), order) - tmp3186 = Array{Taylor1{_S}}(undef, size(tmp3184)) - tmp3186 .= Taylor1(zero(_S), order) - tmp3187 = Array{Taylor1{_S}}(undef, size(tmp3183)) - tmp3187 .= Taylor1(zero(_S), order) - tmp3188 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3188 .= Taylor1(zero(_S), order) - tmp3189 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3189 .= Taylor1(zero(_S), order) - tmp3190 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3190 .= Taylor1(zero(_S), order) - tmp3191 = Array{Taylor1{_S}}(undef, size(tmp3189)) - tmp3191 .= Taylor1(zero(_S), order) - tmp3192 = Array{Taylor1{_S}}(undef, size(tmp3188)) - tmp3192 .= Taylor1(zero(_S), order) - tmp3193 = Array{Taylor1{_S}}(undef, size(tmp3187)) - tmp3193 .= Taylor1(zero(_S), order) - tmp3195 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3195 .= Taylor1(zero(_S), order) - tmp3196 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3196 .= Taylor1(zero(_S), order) - tmp3197 = Array{Taylor1{_S}}(undef, size(tmp3195)) - tmp3197 .= Taylor1(zero(_S), order) - tmp3198 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3198 .= Taylor1(zero(_S), order) - tmp3199 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3199 .= Taylor1(zero(_S), order) - tmp3200 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3200 .= Taylor1(zero(_S), order) - tmp3201 = Array{Taylor1{_S}}(undef, size(tmp3199)) - tmp3201 .= Taylor1(zero(_S), order) - tmp3202 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3202 .= Taylor1(zero(_S), order) - tmp3203 = Array{Taylor1{_S}}(undef, size(tmp3198)) - tmp3203 .= Taylor1(zero(_S), order) - tmp3223 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - tmp3223 .= Taylor1(zero(_S), order) - tmp3224 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) - tmp3224 .= Taylor1(zero(_S), order) - tmp3227 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) - tmp3227 .= Taylor1(zero(_S), order) - tmp3228 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) - tmp3228 .= Taylor1(zero(_S), order) - tmp3149 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3149 .= Taylor1(zero(_S), order) - tmp3150 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3150 .= Taylor1(zero(_S), order) - tmp3152 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3152 .= Taylor1(zero(_S), order) - tmp3153 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3153 .= Taylor1(zero(_S), order) - tmp3155 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3155 .= Taylor1(zero(_S), order) - tmp3158 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3158 .= Taylor1(zero(_S), order) - tmp3167 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3167 .= Taylor1(zero(_S), order) - tmp3168 = Array{Taylor1{_S}}(undef, size(tmp3167)) - tmp3168 .= Taylor1(zero(_S), order) - tmp3169 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3169 .= Taylor1(zero(_S), order) - tmp3160 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3160 .= Taylor1(zero(_S), order) - tmp3162 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3162 .= Taylor1(zero(_S), order) - tmp3163 = Array{Taylor1{_S}}(undef, size(tmp3162)) - tmp3163 .= Taylor1(zero(_S), order) - tmp3164 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3164 .= Taylor1(zero(_S), order) - tmp3209 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3209 .= Taylor1(zero(_S), order) - tmp3210 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp3210 .= Taylor1(zero(_S), order) - tmp3211 = Array{Taylor1{_S}}(undef, size(tmp3209)) - tmp3211 .= Taylor1(zero(_S), order) - tmp3212 = Array{Taylor1{_S}}(undef, size(tmp3211)) - tmp3212 .= Taylor1(zero(_S), order) - tmp3214 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3214 .= Taylor1(zero(_S), order) - tmp3215 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - tmp3215 .= Taylor1(zero(_S), order) - tmp3216 = Array{Taylor1{_S}}(undef, size(tmp3214)) - tmp3216 .= Taylor1(zero(_S), order) - tmp3217 = Array{Taylor1{_S}}(undef, size(tmp3216)) - tmp3217 .= Taylor1(zero(_S), order) - tmp3219 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp3219 .= Taylor1(zero(_S), order) - tmp3220 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3220 .= Taylor1(zero(_S), order) - tmp3221 = Array{Taylor1{_S}}(undef, size(tmp3220)) - tmp3221 .= Taylor1(zero(_S), order) - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:416 =# Threads.@threads for j = 1:N_ext + tmp1328 = Array{Taylor1{_S}}(undef, size(X_bf_1)) + for i = CartesianIndices(tmp1328) + tmp1328[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1330 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) + for i = CartesianIndices(tmp1330) + tmp1330[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1332 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) + for i = CartesianIndices(tmp1332) + tmp1332[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1336 = Array{Taylor1{_S}}(undef, size(X_bf)) + for i = CartesianIndices(tmp1336) + tmp1336[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1338 = Array{Taylor1{_S}}(undef, size(Y_bf)) + for i = CartesianIndices(tmp1338) + tmp1338[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1339 = Array{Taylor1{_S}}(undef, size(tmp1336)) + for i = CartesianIndices(tmp1339) + tmp1339[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1354 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp1354) + tmp1354[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1355 = Array{Taylor1{_S}}(undef, size(tmp1354)) + for i = CartesianIndices(tmp1355) + tmp1355[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1357 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = CartesianIndices(tmp1357) + tmp1357[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1358 = Array{Taylor1{_S}}(undef, size(tmp1357)) + for i = CartesianIndices(tmp1358) + tmp1358[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1359 = Array{Taylor1{_S}}(undef, size(tmp1358)) + for i = CartesianIndices(tmp1359) + tmp1359[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1456 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + for i = CartesianIndices(tmp1456) + tmp1456[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1459 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + for i = CartesianIndices(tmp1459) + tmp1459[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1461 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1461) + tmp1461[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1462 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1462) + tmp1462[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1463 = Array{Taylor1{_S}}(undef, size(tmp1461)) + for i = CartesianIndices(tmp1463) + tmp1463[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1464 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1464) + tmp1464[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1466 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1466) + tmp1466[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1467 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1467) + tmp1467[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1468 = Array{Taylor1{_S}}(undef, size(tmp1466)) + for i = CartesianIndices(tmp1468) + tmp1468[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1469 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1469) + tmp1469[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1471 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1471) + tmp1471[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1472 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1472) + tmp1472[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1473 = Array{Taylor1{_S}}(undef, size(tmp1471)) + for i = CartesianIndices(tmp1473) + tmp1473[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1474 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1474) + tmp1474[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1476 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1476) + tmp1476[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1477 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1477) + tmp1477[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1478 = Array{Taylor1{_S}}(undef, size(tmp1476)) + for i = CartesianIndices(tmp1478) + tmp1478[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1479 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1479) + tmp1479[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1481 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1481) + tmp1481[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1482 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1482) + tmp1482[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1483 = Array{Taylor1{_S}}(undef, size(tmp1481)) + for i = CartesianIndices(tmp1483) + tmp1483[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1484 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1484) + tmp1484[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1486 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1486) + tmp1486[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1487 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1487) + tmp1487[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1488 = Array{Taylor1{_S}}(undef, size(tmp1486)) + for i = CartesianIndices(tmp1488) + tmp1488[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1489 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1489) + tmp1489[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1491 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1491) + tmp1491[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1492 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1492) + tmp1492[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1493 = Array{Taylor1{_S}}(undef, size(tmp1491)) + for i = CartesianIndices(tmp1493) + tmp1493[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1494 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1494) + tmp1494[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1496 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1496) + tmp1496[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1497 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1497) + tmp1497[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1498 = Array{Taylor1{_S}}(undef, size(tmp1496)) + for i = CartesianIndices(tmp1498) + tmp1498[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1499 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1499) + tmp1499[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1501 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1501) + tmp1501[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1502 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1502) + tmp1502[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1503 = Array{Taylor1{_S}}(undef, size(tmp1501)) + for i = CartesianIndices(tmp1503) + tmp1503[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1504 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp1504) + tmp1504[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1506 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1506) + tmp1506[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1507 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1507) + tmp1507[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1508 = Array{Taylor1{_S}}(undef, size(tmp1506)) + for i = CartesianIndices(tmp1508) + tmp1508[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1509 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1509) + tmp1509[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1511 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1511) + tmp1511[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1512 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1512) + tmp1512[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1513 = Array{Taylor1{_S}}(undef, size(tmp1511)) + for i = CartesianIndices(tmp1513) + tmp1513[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1514 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1514) + tmp1514[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1516 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1516) + tmp1516[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1517 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1517) + tmp1517[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1518 = Array{Taylor1{_S}}(undef, size(tmp1516)) + for i = CartesianIndices(tmp1518) + tmp1518[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1519 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp1519) + tmp1519[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1344 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp1344) + tmp1344[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1345 = Array{Taylor1{_S}}(undef, size(tmp1344)) + for i = CartesianIndices(tmp1345) + tmp1345[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1346 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp1346) + tmp1346[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1348 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = CartesianIndices(tmp1348) + tmp1348[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1349 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp1349) + tmp1349[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1361 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp1361) + tmp1361[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1362 = Array{Taylor1{_S}}(undef, size(tmp1361)) + for i = CartesianIndices(tmp1362) + tmp1362[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1363 = Array{Taylor1{_S}}(undef, size(tmp1362)) + for i = CartesianIndices(tmp1363) + tmp1363[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1365 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = CartesianIndices(tmp1365) + tmp1365[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1366 = Array{Taylor1{_S}}(undef, size(tmp1365)) + for i = CartesianIndices(tmp1366) + tmp1366[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1367 = Array{Taylor1{_S}}(undef, size(tmp1366)) + for i = CartesianIndices(tmp1367) + tmp1367[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1368 = Array{Taylor1{_S}}(undef, size(tmp1367)) + for i = CartesianIndices(tmp1368) + tmp1368[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1393 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = CartesianIndices(tmp1393) + tmp1393[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1394 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1394) + tmp1394[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1395 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1395) + tmp1395[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1396 = Array{Taylor1{_S}}(undef, size(tmp1394)) + for i = CartesianIndices(tmp1396) + tmp1396[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1397 = Array{Taylor1{_S}}(undef, size(tmp1393)) + for i = CartesianIndices(tmp1397) + tmp1397[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1398 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = CartesianIndices(tmp1398) + tmp1398[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1399 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1399) + tmp1399[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1400 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1400) + tmp1400[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1401 = Array{Taylor1{_S}}(undef, size(tmp1399)) + for i = CartesianIndices(tmp1401) + tmp1401[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1402 = Array{Taylor1{_S}}(undef, size(tmp1398)) + for i = CartesianIndices(tmp1402) + tmp1402[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1403 = Array{Taylor1{_S}}(undef, size(tmp1397)) + for i = CartesianIndices(tmp1403) + tmp1403[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1405 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1405) + tmp1405[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1406 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1406) + tmp1406[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1407 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1407) + tmp1407[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1408 = Array{Taylor1{_S}}(undef, size(tmp1406)) + for i = CartesianIndices(tmp1408) + tmp1408[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1409 = Array{Taylor1{_S}}(undef, size(tmp1405)) + for i = CartesianIndices(tmp1409) + tmp1409[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1410 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1410) + tmp1410[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1411 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1411) + tmp1411[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1412 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1412) + tmp1412[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1413 = Array{Taylor1{_S}}(undef, size(tmp1411)) + for i = CartesianIndices(tmp1413) + tmp1413[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1414 = Array{Taylor1{_S}}(undef, size(tmp1410)) + for i = CartesianIndices(tmp1414) + tmp1414[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1415 = Array{Taylor1{_S}}(undef, size(tmp1409)) + for i = CartesianIndices(tmp1415) + tmp1415[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1417 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1417) + tmp1417[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1418 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1418) + tmp1418[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1419 = Array{Taylor1{_S}}(undef, size(tmp1417)) + for i = CartesianIndices(tmp1419) + tmp1419[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1420 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = CartesianIndices(tmp1420) + tmp1420[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1421 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1421) + tmp1421[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1422 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1422) + tmp1422[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1423 = Array{Taylor1{_S}}(undef, size(tmp1421)) + for i = CartesianIndices(tmp1423) + tmp1423[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1424 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = CartesianIndices(tmp1424) + tmp1424[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1425 = Array{Taylor1{_S}}(undef, size(tmp1420)) + for i = CartesianIndices(tmp1425) + tmp1425[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1445 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) + for i = CartesianIndices(tmp1445) + tmp1445[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1446 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) + for i = CartesianIndices(tmp1446) + tmp1446[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1449 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + for i = CartesianIndices(tmp1449) + tmp1449[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1450 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + for i = CartesianIndices(tmp1450) + tmp1450[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1371 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1371) + tmp1371[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1372 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1372) + tmp1372[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1374 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp1374) + tmp1374[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1375 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp1375) + tmp1375[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1377 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1377) + tmp1377[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1380 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1380) + tmp1380[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1389 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1389) + tmp1389[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1390 = Array{Taylor1{_S}}(undef, size(tmp1389)) + for i = CartesianIndices(tmp1390) + tmp1390[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1391 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1391) + tmp1391[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1382 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1382) + tmp1382[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1384 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1384) + tmp1384[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1385 = Array{Taylor1{_S}}(undef, size(tmp1384)) + for i = CartesianIndices(tmp1385) + tmp1385[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1386 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1386) + tmp1386[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1431 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = CartesianIndices(tmp1431) + tmp1431[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1432 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) + for i = CartesianIndices(tmp1432) + tmp1432[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1433 = Array{Taylor1{_S}}(undef, size(tmp1431)) + for i = CartesianIndices(tmp1433) + tmp1433[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1434 = Array{Taylor1{_S}}(undef, size(tmp1433)) + for i = CartesianIndices(tmp1434) + tmp1434[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1436 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp1436) + tmp1436[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1437 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) + for i = CartesianIndices(tmp1437) + tmp1437[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1438 = Array{Taylor1{_S}}(undef, size(tmp1436)) + for i = CartesianIndices(tmp1438) + tmp1438[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1439 = Array{Taylor1{_S}}(undef, size(tmp1438)) + for i = CartesianIndices(tmp1439) + tmp1439[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1441 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) + for i = CartesianIndices(tmp1441) + tmp1441[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1442 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = CartesianIndices(tmp1442) + tmp1442[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1443 = Array{Taylor1{_S}}(undef, size(tmp1442)) + for i = CartesianIndices(tmp1443) + tmp1443[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:418 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -743,17 +1061,17 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr Z_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[3, 1, j]), order) Z_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]), order) Z_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]), order) - tmp3106[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) - X_bf[i, j] = Taylor1(constant_term(tmp3106[i, j]) + constant_term(X_bf_3[i, j]), order) - tmp3108[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) - Y_bf[i, j] = Taylor1(constant_term(tmp3108[i, j]) + constant_term(Y_bf_3[i, j]), order) - tmp3110[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) - Z_bf[i, j] = Taylor1(constant_term(tmp3110[i, j]) + constant_term(Z_bf_3[i, j]), order) + tmp1328[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) + X_bf[i, j] = Taylor1(constant_term(tmp1328[i, j]) + constant_term(X_bf_3[i, j]), order) + tmp1330[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) + Y_bf[i, j] = Taylor1(constant_term(tmp1330[i, j]) + constant_term(Y_bf_3[i, j]), order) + tmp1332[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) + Z_bf[i, j] = Taylor1(constant_term(tmp1332[i, j]) + constant_term(Z_bf_3[i, j]), order) sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) - tmp3114[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) - tmp3116[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) - tmp3117[i, j] = Taylor1(constant_term(tmp3114[i, j]) + constant_term(tmp3116[i, j]), order) - r_xy[i, j] = Taylor1(sqrt(constant_term(tmp3117[i, j])), order) + tmp1336[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) + tmp1338[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) + tmp1339[i, j] = Taylor1(constant_term(tmp1336[i, j]) + constant_term(tmp1338[i, j]), order) + r_xy[i, j] = Taylor1(sqrt(constant_term(tmp1339[i, j])), order) cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) sin_λ[i, j] = Taylor1(constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]), order) cos_λ[i, j] = Taylor1(constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]), order) @@ -762,35 +1080,35 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr dP_n[i, j, 1] = Taylor1(identity(constant_term(zero_q_1)), order) dP_n[i, j, 2] = Taylor1(identity(constant_term(one_t)), order) for n = 2:n1SEM[j] - tmp3122[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3123[i, j, n] = Taylor1(constant_term(tmp3122[i, j, n]) * constant_term(fact1_jsem[n]), order) - tmp3124[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) - P_n[i, j, n + 1] = Taylor1(constant_term(tmp3123[i, j, n]) - constant_term(tmp3124[i, j, n - 1]), order) - tmp3126[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3127[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) - dP_n[i, j, n + 1] = Taylor1(constant_term(tmp3126[i, j, n]) + constant_term(tmp3127[i, j, n]), order) + tmp1344[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp1345[i, j, n] = Taylor1(constant_term(tmp1344[i, j, n]) * constant_term(fact1_jsem[n]), order) + tmp1346[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) + P_n[i, j, n + 1] = Taylor1(constant_term(tmp1345[i, j, n]) - constant_term(tmp1346[i, j, n - 1]), order) + tmp1348[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp1349[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) + dP_n[i, j, n + 1] = Taylor1(constant_term(tmp1348[i, j, n]) + constant_term(tmp1349[i, j, n]), order) temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) end r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) - tmp3132[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) - tmp3133[i, j, 3] = Taylor1(constant_term(tmp3132[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ξ[i, j] = Taylor1(constant_term(tmp3133[i, j, 3]) / constant_term(r_p4[i, j]), order) - tmp3135[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) - tmp3136[i, j, 3] = Taylor1(constant_term(tmp3135[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) - tmp3137[i, j, 3] = Taylor1(constant_term(tmp3136[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ζ[i, j] = Taylor1(constant_term(tmp3137[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp1354[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) + tmp1355[i, j, 3] = Taylor1(constant_term(tmp1354[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ξ[i, j] = Taylor1(constant_term(tmp1355[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp1357[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) + tmp1358[i, j, 3] = Taylor1(constant_term(tmp1357[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) + tmp1359[i, j, 3] = Taylor1(constant_term(tmp1358[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ζ[i, j] = Taylor1(constant_term(tmp1359[i, j, 3]) / constant_term(r_p4[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) for n = 3:n1SEM[j] - tmp3139[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) - tmp3140[i, j, n + 1] = Taylor1(constant_term(tmp3139[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3141[i, j, n + 1] = Taylor1(constant_term(tmp3140[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjξ[i, j, n] = Taylor1(constant_term(tmp3141[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3143[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) - tmp3144[i, j, n + 1] = Taylor1(constant_term(tmp3143[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) - tmp3145[i, j, n + 1] = Taylor1(constant_term(tmp3144[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3146[i, j, n + 1] = Taylor1(constant_term(tmp3145[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjζ[i, j, n] = Taylor1(constant_term(tmp3146[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) + tmp1361[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) + tmp1362[i, j, n + 1] = Taylor1(constant_term(tmp1361[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp1363[i, j, n + 1] = Taylor1(constant_term(tmp1362[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjξ[i, j, n] = Taylor1(constant_term(tmp1363[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) + tmp1365[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) + tmp1366[i, j, n + 1] = Taylor1(constant_term(tmp1365[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) + tmp1367[i, j, n + 1] = Taylor1(constant_term(tmp1366[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp1368[i, j, n + 1] = Taylor1(constant_term(tmp1367[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjζ[i, j, n] = Taylor1(constant_term(tmp1368[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(temp_fjξ[i, j, n])), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(temp_fjζ[i, j, n])), order) end @@ -803,69 +1121,69 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) cosϕ_dP_nm[i, j, 1, 1] = Taylor1(constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]), order) else - tmp3149[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - tmp3150[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - sin_mλ[i, j, m] = Taylor1(constant_term(tmp3149[i, j, m - 1]) + constant_term(tmp3150[i, j, m - 1]), order) - tmp3152[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - tmp3153[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - cos_mλ[i, j, m] = Taylor1(constant_term(tmp3152[i, j, m - 1]) - constant_term(tmp3153[i, j, m - 1]), order) - tmp3155[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) - secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp3155[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) + tmp1371[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + tmp1372[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + sin_mλ[i, j, m] = Taylor1(constant_term(tmp1371[i, j, m - 1]) + constant_term(tmp1372[i, j, m - 1]), order) + tmp1374[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + tmp1375[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + cos_mλ[i, j, m] = Taylor1(constant_term(tmp1374[i, j, m - 1]) - constant_term(tmp1375[i, j, m - 1]), order) + tmp1377[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) + secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp1377[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) P_nm[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3158[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) - cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp3158[i, j, m, m]) * constant_term(lnm3[m]), order) + tmp1380[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) + cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp1380[i, j, m, m]) * constant_term(lnm3[m]), order) end for n = m + 1:n1SEM[mo] if n == m + 1 - tmp3160[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3160[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp1382[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1382[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) else - tmp3162[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3163[i, j, n - 1, m] = Taylor1(constant_term(tmp3162[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - tmp3164[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3163[i, j, n - 1, m]) + constant_term(tmp3164[i, j, n - 2, m]), order) + tmp1384[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + tmp1385[i, j, n - 1, m] = Taylor1(constant_term(tmp1384[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp1386[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1385[i, j, n - 1, m]) + constant_term(tmp1386[i, j, n - 2, m]), order) end P_nm[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3167[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3168[i, j, n, m] = Taylor1(constant_term(tmp3167[i, j, n, m]) * constant_term(lnm3[n]), order) - tmp3169[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) - cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp3168[i, j, n, m]) + constant_term(tmp3169[i, j, n - 1, m]), order) + tmp1389[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) + tmp1390[i, j, n, m] = Taylor1(constant_term(tmp1389[i, j, n, m]) * constant_term(lnm3[n]), order) + tmp1391[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) + cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp1390[i, j, n, m]) + constant_term(tmp1391[i, j, n - 1, m]), order) end end - tmp3171[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) - tmp3172[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3173[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3174[i, j, 1] = Taylor1(constant_term(tmp3172[i, j, 1]) + constant_term(tmp3173[i, j, 1]), order) - tmp3175[i, j, 2, 1] = Taylor1(constant_term(tmp3171[i, j, 2, 1]) * constant_term(tmp3174[i, j, 1]), order) - tmp3176[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) - tmp3177[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3178[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3179[i, j, 2] = Taylor1(constant_term(tmp3177[i, j, 2]) + constant_term(tmp3178[i, j, 2]), order) - tmp3180[i, j, 2, 2] = Taylor1(constant_term(tmp3176[i, j, 2, 2]) * constant_term(tmp3179[i, j, 2]), order) - tmp3181[i, j, 2, 1] = Taylor1(constant_term(tmp3175[i, j, 2, 1]) + constant_term(tmp3180[i, j, 2, 2]), order) - F_CS_ξ[i, j] = Taylor1(constant_term(tmp3181[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3183[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) - tmp3184[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3185[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3186[i, j, 1] = Taylor1(constant_term(tmp3184[i, j, 1]) - constant_term(tmp3185[i, j, 1]), order) - tmp3187[i, j, 2, 1] = Taylor1(constant_term(tmp3183[i, j, 2, 1]) * constant_term(tmp3186[i, j, 1]), order) - tmp3188[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) - tmp3189[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3190[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3191[i, j, 2] = Taylor1(constant_term(tmp3189[i, j, 2]) - constant_term(tmp3190[i, j, 2]), order) - tmp3192[i, j, 2, 2] = Taylor1(constant_term(tmp3188[i, j, 2, 2]) * constant_term(tmp3191[i, j, 2]), order) - tmp3193[i, j, 2, 1] = Taylor1(constant_term(tmp3187[i, j, 2, 1]) + constant_term(tmp3192[i, j, 2, 2]), order) - F_CS_η[i, j] = Taylor1(constant_term(tmp3193[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3195[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3196[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3197[i, j, 1] = Taylor1(constant_term(tmp3195[i, j, 1]) + constant_term(tmp3196[i, j, 1]), order) - tmp3198[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3197[i, j, 1]), order) - tmp3199[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3200[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3201[i, j, 2] = Taylor1(constant_term(tmp3199[i, j, 2]) + constant_term(tmp3200[i, j, 2]), order) - tmp3202[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3201[i, j, 2]), order) - tmp3203[i, j, 2, 1] = Taylor1(constant_term(tmp3198[i, j, 2, 1]) + constant_term(tmp3202[i, j, 2, 2]), order) - F_CS_ζ[i, j] = Taylor1(constant_term(tmp3203[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp1393[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) + tmp1394[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp1395[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp1396[i, j, 1] = Taylor1(constant_term(tmp1394[i, j, 1]) + constant_term(tmp1395[i, j, 1]), order) + tmp1397[i, j, 2, 1] = Taylor1(constant_term(tmp1393[i, j, 2, 1]) * constant_term(tmp1396[i, j, 1]), order) + tmp1398[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) + tmp1399[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp1400[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp1401[i, j, 2] = Taylor1(constant_term(tmp1399[i, j, 2]) + constant_term(tmp1400[i, j, 2]), order) + tmp1402[i, j, 2, 2] = Taylor1(constant_term(tmp1398[i, j, 2, 2]) * constant_term(tmp1401[i, j, 2]), order) + tmp1403[i, j, 2, 1] = Taylor1(constant_term(tmp1397[i, j, 2, 1]) + constant_term(tmp1402[i, j, 2, 2]), order) + F_CS_ξ[i, j] = Taylor1(constant_term(tmp1403[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp1405[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) + tmp1406[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp1407[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp1408[i, j, 1] = Taylor1(constant_term(tmp1406[i, j, 1]) - constant_term(tmp1407[i, j, 1]), order) + tmp1409[i, j, 2, 1] = Taylor1(constant_term(tmp1405[i, j, 2, 1]) * constant_term(tmp1408[i, j, 1]), order) + tmp1410[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) + tmp1411[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp1412[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp1413[i, j, 2] = Taylor1(constant_term(tmp1411[i, j, 2]) - constant_term(tmp1412[i, j, 2]), order) + tmp1414[i, j, 2, 2] = Taylor1(constant_term(tmp1410[i, j, 2, 2]) * constant_term(tmp1413[i, j, 2]), order) + tmp1415[i, j, 2, 1] = Taylor1(constant_term(tmp1409[i, j, 2, 1]) + constant_term(tmp1414[i, j, 2, 2]), order) + F_CS_η[i, j] = Taylor1(constant_term(tmp1415[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp1417[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp1418[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp1419[i, j, 1] = Taylor1(constant_term(tmp1417[i, j, 1]) + constant_term(tmp1418[i, j, 1]), order) + tmp1420[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1419[i, j, 1]), order) + tmp1421[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp1422[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp1423[i, j, 2] = Taylor1(constant_term(tmp1421[i, j, 2]) + constant_term(tmp1422[i, j, 2]), order) + tmp1424[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1423[i, j, 2]), order) + tmp1425[i, j, 2, 1] = Taylor1(constant_term(tmp1420[i, j, 2, 1]) + constant_term(tmp1424[i, j, 2, 2]), order) + F_CS_ζ[i, j] = Taylor1(constant_term(tmp1425[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -875,32 +1193,32 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr Cnm_sinmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]), order) Snm_cosmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]), order) Snm_sinmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - tmp3209[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) - tmp3210[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3211[i, j, n, m] = Taylor1(constant_term(tmp3209[i, j, n, m]) * constant_term(tmp3210[i, j, n, m]), order) - tmp3212[i, j, n, m] = Taylor1(constant_term(tmp3211[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp3212[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) - tmp3214[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) - tmp3215[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) - tmp3216[i, j, n, m] = Taylor1(constant_term(tmp3214[i, j, n, m]) * constant_term(tmp3215[i, j, n, m]), order) - tmp3217[i, j, n, m] = Taylor1(constant_term(tmp3216[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp3217[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) - tmp3219[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3220[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3219[i, j, n, m]), order) - tmp3221[i, j, n, m] = Taylor1(constant_term(tmp3220[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp3221[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) + tmp1431[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) + tmp1432[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp1433[i, j, n, m] = Taylor1(constant_term(tmp1431[i, j, n, m]) * constant_term(tmp1432[i, j, n, m]), order) + tmp1434[i, j, n, m] = Taylor1(constant_term(tmp1433[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp1434[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) + tmp1436[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) + tmp1437[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) + tmp1438[i, j, n, m] = Taylor1(constant_term(tmp1436[i, j, n, m]) * constant_term(tmp1437[i, j, n, m]), order) + tmp1439[i, j, n, m] = Taylor1(constant_term(tmp1438[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp1439[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) + tmp1441[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp1442[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1441[i, j, n, m]), order) + tmp1443[i, j, n, m] = Taylor1(constant_term(tmp1442[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp1443[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ξ[i, j, n, m])), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(temp_CS_η[i, j, n, m])), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ζ[i, j, n, m])), order) end end - tmp3223[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3224[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) - F_JCS_ξ[i, j] = Taylor1(constant_term(tmp3223[i, j]) + constant_term(tmp3224[i, j]), order) + tmp1445[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) + tmp1446[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) + F_JCS_ξ[i, j] = Taylor1(constant_term(tmp1445[i, j]) + constant_term(tmp1446[i, j]), order) F_JCS_η[i, j] = Taylor1(constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]), order) - tmp3227[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - tmp3228[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(tmp3227[i, j]) + constant_term(tmp3228[i, j]), order) + tmp1449[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) + tmp1450[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) + F_JCS_ζ[i, j] = Taylor1(constant_term(tmp1449[i, j]) + constant_term(tmp1450[i, j]), order) else F_JCS_ξ[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) F_JCS_η[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -908,146 +1226,176 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr end Rb2p[i, j, 1, 1] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 2, 1] = Taylor1(-(constant_term(sin_λ[i, j])), order) - tmp3234[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp3234[i, j]) * constant_term(cos_λ[i, j]), order) + tmp1456[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp1456[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 1, 2] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 2, 2] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - tmp3237[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp3237[i, j]) * constant_term(sin_λ[i, j]), order) + tmp1459[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp1459[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 1, 3] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) Rb2p[i, j, 2, 3] = Taylor1(identity(constant_term(zero_q_1)), order) Rb2p[i, j, 3, 3] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - tmp3239[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3240[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3241[i, j, 1, 1] = Taylor1(constant_term(tmp3239[i, j, 1, 1]) + constant_term(tmp3240[i, j, 1, 2]), order) - tmp3242[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp3241[i, j, 1, 1]) + constant_term(tmp3242[i, j, 1, 3]), order) - tmp3244[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3245[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3246[i, j, 2, 1] = Taylor1(constant_term(tmp3244[i, j, 2, 1]) + constant_term(tmp3245[i, j, 2, 2]), order) - tmp3247[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp3246[i, j, 2, 1]) + constant_term(tmp3247[i, j, 2, 3]), order) - tmp3249[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3250[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3251[i, j, 3, 1] = Taylor1(constant_term(tmp3249[i, j, 3, 1]) + constant_term(tmp3250[i, j, 3, 2]), order) - tmp3252[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp3251[i, j, 3, 1]) + constant_term(tmp3252[i, j, 3, 3]), order) - tmp3254[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3255[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3256[i, j, 1, 1] = Taylor1(constant_term(tmp3254[i, j, 1, 1]) + constant_term(tmp3255[i, j, 1, 2]), order) - tmp3257[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp3256[i, j, 1, 1]) + constant_term(tmp3257[i, j, 1, 3]), order) - tmp3259[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3260[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3261[i, j, 2, 1] = Taylor1(constant_term(tmp3259[i, j, 2, 1]) + constant_term(tmp3260[i, j, 2, 2]), order) - tmp3262[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp3261[i, j, 2, 1]) + constant_term(tmp3262[i, j, 2, 3]), order) - tmp3264[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3265[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3266[i, j, 3, 1] = Taylor1(constant_term(tmp3264[i, j, 3, 1]) + constant_term(tmp3265[i, j, 3, 2]), order) - tmp3267[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp3266[i, j, 3, 1]) + constant_term(tmp3267[i, j, 3, 3]), order) - tmp3269[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3270[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3271[i, j, 1, 1] = Taylor1(constant_term(tmp3269[i, j, 1, 1]) + constant_term(tmp3270[i, j, 1, 2]), order) - tmp3272[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp3271[i, j, 1, 1]) + constant_term(tmp3272[i, j, 1, 3]), order) - tmp3274[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3275[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3276[i, j, 2, 1] = Taylor1(constant_term(tmp3274[i, j, 2, 1]) + constant_term(tmp3275[i, j, 2, 2]), order) - tmp3277[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp3276[i, j, 2, 1]) + constant_term(tmp3277[i, j, 2, 3]), order) - tmp3279[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3280[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3281[i, j, 3, 1] = Taylor1(constant_term(tmp3279[i, j, 3, 1]) + constant_term(tmp3280[i, j, 3, 2]), order) - tmp3282[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp3281[i, j, 3, 1]) + constant_term(tmp3282[i, j, 3, 3]), order) - tmp3284[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) - tmp3285[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) - tmp3286[i, j, 1, 1] = Taylor1(constant_term(tmp3284[i, j, 1, 1]) + constant_term(tmp3285[i, j, 2, 1]), order) - tmp3287[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) - F_JCS_x[i, j] = Taylor1(constant_term(tmp3286[i, j, 1, 1]) + constant_term(tmp3287[i, j, 3, 1]), order) - tmp3289[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) - tmp3290[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) - tmp3291[i, j, 1, 2] = Taylor1(constant_term(tmp3289[i, j, 1, 2]) + constant_term(tmp3290[i, j, 2, 2]), order) - tmp3292[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) - F_JCS_y[i, j] = Taylor1(constant_term(tmp3291[i, j, 1, 2]) + constant_term(tmp3292[i, j, 3, 2]), order) - tmp3294[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) - tmp3295[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) - tmp3296[i, j, 1, 3] = Taylor1(constant_term(tmp3294[i, j, 1, 3]) + constant_term(tmp3295[i, j, 2, 3]), order) - tmp3297[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) - F_JCS_z[i, j] = Taylor1(constant_term(tmp3296[i, j, 1, 3]) + constant_term(tmp3297[i, j, 3, 3]), order) + tmp1461[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) + tmp1462[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) + tmp1463[i, j, 1, 1] = Taylor1(constant_term(tmp1461[i, j, 1, 1]) + constant_term(tmp1462[i, j, 1, 2]), order) + tmp1464[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp1463[i, j, 1, 1]) + constant_term(tmp1464[i, j, 1, 3]), order) + tmp1466[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) + tmp1467[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) + tmp1468[i, j, 2, 1] = Taylor1(constant_term(tmp1466[i, j, 2, 1]) + constant_term(tmp1467[i, j, 2, 2]), order) + tmp1469[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp1468[i, j, 2, 1]) + constant_term(tmp1469[i, j, 2, 3]), order) + tmp1471[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) + tmp1472[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) + tmp1473[i, j, 3, 1] = Taylor1(constant_term(tmp1471[i, j, 3, 1]) + constant_term(tmp1472[i, j, 3, 2]), order) + tmp1474[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp1473[i, j, 3, 1]) + constant_term(tmp1474[i, j, 3, 3]), order) + tmp1476[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) + tmp1477[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) + tmp1478[i, j, 1, 1] = Taylor1(constant_term(tmp1476[i, j, 1, 1]) + constant_term(tmp1477[i, j, 1, 2]), order) + tmp1479[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp1478[i, j, 1, 1]) + constant_term(tmp1479[i, j, 1, 3]), order) + tmp1481[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) + tmp1482[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) + tmp1483[i, j, 2, 1] = Taylor1(constant_term(tmp1481[i, j, 2, 1]) + constant_term(tmp1482[i, j, 2, 2]), order) + tmp1484[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp1483[i, j, 2, 1]) + constant_term(tmp1484[i, j, 2, 3]), order) + tmp1486[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) + tmp1487[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) + tmp1488[i, j, 3, 1] = Taylor1(constant_term(tmp1486[i, j, 3, 1]) + constant_term(tmp1487[i, j, 3, 2]), order) + tmp1489[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp1488[i, j, 3, 1]) + constant_term(tmp1489[i, j, 3, 3]), order) + tmp1491[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) + tmp1492[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) + tmp1493[i, j, 1, 1] = Taylor1(constant_term(tmp1491[i, j, 1, 1]) + constant_term(tmp1492[i, j, 1, 2]), order) + tmp1494[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp1493[i, j, 1, 1]) + constant_term(tmp1494[i, j, 1, 3]), order) + tmp1496[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) + tmp1497[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) + tmp1498[i, j, 2, 1] = Taylor1(constant_term(tmp1496[i, j, 2, 1]) + constant_term(tmp1497[i, j, 2, 2]), order) + tmp1499[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp1498[i, j, 2, 1]) + constant_term(tmp1499[i, j, 2, 3]), order) + tmp1501[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) + tmp1502[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) + tmp1503[i, j, 3, 1] = Taylor1(constant_term(tmp1501[i, j, 3, 1]) + constant_term(tmp1502[i, j, 3, 2]), order) + tmp1504[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp1503[i, j, 3, 1]) + constant_term(tmp1504[i, j, 3, 3]), order) + tmp1506[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) + tmp1507[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) + tmp1508[i, j, 1, 1] = Taylor1(constant_term(tmp1506[i, j, 1, 1]) + constant_term(tmp1507[i, j, 2, 1]), order) + tmp1509[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) + F_JCS_x[i, j] = Taylor1(constant_term(tmp1508[i, j, 1, 1]) + constant_term(tmp1509[i, j, 3, 1]), order) + tmp1511[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) + tmp1512[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) + tmp1513[i, j, 1, 2] = Taylor1(constant_term(tmp1511[i, j, 1, 2]) + constant_term(tmp1512[i, j, 2, 2]), order) + tmp1514[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) + F_JCS_y[i, j] = Taylor1(constant_term(tmp1513[i, j, 1, 2]) + constant_term(tmp1514[i, j, 3, 2]), order) + tmp1516[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) + tmp1517[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) + tmp1518[i, j, 1, 3] = Taylor1(constant_term(tmp1516[i, j, 1, 3]) + constant_term(tmp1517[i, j, 2, 3]), order) + tmp1519[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) + F_JCS_z[i, j] = Taylor1(constant_term(tmp1518[i, j, 1, 3]) + constant_term(tmp1519[i, j, 3, 3]), order) end end end end - tmp3299 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp3299 .= Taylor1(zero(_S), order) - tmp3301 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp3301 .= Taylor1(zero(_S), order) - tmp3303 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp3303 .= Taylor1(zero(_S), order) - tmp3305 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp3305 .= Taylor1(zero(_S), order) - tmp3307 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp3307 .= Taylor1(zero(_S), order) - tmp3309 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp3309 .= Taylor1(zero(_S), order) - tmp3311 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3311 .= Taylor1(zero(_S), order) - tmp3312 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3312 .= Taylor1(zero(_S), order) - tmp3313 = Array{Taylor1{_S}}(undef, size(tmp3311)) - tmp3313 .= Taylor1(zero(_S), order) - tmp3315 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3315 .= Taylor1(zero(_S), order) - tmp3316 = Array{Taylor1{_S}}(undef, size(X)) - tmp3316 .= Taylor1(zero(_S), order) - tmp3317 = Array{Taylor1{_S}}(undef, size(tmp3315)) - tmp3317 .= Taylor1(zero(_S), order) - tmp3319 = Array{Taylor1{_S}}(undef, size(X)) - tmp3319 .= Taylor1(zero(_S), order) - tmp3320 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3320 .= Taylor1(zero(_S), order) - tmp3321 = Array{Taylor1{_S}}(undef, size(tmp3319)) - tmp3321 .= Taylor1(zero(_S), order) + tmp1521 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + for i = CartesianIndices(tmp1521) + tmp1521[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1523 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + for i = CartesianIndices(tmp1523) + tmp1523[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1525 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + for i = CartesianIndices(tmp1525) + tmp1525[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1527 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + for i = CartesianIndices(tmp1527) + tmp1527[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1529 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + for i = CartesianIndices(tmp1529) + tmp1529[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1531 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + for i = CartesianIndices(tmp1531) + tmp1531[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1533 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp1533) + tmp1533[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1534 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp1534) + tmp1534[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1535 = Array{Taylor1{_S}}(undef, size(tmp1533)) + for i = CartesianIndices(tmp1535) + tmp1535[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1537 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp1537) + tmp1537[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1538 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp1538) + tmp1538[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1539 = Array{Taylor1{_S}}(undef, size(tmp1537)) + for i = CartesianIndices(tmp1539) + tmp1539[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1541 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp1541) + tmp1541[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1542 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp1542) + tmp1542[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1543 = Array{Taylor1{_S}}(undef, size(tmp1541)) + for i = CartesianIndices(tmp1543) + tmp1543[i] = Taylor1(zero(constant_term(q[1])), order) + end for j = 1:N_ext for i = 1:N_ext if i == j continue else if UJ_interaction[i, j] - tmp3299[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp3299[i, j]), order) + tmp1521[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp1521[i, j]), order) accX[j] = Taylor1(identity(constant_term(temp_accX_j[i, j])), order) - tmp3301[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp3301[i, j]), order) + tmp1523[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp1523[i, j]), order) accY[j] = Taylor1(identity(constant_term(temp_accY_j[i, j])), order) - tmp3303[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp3303[i, j]), order) + tmp1525[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp1525[i, j]), order) accZ[j] = Taylor1(identity(constant_term(temp_accZ_j[i, j])), order) - tmp3305[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp3305[i, j]), order) + tmp1527[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp1527[i, j]), order) accX[i] = Taylor1(identity(constant_term(temp_accX_i[i, j])), order) - tmp3307[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp3307[i, j]), order) + tmp1529[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp1529[i, j]), order) accY[i] = Taylor1(identity(constant_term(temp_accY_i[i, j])), order) - tmp3309[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp3309[i, j]), order) + tmp1531[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp1531[i, j]), order) accZ[i] = Taylor1(identity(constant_term(temp_accZ_i[i, j])), order) if j == mo - tmp3311[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3312[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3313[i, j] = Taylor1(constant_term(tmp3311[i, j]) - constant_term(tmp3312[i, j]), order) - N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3313[i, j]), order) - tmp3315[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3316[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3317[i, j] = Taylor1(constant_term(tmp3315[i, j]) - constant_term(tmp3316[i, j]), order) - N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3317[i, j]), order) - tmp3319[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3320[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3321[i, j] = Taylor1(constant_term(tmp3319[i, j]) - constant_term(tmp3320[i, j]), order) - N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3321[i, j]), order) + tmp1533[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp1534[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp1535[i, j] = Taylor1(constant_term(tmp1533[i, j]) - constant_term(tmp1534[i, j]), order) + N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1535[i, j]), order) + tmp1537[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp1538[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp1539[i, j] = Taylor1(constant_term(tmp1537[i, j]) - constant_term(tmp1538[i, j]), order) + N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1539[i, j]), order) + tmp1541[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp1542[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp1543[i, j] = Taylor1(constant_term(tmp1541[i, j]) - constant_term(tmp1542[i, j]), order) + N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1543[i, j]), order) temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]), order) N_MfigM[1] = Taylor1(identity(constant_term(temp_N_M_x[i])), order) temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]), order) @@ -1059,27 +1407,47 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr end end end - tmp3333 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - tmp3333 .= Taylor1(zero(_S), order) + tmp1555 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) + for i = CartesianIndices(tmp1555) + tmp1555[i] = Taylor1(zero(constant_term(q[1])), order) + end Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) - Xij_t_Ui .= Taylor1(zero(_S), order) + for i = CartesianIndices(Xij_t_Ui) + Xij_t_Ui[i] = Taylor1(zero(constant_term(q[1])), order) + end Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) - Yij_t_Vi .= Taylor1(zero(_S), order) + for i = CartesianIndices(Yij_t_Vi) + Yij_t_Vi[i] = Taylor1(zero(constant_term(q[1])), order) + end Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) - Zij_t_Wi .= Taylor1(zero(_S), order) - tmp3339 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - tmp3339 .= Taylor1(zero(_S), order) - Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp3339)) - Rij_dot_Vi .= Taylor1(zero(_S), order) - tmp3342 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - tmp3342 .= Taylor1(zero(_S), order) - pn1t7 = Array{Taylor1{_S}}(undef, size(tmp3342)) - pn1t7 .= Taylor1(zero(_S), order) - tmp3345 = Array{Taylor1{_S}}(undef, size(pn1t7)) - tmp3345 .= Taylor1(zero(_S), order) + for i = CartesianIndices(Zij_t_Wi) + Zij_t_Wi[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1561 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) + for i = CartesianIndices(tmp1561) + tmp1561[i] = Taylor1(zero(constant_term(q[1])), order) + end + Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp1561)) + for i = CartesianIndices(Rij_dot_Vi) + Rij_dot_Vi[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1564 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + for i = CartesianIndices(tmp1564) + tmp1564[i] = Taylor1(zero(constant_term(q[1])), order) + end + pn1t7 = Array{Taylor1{_S}}(undef, size(tmp1564)) + for i = CartesianIndices(pn1t7) + pn1t7[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1567 = Array{Taylor1{_S}}(undef, size(pn1t7)) + for i = CartesianIndices(tmp1567) + tmp1567[i] = Taylor1(zero(constant_term(q[1])), order) + end pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) - pn1t2_7 .= Taylor1(zero(_S), order) - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:656 =# Threads.@threads for j = 1:N + for i = CartesianIndices(pn1t2_7) + pn1t2_7[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:658 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -1088,18 +1456,18 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr ϕi_plus_4ϕj[i, j] = Taylor1(constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]), order) _2v2[i, j] = Taylor1(constant_term(2) * constant_term(v2[i]), order) sj2_plus_2si2[i, j] = Taylor1(constant_term(v2[j]) + constant_term(_2v2[i, j]), order) - tmp3333[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) - sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3333[i, j]), order) + tmp1555[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) + sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1555[i, j]), order) ϕs_and_vs[i, j] = Taylor1(constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]), order) Xij_t_Ui[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(dq[3i - 2]), order) Yij_t_Vi[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(dq[3i - 1]), order) Zij_t_Wi[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(dq[3i]), order) - tmp3339[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) - Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp3339[i, j]) + constant_term(Zij_t_Wi[i, j]), order) - tmp3342[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) - pn1t7[i, j] = Taylor1(constant_term(tmp3342[i, j]) / constant_term(r_p2[i, j]), order) - tmp3345[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) - pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3345[i, j]), order) + tmp1561[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) + Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp1561[i, j]) + constant_term(Zij_t_Wi[i, j]), order) + tmp1564[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) + pn1t7[i, j] = Taylor1(constant_term(tmp1564[i, j]) / constant_term(r_p2[i, j]), order) + tmp1567[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) + pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1567[i, j]), order) pn1t1_7[i, j] = Taylor1(constant_term(c_p2) + constant_term(pn1t2_7[i, j]), order) end end @@ -1107,31 +1475,55 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr pntempY[j] = Taylor1(identity(constant_term(zero_q_1)), order) pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp3352 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - tmp3352 .= Taylor1(zero(_S), order) - tmp3353 = Array{Taylor1{_S}}(undef, size(tmp3352)) - tmp3353 .= Taylor1(zero(_S), order) - tmp3354 = Array{Taylor1{_S}}(undef, size(tmp3353)) - tmp3354 .= Taylor1(zero(_S), order) - tmp3362 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - tmp3362 .= Taylor1(zero(_S), order) + tmp1574 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) + for i = CartesianIndices(tmp1574) + tmp1574[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1575 = Array{Taylor1{_S}}(undef, size(tmp1574)) + for i = CartesianIndices(tmp1575) + tmp1575[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1576 = Array{Taylor1{_S}}(undef, size(tmp1575)) + for i = CartesianIndices(tmp1576) + tmp1576[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1584 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) + for i = CartesianIndices(tmp1584) + tmp1584[i] = Taylor1(zero(constant_term(q[1])), order) + end termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) - termpnx .= Taylor1(zero(_S), order) + for i = CartesianIndices(termpnx) + termpnx[i] = Taylor1(zero(constant_term(q[1])), order) + end sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) - sumpnx .= Taylor1(zero(_S), order) - tmp3365 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - tmp3365 .= Taylor1(zero(_S), order) + for i = CartesianIndices(sumpnx) + sumpnx[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1587 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) + for i = CartesianIndices(tmp1587) + tmp1587[i] = Taylor1(zero(constant_term(q[1])), order) + end termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) - termpny .= Taylor1(zero(_S), order) + for i = CartesianIndices(termpny) + termpny[i] = Taylor1(zero(constant_term(q[1])), order) + end sumpny = Array{Taylor1{_S}}(undef, size(termpny)) - sumpny .= Taylor1(zero(_S), order) - tmp3368 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - tmp3368 .= Taylor1(zero(_S), order) + for i = CartesianIndices(sumpny) + sumpny[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1590 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) + for i = CartesianIndices(tmp1590) + tmp1590[i] = Taylor1(zero(constant_term(q[1])), order) + end termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) - termpnz .= Taylor1(zero(_S), order) + for i = CartesianIndices(termpnz) + termpnz[i] = Taylor1(zero(constant_term(q[1])), order) + end sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) - sumpnz .= Taylor1(zero(_S), order) - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:695 =# Threads.@threads for j = 1:N + for i = CartesianIndices(sumpnz) + sumpnz[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:697 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -1139,26 +1531,26 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr pNX_t_X[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(X[i, j]), order) pNY_t_Y[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(Y[i, j]), order) pNZ_t_Z[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(Z[i, j]), order) - tmp3352[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) - tmp3353[i, j] = Taylor1(constant_term(tmp3352[i, j]) + constant_term(pNZ_t_Z[i, j]), order) - tmp3354[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp3353[i, j]), order) - pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp3354[i, j]), order) + tmp1574[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) + tmp1575[i, j] = Taylor1(constant_term(tmp1574[i, j]) + constant_term(pNZ_t_Z[i, j]), order) + tmp1576[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp1575[i, j]), order) + pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp1576[i, j]), order) X_t_pn1[i, j] = Taylor1(constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]), order) Y_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]), order) Z_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]), order) pNX_t_pn3[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(pn3[i, j]), order) pNY_t_pn3[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(pn3[i, j]), order) pNZ_t_pn3[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(pn3[i, j]), order) - tmp3362[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) - termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp3362[i, j]), order) + tmp1584[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) + termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp1584[i, j]), order) sumpnx[i, j] = Taylor1(constant_term(pntempX[j]) + constant_term(termpnx[i, j]), order) pntempX[j] = Taylor1(identity(constant_term(sumpnx[i, j])), order) - tmp3365[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) - termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp3365[i, j]), order) + tmp1587[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) + termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp1587[i, j]), order) sumpny[i, j] = Taylor1(constant_term(pntempY[j]) + constant_term(termpny[i, j]), order) pntempY[j] = Taylor1(identity(constant_term(sumpny[i, j])), order) - tmp3368[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) - termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp3368[i, j]), order) + tmp1590[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) + termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp1590[i, j]), order) sumpnz[i, j] = Taylor1(constant_term(pntempZ[j]) + constant_term(termpnz[i, j]), order) pntempZ[j] = Taylor1(identity(constant_term(sumpnz[i, j])), order) end @@ -1167,1022 +1559,1022 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr postNewtonY[j] = Taylor1(constant_term(pntempY[j]) * constant_term(c_m2), order) postNewtonZ[j] = Taylor1(constant_term(pntempZ[j]) * constant_term(c_m2), order) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:741 =# Threads.@threads for i = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:743 =# Threads.@threads for i = 1:N_ext dq[3 * (N + i) - 2] = Taylor1(constant_term(postNewtonX[i]) + constant_term(accX[i]), order) dq[3 * (N + i) - 1] = Taylor1(constant_term(postNewtonY[i]) + constant_term(accY[i]), order) dq[3 * (N + i)] = Taylor1(constant_term(postNewtonZ[i]) + constant_term(accZ[i]), order) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:746 =# Threads.@threads for i = N_ext + 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:748 =# Threads.@threads for i = N_ext + 1:N dq[3 * (N + i) - 2] = Taylor1(identity(constant_term(postNewtonX[i])), order) dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) end - tmp3377 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp3378 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp3379 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp3380 = Taylor1(constant_term(tmp3378) + constant_term(tmp3379), order) - Iω_x = Taylor1(constant_term(tmp3377) + constant_term(tmp3380), order) - tmp3382 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp3383 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp3384 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp3385 = Taylor1(constant_term(tmp3383) + constant_term(tmp3384), order) - Iω_y = Taylor1(constant_term(tmp3382) + constant_term(tmp3385), order) - tmp3387 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp3388 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp3389 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp3390 = Taylor1(constant_term(tmp3388) + constant_term(tmp3389), order) - Iω_z = Taylor1(constant_term(tmp3387) + constant_term(tmp3390), order) - tmp3392 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) - tmp3393 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) - ωxIω_x = Taylor1(constant_term(tmp3392) - constant_term(tmp3393), order) - tmp3395 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) - tmp3396 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) - ωxIω_y = Taylor1(constant_term(tmp3395) - constant_term(tmp3396), order) - tmp3398 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) - tmp3399 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) - ωxIω_z = Taylor1(constant_term(tmp3398) - constant_term(tmp3399), order) - tmp3401 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp3402 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp3403 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp3404 = Taylor1(constant_term(tmp3402) + constant_term(tmp3403), order) - dIω_x = Taylor1(constant_term(tmp3401) + constant_term(tmp3404), order) - tmp3406 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp3407 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp3408 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp3409 = Taylor1(constant_term(tmp3407) + constant_term(tmp3408), order) - dIω_y = Taylor1(constant_term(tmp3406) + constant_term(tmp3409), order) - tmp3411 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp3412 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp3413 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp3414 = Taylor1(constant_term(tmp3412) + constant_term(tmp3413), order) - dIω_z = Taylor1(constant_term(tmp3411) + constant_term(tmp3414), order) + tmp1599 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp1600 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp1601 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp1602 = Taylor1(constant_term(tmp1600) + constant_term(tmp1601), order) + Iω_x = Taylor1(constant_term(tmp1599) + constant_term(tmp1602), order) + tmp1604 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp1605 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp1606 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp1607 = Taylor1(constant_term(tmp1605) + constant_term(tmp1606), order) + Iω_y = Taylor1(constant_term(tmp1604) + constant_term(tmp1607), order) + tmp1609 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp1610 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp1611 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp1612 = Taylor1(constant_term(tmp1610) + constant_term(tmp1611), order) + Iω_z = Taylor1(constant_term(tmp1609) + constant_term(tmp1612), order) + tmp1614 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) + tmp1615 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) + ωxIω_x = Taylor1(constant_term(tmp1614) - constant_term(tmp1615), order) + tmp1617 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) + tmp1618 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) + ωxIω_y = Taylor1(constant_term(tmp1617) - constant_term(tmp1618), order) + tmp1620 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) + tmp1621 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) + ωxIω_z = Taylor1(constant_term(tmp1620) - constant_term(tmp1621), order) + tmp1623 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp1624 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp1625 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp1626 = Taylor1(constant_term(tmp1624) + constant_term(tmp1625), order) + dIω_x = Taylor1(constant_term(tmp1623) + constant_term(tmp1626), order) + tmp1628 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp1629 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp1630 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp1631 = Taylor1(constant_term(tmp1629) + constant_term(tmp1630), order) + dIω_y = Taylor1(constant_term(tmp1628) + constant_term(tmp1631), order) + tmp1633 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp1634 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp1635 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp1636 = Taylor1(constant_term(tmp1634) + constant_term(tmp1635), order) + dIω_z = Taylor1(constant_term(tmp1633) + constant_term(tmp1636), order) er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) - tmp3419 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3420 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3421 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3422 = Taylor1(constant_term(tmp3420) + constant_term(tmp3421), order) - er_EM_1 = Taylor1(constant_term(tmp3419) + constant_term(tmp3422), order) - tmp3424 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3425 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3426 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3427 = Taylor1(constant_term(tmp3425) + constant_term(tmp3426), order) - er_EM_2 = Taylor1(constant_term(tmp3424) + constant_term(tmp3427), order) - tmp3429 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3430 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3431 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3432 = Taylor1(constant_term(tmp3430) + constant_term(tmp3431), order) - er_EM_3 = Taylor1(constant_term(tmp3429) + constant_term(tmp3432), order) - tmp3434 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) - tmp3435 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) - tmp3436 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) - tmp3437 = Taylor1(constant_term(tmp3435) + constant_term(tmp3436), order) - p_E_1 = Taylor1(constant_term(tmp3434) + constant_term(tmp3437), order) - tmp3439 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) - tmp3440 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) - tmp3441 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) - tmp3442 = Taylor1(constant_term(tmp3440) + constant_term(tmp3441), order) - p_E_2 = Taylor1(constant_term(tmp3439) + constant_term(tmp3442), order) - tmp3444 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) - tmp3445 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) - tmp3446 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) - tmp3447 = Taylor1(constant_term(tmp3445) + constant_term(tmp3446), order) - p_E_3 = Taylor1(constant_term(tmp3444) + constant_term(tmp3447), order) - tmp3449 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) - tmp3450 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) - tmp3451 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) - tmp3452 = Taylor1(constant_term(tmp3450) + constant_term(tmp3451), order) - I_er_EM_1 = Taylor1(constant_term(tmp3449) + constant_term(tmp3452), order) - tmp3454 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) - tmp3455 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) - tmp3456 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) - tmp3457 = Taylor1(constant_term(tmp3455) + constant_term(tmp3456), order) - I_er_EM_2 = Taylor1(constant_term(tmp3454) + constant_term(tmp3457), order) - tmp3459 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) - tmp3460 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) - tmp3461 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) - tmp3462 = Taylor1(constant_term(tmp3460) + constant_term(tmp3461), order) - I_er_EM_3 = Taylor1(constant_term(tmp3459) + constant_term(tmp3462), order) - tmp3464 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) - tmp3465 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) - tmp3466 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) - tmp3467 = Taylor1(constant_term(tmp3465) + constant_term(tmp3466), order) - I_p_E_1 = Taylor1(constant_term(tmp3464) + constant_term(tmp3467), order) - tmp3469 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) - tmp3470 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) - tmp3471 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) - tmp3472 = Taylor1(constant_term(tmp3470) + constant_term(tmp3471), order) - I_p_E_2 = Taylor1(constant_term(tmp3469) + constant_term(tmp3472), order) - tmp3474 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) - tmp3475 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) - tmp3476 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) - tmp3477 = Taylor1(constant_term(tmp3475) + constant_term(tmp3476), order) - I_p_E_3 = Taylor1(constant_term(tmp3474) + constant_term(tmp3477), order) - tmp3479 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) - tmp3480 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) - er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp3479) - constant_term(tmp3480), order) - tmp3482 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) - tmp3483 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) - er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp3482) - constant_term(tmp3483), order) - tmp3485 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) - tmp3486 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) - er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp3485) - constant_term(tmp3486), order) - tmp3488 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) - tmp3489 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) - er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp3488) - constant_term(tmp3489), order) - tmp3491 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) - tmp3492 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) - er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp3491) - constant_term(tmp3492), order) - tmp3494 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) - tmp3495 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) - er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp3494) - constant_term(tmp3495), order) - tmp3497 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) - tmp3498 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) - p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp3497) - constant_term(tmp3498), order) - tmp3500 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) - tmp3501 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) - p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp3500) - constant_term(tmp3501), order) - tmp3503 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) - tmp3504 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) - p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp3503) - constant_term(tmp3504), order) - tmp3506 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) - tmp3507 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) - p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp3506) - constant_term(tmp3507), order) - tmp3509 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) - tmp3510 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) - p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp3509) - constant_term(tmp3510), order) - tmp3512 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) - tmp3513 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) - p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp3512) - constant_term(tmp3513), order) - tmp3517 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) - tmp3518 = Taylor1(constant_term(7) * constant_term(tmp3517), order) - one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp3518), order) + tmp1641 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) + tmp1642 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) + tmp1643 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) + tmp1644 = Taylor1(constant_term(tmp1642) + constant_term(tmp1643), order) + er_EM_1 = Taylor1(constant_term(tmp1641) + constant_term(tmp1644), order) + tmp1646 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) + tmp1647 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) + tmp1648 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) + tmp1649 = Taylor1(constant_term(tmp1647) + constant_term(tmp1648), order) + er_EM_2 = Taylor1(constant_term(tmp1646) + constant_term(tmp1649), order) + tmp1651 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) + tmp1652 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) + tmp1653 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) + tmp1654 = Taylor1(constant_term(tmp1652) + constant_term(tmp1653), order) + er_EM_3 = Taylor1(constant_term(tmp1651) + constant_term(tmp1654), order) + tmp1656 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) + tmp1657 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) + tmp1658 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) + tmp1659 = Taylor1(constant_term(tmp1657) + constant_term(tmp1658), order) + p_E_1 = Taylor1(constant_term(tmp1656) + constant_term(tmp1659), order) + tmp1661 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) + tmp1662 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) + tmp1663 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) + tmp1664 = Taylor1(constant_term(tmp1662) + constant_term(tmp1663), order) + p_E_2 = Taylor1(constant_term(tmp1661) + constant_term(tmp1664), order) + tmp1666 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) + tmp1667 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) + tmp1668 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) + tmp1669 = Taylor1(constant_term(tmp1667) + constant_term(tmp1668), order) + p_E_3 = Taylor1(constant_term(tmp1666) + constant_term(tmp1669), order) + tmp1671 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) + tmp1672 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) + tmp1673 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) + tmp1674 = Taylor1(constant_term(tmp1672) + constant_term(tmp1673), order) + I_er_EM_1 = Taylor1(constant_term(tmp1671) + constant_term(tmp1674), order) + tmp1676 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) + tmp1677 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) + tmp1678 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) + tmp1679 = Taylor1(constant_term(tmp1677) + constant_term(tmp1678), order) + I_er_EM_2 = Taylor1(constant_term(tmp1676) + constant_term(tmp1679), order) + tmp1681 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) + tmp1682 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) + tmp1683 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) + tmp1684 = Taylor1(constant_term(tmp1682) + constant_term(tmp1683), order) + I_er_EM_3 = Taylor1(constant_term(tmp1681) + constant_term(tmp1684), order) + tmp1686 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) + tmp1687 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) + tmp1688 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) + tmp1689 = Taylor1(constant_term(tmp1687) + constant_term(tmp1688), order) + I_p_E_1 = Taylor1(constant_term(tmp1686) + constant_term(tmp1689), order) + tmp1691 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) + tmp1692 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) + tmp1693 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) + tmp1694 = Taylor1(constant_term(tmp1692) + constant_term(tmp1693), order) + I_p_E_2 = Taylor1(constant_term(tmp1691) + constant_term(tmp1694), order) + tmp1696 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) + tmp1697 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) + tmp1698 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + tmp1699 = Taylor1(constant_term(tmp1697) + constant_term(tmp1698), order) + I_p_E_3 = Taylor1(constant_term(tmp1696) + constant_term(tmp1699), order) + tmp1701 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) + tmp1702 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) + er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp1701) - constant_term(tmp1702), order) + tmp1704 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) + tmp1705 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) + er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp1704) - constant_term(tmp1705), order) + tmp1707 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) + tmp1708 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) + er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp1707) - constant_term(tmp1708), order) + tmp1710 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) + tmp1711 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) + er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp1710) - constant_term(tmp1711), order) + tmp1713 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) + tmp1714 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) + er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp1713) - constant_term(tmp1714), order) + tmp1716 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) + tmp1717 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) + er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp1716) - constant_term(tmp1717), order) + tmp1719 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) + tmp1720 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) + p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp1719) - constant_term(tmp1720), order) + tmp1722 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) + tmp1723 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) + p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp1722) - constant_term(tmp1723), order) + tmp1725 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) + tmp1726 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) + p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp1725) - constant_term(tmp1726), order) + tmp1728 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) + tmp1729 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) + p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp1728) - constant_term(tmp1729), order) + tmp1731 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) + tmp1732 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) + p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp1731) - constant_term(tmp1732), order) + tmp1734 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) + tmp1735 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) + p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp1734) - constant_term(tmp1735), order) + tmp1739 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) + tmp1740 = Taylor1(constant_term(7) * constant_term(tmp1739), order) + one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp1740), order) two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) - tmp3523 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) - N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp3523), order) - tmp3525 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) - tmp3526 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) - tmp3527 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3526), order) - tmp3528 = Taylor1(constant_term(tmp3525) + constant_term(tmp3527), order) - tmp3530 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) - tmp3531 = Taylor1(constant_term(tmp3528) - constant_term(tmp3530), order) - N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3531), order) - tmp3533 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) - tmp3534 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) - tmp3535 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3534), order) - tmp3536 = Taylor1(constant_term(tmp3533) + constant_term(tmp3535), order) - tmp3538 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) - tmp3539 = Taylor1(constant_term(tmp3536) - constant_term(tmp3538), order) - N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3539), order) - tmp3541 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) - tmp3542 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) - tmp3543 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3542), order) - tmp3544 = Taylor1(constant_term(tmp3541) + constant_term(tmp3543), order) - tmp3546 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) - tmp3547 = Taylor1(constant_term(tmp3544) - constant_term(tmp3546), order) - N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3547), order) - tmp3549 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3550 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3551 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3552 = Taylor1(constant_term(tmp3550) + constant_term(tmp3551), order) - N_1_LMF = Taylor1(constant_term(tmp3549) + constant_term(tmp3552), order) - tmp3554 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3555 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3556 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3557 = Taylor1(constant_term(tmp3555) + constant_term(tmp3556), order) - N_2_LMF = Taylor1(constant_term(tmp3554) + constant_term(tmp3557), order) - tmp3559 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3560 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3561 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3562 = Taylor1(constant_term(tmp3560) + constant_term(tmp3561), order) - N_3_LMF = Taylor1(constant_term(tmp3559) + constant_term(tmp3562), order) - tmp3564 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) - tmp3565 = Taylor1(constant_term(k_ν) * constant_term(tmp3564), order) - tmp3566 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp3567 = Taylor1(constant_term(tmp3566) * constant_term(q[6N + 11]), order) - N_cmb_1 = Taylor1(constant_term(tmp3565) - constant_term(tmp3567), order) - tmp3569 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) - tmp3570 = Taylor1(constant_term(k_ν) * constant_term(tmp3569), order) - tmp3571 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp3572 = Taylor1(constant_term(tmp3571) * constant_term(q[6N + 10]), order) - N_cmb_2 = Taylor1(constant_term(tmp3570) + constant_term(tmp3572), order) - tmp3574 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) - N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp3574), order) - tmp3576 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) - tmp3577 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp3576), order) - tmp3578 = Taylor1(constant_term(tmp3577) + constant_term(N_cmb_1), order) - tmp3579 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) - I_dω_1 = Taylor1(constant_term(tmp3578) - constant_term(tmp3579), order) - tmp3581 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) - tmp3582 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp3581), order) - tmp3583 = Taylor1(constant_term(tmp3582) + constant_term(N_cmb_2), order) - tmp3584 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) - I_dω_2 = Taylor1(constant_term(tmp3583) - constant_term(tmp3584), order) - tmp3586 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) - tmp3587 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp3586), order) - tmp3588 = Taylor1(constant_term(tmp3587) + constant_term(N_cmb_3), order) - tmp3589 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) - I_dω_3 = Taylor1(constant_term(tmp3588) - constant_term(tmp3589), order) + tmp1745 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) + N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp1745), order) + tmp1747 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) + tmp1748 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) + tmp1749 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1748), order) + tmp1750 = Taylor1(constant_term(tmp1747) + constant_term(tmp1749), order) + tmp1752 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) + tmp1753 = Taylor1(constant_term(tmp1750) - constant_term(tmp1752), order) + N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1753), order) + tmp1755 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) + tmp1756 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) + tmp1757 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1756), order) + tmp1758 = Taylor1(constant_term(tmp1755) + constant_term(tmp1757), order) + tmp1760 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) + tmp1761 = Taylor1(constant_term(tmp1758) - constant_term(tmp1760), order) + N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1761), order) + tmp1763 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) + tmp1764 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) + tmp1765 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1764), order) + tmp1766 = Taylor1(constant_term(tmp1763) + constant_term(tmp1765), order) + tmp1768 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) + tmp1769 = Taylor1(constant_term(tmp1766) - constant_term(tmp1768), order) + N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1769), order) + tmp1771 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp1772 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp1773 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp1774 = Taylor1(constant_term(tmp1772) + constant_term(tmp1773), order) + N_1_LMF = Taylor1(constant_term(tmp1771) + constant_term(tmp1774), order) + tmp1776 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp1777 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp1778 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp1779 = Taylor1(constant_term(tmp1777) + constant_term(tmp1778), order) + N_2_LMF = Taylor1(constant_term(tmp1776) + constant_term(tmp1779), order) + tmp1781 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp1782 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp1783 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp1784 = Taylor1(constant_term(tmp1782) + constant_term(tmp1783), order) + N_3_LMF = Taylor1(constant_term(tmp1781) + constant_term(tmp1784), order) + tmp1786 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) + tmp1787 = Taylor1(constant_term(k_ν) * constant_term(tmp1786), order) + tmp1788 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp1789 = Taylor1(constant_term(tmp1788) * constant_term(q[6N + 11]), order) + N_cmb_1 = Taylor1(constant_term(tmp1787) - constant_term(tmp1789), order) + tmp1791 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) + tmp1792 = Taylor1(constant_term(k_ν) * constant_term(tmp1791), order) + tmp1793 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp1794 = Taylor1(constant_term(tmp1793) * constant_term(q[6N + 10]), order) + N_cmb_2 = Taylor1(constant_term(tmp1792) + constant_term(tmp1794), order) + tmp1796 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) + N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp1796), order) + tmp1798 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) + tmp1799 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp1798), order) + tmp1800 = Taylor1(constant_term(tmp1799) + constant_term(N_cmb_1), order) + tmp1801 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) + I_dω_1 = Taylor1(constant_term(tmp1800) - constant_term(tmp1801), order) + tmp1803 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) + tmp1804 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp1803), order) + tmp1805 = Taylor1(constant_term(tmp1804) + constant_term(N_cmb_2), order) + tmp1806 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) + I_dω_2 = Taylor1(constant_term(tmp1805) - constant_term(tmp1806), order) + tmp1808 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) + tmp1809 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp1808), order) + tmp1810 = Taylor1(constant_term(tmp1809) + constant_term(N_cmb_3), order) + tmp1811 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) + I_dω_3 = Taylor1(constant_term(tmp1810) - constant_term(tmp1811), order) Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) - tmp3594 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) - tmp3595 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) - m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp3594) - constant_term(tmp3595), order) - tmp3597 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) - tmp3598 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) - m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp3597) - constant_term(tmp3598), order) - tmp3600 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) - tmp3601 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) - m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp3600) - constant_term(tmp3601), order) + tmp1816 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) + tmp1817 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) + m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp1816) - constant_term(tmp1817), order) + tmp1819 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) + tmp1820 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) + m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp1819) - constant_term(tmp1820), order) + tmp1822 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) + tmp1823 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) + m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp1822) - constant_term(tmp1823), order) Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) - tmp3606 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3686 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3607 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3606), order) - tmp3608 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3687 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3609 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3608), order) - tmp3610 = Taylor1(constant_term(tmp3607) + constant_term(tmp3609), order) - tmp3611 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp3688 = Taylor1(cos(constant_term(q[6N + 2])), order) - dq[6N + 1] = Taylor1(constant_term(tmp3610) / constant_term(tmp3611), order) - tmp3613 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3689 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3614 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3613), order) - tmp3615 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3690 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3616 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3615), order) - dq[6N + 2] = Taylor1(constant_term(tmp3614) - constant_term(tmp3616), order) - tmp3618 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp3691 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp3619 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp3618), order) - dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp3619), order) - tmp3621 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) - tmp3622 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) - tmp3623 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) - tmp3624 = Taylor1(constant_term(tmp3622) + constant_term(tmp3623), order) - dq[6N + 4] = Taylor1(constant_term(tmp3621) + constant_term(tmp3624), order) - tmp3626 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) - tmp3627 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) - tmp3628 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) - tmp3629 = Taylor1(constant_term(tmp3627) + constant_term(tmp3628), order) - dq[6N + 5] = Taylor1(constant_term(tmp3626) + constant_term(tmp3629), order) - tmp3631 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) - tmp3632 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) - tmp3633 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) - tmp3634 = Taylor1(constant_term(tmp3632) + constant_term(tmp3633), order) - dq[6N + 6] = Taylor1(constant_term(tmp3631) + constant_term(tmp3634), order) - tmp3636 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp3692 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp3637 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp3636), order) - dq[6N + 9] = Taylor1(-(constant_term(tmp3637)), order) - tmp3639 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp3693 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp3640 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp3639), order) - dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp3640), order) + tmp1828 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1908 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1829 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1828), order) + tmp1830 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1909 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1831 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1830), order) + tmp1832 = Taylor1(constant_term(tmp1829) + constant_term(tmp1831), order) + tmp1833 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp1910 = Taylor1(cos(constant_term(q[6N + 2])), order) + dq[6N + 1] = Taylor1(constant_term(tmp1832) / constant_term(tmp1833), order) + tmp1835 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1911 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1836 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1835), order) + tmp1837 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1912 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1838 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1837), order) + dq[6N + 2] = Taylor1(constant_term(tmp1836) - constant_term(tmp1838), order) + tmp1840 = Taylor1(cos(constant_term(q[6N + 2])), order) + tmp1913 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp1841 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp1840), order) + dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp1841), order) + tmp1843 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) + tmp1844 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) + tmp1845 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) + tmp1846 = Taylor1(constant_term(tmp1844) + constant_term(tmp1845), order) + dq[6N + 4] = Taylor1(constant_term(tmp1843) + constant_term(tmp1846), order) + tmp1848 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) + tmp1849 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) + tmp1850 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) + tmp1851 = Taylor1(constant_term(tmp1849) + constant_term(tmp1850), order) + dq[6N + 5] = Taylor1(constant_term(tmp1848) + constant_term(tmp1851), order) + tmp1853 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) + tmp1854 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) + tmp1855 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) + tmp1856 = Taylor1(constant_term(tmp1854) + constant_term(tmp1855), order) + dq[6N + 6] = Taylor1(constant_term(tmp1853) + constant_term(tmp1856), order) + tmp1858 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp1914 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp1859 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp1858), order) + dq[6N + 9] = Taylor1(-(constant_term(tmp1859)), order) + tmp1861 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp1915 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp1862 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp1861), order) + dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp1862), order) dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) dq[6N + 13] = Taylor1(identity(constant_term(zero_q_1)), order) - return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp2911, tmp2912, tmp2913, tmp2914, tmp2915, tmp2916, tmp2917, tmp2918, tmp2920, tmp2921, tmp2922, tmp2923, tmp2924, tmp2925, tmp2926, tmp2927, tmp2928, tmp2930, tmp2931, tmp2933, tmp2934, tmp2935, tmp2936, tmp2937, tmp2938, tmp2939, tmp2940, tmp2942, tmp2943, tmp2944, tmp2945, tmp2946, tmp2947, tmp2948, tmp2949, tmp2951, tmp2952, tmp2953, tmp2955, tmp2956, tmp2958, tmp2959, tmp2962, tmp2963, tmp2964, tmp2965, tmp2967, tmp2968, tmp2969, tmp2970, tmp2971, tmp2973, tmp2974, tmp2975, tmp2976, tmp2978, tmp2979, tmp2980, tmp2981, tmp2982, tmp2984, tmp2985, tmp2986, tmp2987, tmp2989, tmp2990, tmp2991, tmp2992, tmp2993, tmp2995, tmp2996, tmp2997, tmp2998, tmp3000, tmp3001, tmp3002, tmp3003, tmp3005, tmp3006, tmp3007, tmp3008, tmp3080, tmp3082, tmp3083, tmp3085, tmp3086, tmp3089, tmp3091, tmp3093, tmp3094, tmp3377, tmp3378, tmp3379, tmp3380, tmp3382, tmp3383, tmp3384, tmp3385, tmp3387, tmp3388, tmp3389, tmp3390, tmp3392, tmp3393, tmp3395, tmp3396, tmp3398, tmp3399, tmp3401, tmp3402, tmp3403, tmp3404, tmp3406, tmp3407, tmp3408, tmp3409, tmp3411, tmp3412, tmp3413, tmp3414, tmp3419, tmp3420, tmp3421, tmp3422, tmp3424, tmp3425, tmp3426, tmp3427, tmp3429, tmp3430, tmp3431, tmp3432, tmp3434, tmp3435, tmp3436, tmp3437, tmp3439, tmp3440, tmp3441, tmp3442, tmp3444, tmp3445, tmp3446, tmp3447, tmp3449, tmp3450, tmp3451, tmp3452, tmp3454, tmp3455, tmp3456, tmp3457, tmp3459, tmp3460, tmp3461, tmp3462, tmp3464, tmp3465, tmp3466, tmp3467, tmp3469, tmp3470, tmp3471, tmp3472, tmp3474, tmp3475, tmp3476, tmp3477, tmp3479, tmp3480, tmp3482, tmp3483, tmp3485, tmp3486, tmp3488, tmp3489, tmp3491, tmp3492, tmp3494, tmp3495, tmp3497, tmp3498, tmp3500, tmp3501, tmp3503, tmp3504, tmp3506, tmp3507, tmp3509, tmp3510, tmp3512, tmp3513, tmp3517, tmp3518, tmp3523, tmp3525, tmp3526, tmp3527, tmp3528, tmp3530, tmp3531, tmp3533, tmp3534, tmp3535, tmp3536, tmp3538, tmp3539, tmp3541, tmp3542, tmp3543, tmp3544, tmp3546, tmp3547, tmp3549, tmp3550, tmp3551, tmp3552, tmp3554, tmp3555, tmp3556, tmp3557, tmp3559, tmp3560, tmp3561, tmp3562, tmp3564, tmp3565, tmp3566, tmp3567, tmp3569, tmp3570, tmp3571, tmp3572, tmp3574, tmp3576, tmp3577, tmp3578, tmp3579, tmp3581, tmp3582, tmp3583, tmp3584, tmp3586, tmp3587, tmp3588, tmp3589, tmp3594, tmp3595, tmp3597, tmp3598, tmp3600, tmp3601, tmp3606, tmp3607, tmp3608, tmp3609, tmp3610, tmp3611, tmp3613, tmp3614, tmp3615, tmp3616, tmp3618, tmp3619, tmp3621, tmp3622, tmp3623, tmp3624, tmp3626, tmp3627, tmp3628, tmp3629, tmp3631, tmp3632, tmp3633, tmp3634, tmp3636, tmp3637, tmp3639, tmp3640, ϕ_m, θ_m, ψ_m, tmp3645, tmp3646, tmp3647, tmp3648, tmp3649, tmp3650, tmp3651, tmp3652, tmp3653, tmp3654, tmp3655, tmp3656, tmp3657, tmp3658, tmp3659, tmp3660, tmp3661, tmp3662, tmp3663, tmp3664, tmp3665, tmp3666, tmp3667, tmp3668, tmp3669, tmp3670, tmp3671, tmp3672, tmp3673, ϕ_c, tmp3674, tmp3675, tmp3676, tmp3677, tmp3678, tmp3679, tmp3680, tmp3681, tmp3682, tmp3683, tmp3684, tmp3685, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp3686, tmp3687, tmp3688, tmp3689, tmp3690, tmp3691, tmp3692, tmp3693], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp3017, tmp3019, tmp3022, tmp3024, tmp3027, tmp3029, tmp3073, tmp3075, tmp3076, tmp3078], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp3037, tmp3040, tmp3042, tmp3043, tmp3045, tmp3053, tmp3054, tmp3065, temp_001, tmp3067, temp_002, tmp3069, temp_003, temp_004, tmp3106, tmp3108, tmp3110, tmp3114, tmp3116, tmp3117, tmp3223, tmp3224, tmp3227, tmp3228, tmp3234, tmp3237, tmp3299, tmp3301, tmp3303, tmp3305, tmp3307, tmp3309, tmp3311, tmp3312, tmp3313, tmp3315, tmp3316, tmp3317, tmp3319, tmp3320, tmp3321, tmp3333, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp3339, Rij_dot_Vi, tmp3342, pn1t7, tmp3345, pn1t2_7, tmp3352, tmp3353, tmp3354, tmp3362, termpnx, sumpnx, tmp3365, termpny, sumpny, tmp3368, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp3122, tmp3123, tmp3124, tmp3126, tmp3127, tmp3132, tmp3133, tmp3135, tmp3136, tmp3137, tmp3139, tmp3140, tmp3141, tmp3143, tmp3144, tmp3145, tmp3146, tmp3149, tmp3150, tmp3152, tmp3153, tmp3172, tmp3173, tmp3174, tmp3177, tmp3178, tmp3179, tmp3184, tmp3185, tmp3186, tmp3189, tmp3190, tmp3191, tmp3195, tmp3196, tmp3197, tmp3199, tmp3200, tmp3201], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp3155, tmp3158, tmp3160, tmp3162, tmp3163, tmp3164, tmp3167, tmp3168, tmp3169, tmp3171, tmp3175, tmp3176, tmp3180, tmp3181, tmp3183, tmp3187, tmp3188, tmp3192, tmp3193, tmp3198, tmp3202, tmp3203, tmp3209, tmp3210, tmp3211, tmp3212, tmp3214, tmp3215, tmp3216, tmp3217, tmp3219, tmp3220, tmp3221, tmp3239, tmp3240, tmp3241, tmp3242, tmp3244, tmp3245, tmp3246, tmp3247, tmp3249, tmp3250, tmp3251, tmp3252, tmp3254, tmp3255, tmp3256, tmp3257, tmp3259, tmp3260, tmp3261, tmp3262, tmp3264, tmp3265, tmp3266, tmp3267, tmp3269, tmp3270, tmp3271, tmp3272, tmp3274, tmp3275, tmp3276, tmp3277, tmp3279, tmp3280, tmp3281, tmp3282, tmp3284, tmp3285, tmp3286, tmp3287, tmp3289, tmp3290, tmp3291, tmp3292, tmp3294, tmp3295, tmp3296, tmp3297]) + return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp1133, tmp1134, tmp1135, tmp1136, tmp1137, tmp1138, tmp1139, tmp1140, tmp1142, tmp1143, tmp1144, tmp1145, tmp1146, tmp1147, tmp1148, tmp1149, tmp1150, tmp1152, tmp1153, tmp1155, tmp1156, tmp1157, tmp1158, tmp1159, tmp1160, tmp1161, tmp1162, tmp1164, tmp1165, tmp1166, tmp1167, tmp1168, tmp1169, tmp1170, tmp1171, tmp1173, tmp1174, tmp1175, tmp1177, tmp1178, tmp1180, tmp1181, tmp1184, tmp1185, tmp1186, tmp1187, tmp1189, tmp1190, tmp1191, tmp1192, tmp1193, tmp1195, tmp1196, tmp1197, tmp1198, tmp1200, tmp1201, tmp1202, tmp1203, tmp1204, tmp1206, tmp1207, tmp1208, tmp1209, tmp1211, tmp1212, tmp1213, tmp1214, tmp1215, tmp1217, tmp1218, tmp1219, tmp1220, tmp1222, tmp1223, tmp1224, tmp1225, tmp1227, tmp1228, tmp1229, tmp1230, tmp1302, tmp1304, tmp1305, tmp1307, tmp1308, tmp1311, tmp1313, tmp1315, tmp1316, tmp1599, tmp1600, tmp1601, tmp1602, tmp1604, tmp1605, tmp1606, tmp1607, tmp1609, tmp1610, tmp1611, tmp1612, tmp1614, tmp1615, tmp1617, tmp1618, tmp1620, tmp1621, tmp1623, tmp1624, tmp1625, tmp1626, tmp1628, tmp1629, tmp1630, tmp1631, tmp1633, tmp1634, tmp1635, tmp1636, tmp1641, tmp1642, tmp1643, tmp1644, tmp1646, tmp1647, tmp1648, tmp1649, tmp1651, tmp1652, tmp1653, tmp1654, tmp1656, tmp1657, tmp1658, tmp1659, tmp1661, tmp1662, tmp1663, tmp1664, tmp1666, tmp1667, tmp1668, tmp1669, tmp1671, tmp1672, tmp1673, tmp1674, tmp1676, tmp1677, tmp1678, tmp1679, tmp1681, tmp1682, tmp1683, tmp1684, tmp1686, tmp1687, tmp1688, tmp1689, tmp1691, tmp1692, tmp1693, tmp1694, tmp1696, tmp1697, tmp1698, tmp1699, tmp1701, tmp1702, tmp1704, tmp1705, tmp1707, tmp1708, tmp1710, tmp1711, tmp1713, tmp1714, tmp1716, tmp1717, tmp1719, tmp1720, tmp1722, tmp1723, tmp1725, tmp1726, tmp1728, tmp1729, tmp1731, tmp1732, tmp1734, tmp1735, tmp1739, tmp1740, tmp1745, tmp1747, tmp1748, tmp1749, tmp1750, tmp1752, tmp1753, tmp1755, tmp1756, tmp1757, tmp1758, tmp1760, tmp1761, tmp1763, tmp1764, tmp1765, tmp1766, tmp1768, tmp1769, tmp1771, tmp1772, tmp1773, tmp1774, tmp1776, tmp1777, tmp1778, tmp1779, tmp1781, tmp1782, tmp1783, tmp1784, tmp1786, tmp1787, tmp1788, tmp1789, tmp1791, tmp1792, tmp1793, tmp1794, tmp1796, tmp1798, tmp1799, tmp1800, tmp1801, tmp1803, tmp1804, tmp1805, tmp1806, tmp1808, tmp1809, tmp1810, tmp1811, tmp1816, tmp1817, tmp1819, tmp1820, tmp1822, tmp1823, tmp1828, tmp1829, tmp1830, tmp1831, tmp1832, tmp1833, tmp1835, tmp1836, tmp1837, tmp1838, tmp1840, tmp1841, tmp1843, tmp1844, tmp1845, tmp1846, tmp1848, tmp1849, tmp1850, tmp1851, tmp1853, tmp1854, tmp1855, tmp1856, tmp1858, tmp1859, tmp1861, tmp1862, ϕ_m, θ_m, ψ_m, tmp1867, tmp1868, tmp1869, tmp1870, tmp1871, tmp1872, tmp1873, tmp1874, tmp1875, tmp1876, tmp1877, tmp1878, tmp1879, tmp1880, tmp1881, tmp1882, tmp1883, tmp1884, tmp1885, tmp1886, tmp1887, tmp1888, tmp1889, tmp1890, tmp1891, tmp1892, tmp1893, tmp1894, tmp1895, ϕ_c, tmp1896, tmp1897, tmp1898, tmp1899, tmp1900, tmp1901, tmp1902, tmp1903, tmp1904, tmp1905, tmp1906, tmp1907, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp1908, tmp1909, tmp1910, tmp1911, tmp1912, tmp1913, tmp1914, tmp1915], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp1239, tmp1241, tmp1244, tmp1246, tmp1249, tmp1251, tmp1295, tmp1297, tmp1298, tmp1300], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp1259, tmp1262, tmp1264, tmp1265, tmp1267, tmp1275, tmp1276, tmp1287, temp_001, tmp1289, temp_002, tmp1291, temp_003, temp_004, tmp1328, tmp1330, tmp1332, tmp1336, tmp1338, tmp1339, tmp1445, tmp1446, tmp1449, tmp1450, tmp1456, tmp1459, tmp1521, tmp1523, tmp1525, tmp1527, tmp1529, tmp1531, tmp1533, tmp1534, tmp1535, tmp1537, tmp1538, tmp1539, tmp1541, tmp1542, tmp1543, tmp1555, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp1561, Rij_dot_Vi, tmp1564, pn1t7, tmp1567, pn1t2_7, tmp1574, tmp1575, tmp1576, tmp1584, termpnx, sumpnx, tmp1587, termpny, sumpny, tmp1590, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp1344, tmp1345, tmp1346, tmp1348, tmp1349, tmp1354, tmp1355, tmp1357, tmp1358, tmp1359, tmp1361, tmp1362, tmp1363, tmp1365, tmp1366, tmp1367, tmp1368, tmp1371, tmp1372, tmp1374, tmp1375, tmp1394, tmp1395, tmp1396, tmp1399, tmp1400, tmp1401, tmp1406, tmp1407, tmp1408, tmp1411, tmp1412, tmp1413, tmp1417, tmp1418, tmp1419, tmp1421, tmp1422, tmp1423], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp1377, tmp1380, tmp1382, tmp1384, tmp1385, tmp1386, tmp1389, tmp1390, tmp1391, tmp1393, tmp1397, tmp1398, tmp1402, tmp1403, tmp1405, tmp1409, tmp1410, tmp1414, tmp1415, tmp1420, tmp1424, tmp1425, tmp1431, tmp1432, tmp1433, tmp1434, tmp1436, tmp1437, tmp1438, tmp1439, tmp1441, tmp1442, tmp1443, tmp1461, tmp1462, tmp1463, tmp1464, tmp1466, tmp1467, tmp1468, tmp1469, tmp1471, tmp1472, tmp1473, tmp1474, tmp1476, tmp1477, tmp1478, tmp1479, tmp1481, tmp1482, tmp1483, tmp1484, tmp1486, tmp1487, tmp1488, tmp1489, tmp1491, tmp1492, tmp1493, tmp1494, tmp1496, tmp1497, tmp1498, tmp1499, tmp1501, tmp1502, tmp1503, tmp1504, tmp1506, tmp1507, tmp1508, tmp1509, tmp1511, tmp1512, tmp1513, tmp1514, tmp1516, tmp1517, tmp1518, tmp1519]) end # TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S_threads! function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} order = t.order - tmp2911 = __ralloc.v0[1]::Taylor1{_S} - tmp2912 = __ralloc.v0[2]::Taylor1{_S} - tmp2913 = __ralloc.v0[3]::Taylor1{_S} - tmp2914 = __ralloc.v0[4]::Taylor1{_S} - tmp2915 = __ralloc.v0[5]::Taylor1{_S} - tmp2916 = __ralloc.v0[6]::Taylor1{_S} - tmp2917 = __ralloc.v0[7]::Taylor1{_S} - tmp2918 = __ralloc.v0[8]::Taylor1{_S} - tmp2920 = __ralloc.v0[9]::Taylor1{_S} - tmp2921 = __ralloc.v0[10]::Taylor1{_S} - tmp2922 = __ralloc.v0[11]::Taylor1{_S} - tmp2923 = __ralloc.v0[12]::Taylor1{_S} - tmp2924 = __ralloc.v0[13]::Taylor1{_S} - tmp2925 = __ralloc.v0[14]::Taylor1{_S} - tmp2926 = __ralloc.v0[15]::Taylor1{_S} - tmp2927 = __ralloc.v0[16]::Taylor1{_S} - tmp2928 = __ralloc.v0[17]::Taylor1{_S} - tmp2930 = __ralloc.v0[18]::Taylor1{_S} - tmp2931 = __ralloc.v0[19]::Taylor1{_S} - tmp2933 = __ralloc.v0[20]::Taylor1{_S} - tmp2934 = __ralloc.v0[21]::Taylor1{_S} - tmp2935 = __ralloc.v0[22]::Taylor1{_S} - tmp2936 = __ralloc.v0[23]::Taylor1{_S} - tmp2937 = __ralloc.v0[24]::Taylor1{_S} - tmp2938 = __ralloc.v0[25]::Taylor1{_S} - tmp2939 = __ralloc.v0[26]::Taylor1{_S} - tmp2940 = __ralloc.v0[27]::Taylor1{_S} - tmp2942 = __ralloc.v0[28]::Taylor1{_S} - tmp2943 = __ralloc.v0[29]::Taylor1{_S} - tmp2944 = __ralloc.v0[30]::Taylor1{_S} - tmp2945 = __ralloc.v0[31]::Taylor1{_S} - tmp2946 = __ralloc.v0[32]::Taylor1{_S} - tmp2947 = __ralloc.v0[33]::Taylor1{_S} - tmp2948 = __ralloc.v0[34]::Taylor1{_S} - tmp2949 = __ralloc.v0[35]::Taylor1{_S} - tmp2951 = __ralloc.v0[36]::Taylor1{_S} - tmp2952 = __ralloc.v0[37]::Taylor1{_S} - tmp2953 = __ralloc.v0[38]::Taylor1{_S} - tmp2955 = __ralloc.v0[39]::Taylor1{_S} - tmp2956 = __ralloc.v0[40]::Taylor1{_S} - tmp2958 = __ralloc.v0[41]::Taylor1{_S} - tmp2959 = __ralloc.v0[42]::Taylor1{_S} - tmp2962 = __ralloc.v0[43]::Taylor1{_S} - tmp2963 = __ralloc.v0[44]::Taylor1{_S} - tmp2964 = __ralloc.v0[45]::Taylor1{_S} - tmp2965 = __ralloc.v0[46]::Taylor1{_S} - tmp2967 = __ralloc.v0[47]::Taylor1{_S} - tmp2968 = __ralloc.v0[48]::Taylor1{_S} - tmp2969 = __ralloc.v0[49]::Taylor1{_S} - tmp2970 = __ralloc.v0[50]::Taylor1{_S} - tmp2971 = __ralloc.v0[51]::Taylor1{_S} - tmp2973 = __ralloc.v0[52]::Taylor1{_S} - tmp2974 = __ralloc.v0[53]::Taylor1{_S} - tmp2975 = __ralloc.v0[54]::Taylor1{_S} - tmp2976 = __ralloc.v0[55]::Taylor1{_S} - tmp2978 = __ralloc.v0[56]::Taylor1{_S} - tmp2979 = __ralloc.v0[57]::Taylor1{_S} - tmp2980 = __ralloc.v0[58]::Taylor1{_S} - tmp2981 = __ralloc.v0[59]::Taylor1{_S} - tmp2982 = __ralloc.v0[60]::Taylor1{_S} - tmp2984 = __ralloc.v0[61]::Taylor1{_S} - tmp2985 = __ralloc.v0[62]::Taylor1{_S} - tmp2986 = __ralloc.v0[63]::Taylor1{_S} - tmp2987 = __ralloc.v0[64]::Taylor1{_S} - tmp2989 = __ralloc.v0[65]::Taylor1{_S} - tmp2990 = __ralloc.v0[66]::Taylor1{_S} - tmp2991 = __ralloc.v0[67]::Taylor1{_S} - tmp2992 = __ralloc.v0[68]::Taylor1{_S} - tmp2993 = __ralloc.v0[69]::Taylor1{_S} - tmp2995 = __ralloc.v0[70]::Taylor1{_S} - tmp2996 = __ralloc.v0[71]::Taylor1{_S} - tmp2997 = __ralloc.v0[72]::Taylor1{_S} - tmp2998 = __ralloc.v0[73]::Taylor1{_S} - tmp3000 = __ralloc.v0[74]::Taylor1{_S} - tmp3001 = __ralloc.v0[75]::Taylor1{_S} - tmp3002 = __ralloc.v0[76]::Taylor1{_S} - tmp3003 = __ralloc.v0[77]::Taylor1{_S} - tmp3005 = __ralloc.v0[78]::Taylor1{_S} - tmp3006 = __ralloc.v0[79]::Taylor1{_S} - tmp3007 = __ralloc.v0[80]::Taylor1{_S} - tmp3008 = __ralloc.v0[81]::Taylor1{_S} - tmp3080 = __ralloc.v0[82]::Taylor1{_S} - tmp3082 = __ralloc.v0[83]::Taylor1{_S} - tmp3083 = __ralloc.v0[84]::Taylor1{_S} - tmp3085 = __ralloc.v0[85]::Taylor1{_S} - tmp3086 = __ralloc.v0[86]::Taylor1{_S} - tmp3089 = __ralloc.v0[87]::Taylor1{_S} - tmp3091 = __ralloc.v0[88]::Taylor1{_S} - tmp3093 = __ralloc.v0[89]::Taylor1{_S} - tmp3094 = __ralloc.v0[90]::Taylor1{_S} - tmp3377 = __ralloc.v0[91]::Taylor1{_S} - tmp3378 = __ralloc.v0[92]::Taylor1{_S} - tmp3379 = __ralloc.v0[93]::Taylor1{_S} - tmp3380 = __ralloc.v0[94]::Taylor1{_S} - tmp3382 = __ralloc.v0[95]::Taylor1{_S} - tmp3383 = __ralloc.v0[96]::Taylor1{_S} - tmp3384 = __ralloc.v0[97]::Taylor1{_S} - tmp3385 = __ralloc.v0[98]::Taylor1{_S} - tmp3387 = __ralloc.v0[99]::Taylor1{_S} - tmp3388 = __ralloc.v0[100]::Taylor1{_S} - tmp3389 = __ralloc.v0[101]::Taylor1{_S} - tmp3390 = __ralloc.v0[102]::Taylor1{_S} - tmp3392 = __ralloc.v0[103]::Taylor1{_S} - tmp3393 = __ralloc.v0[104]::Taylor1{_S} - tmp3395 = __ralloc.v0[105]::Taylor1{_S} - tmp3396 = __ralloc.v0[106]::Taylor1{_S} - tmp3398 = __ralloc.v0[107]::Taylor1{_S} - tmp3399 = __ralloc.v0[108]::Taylor1{_S} - tmp3401 = __ralloc.v0[109]::Taylor1{_S} - tmp3402 = __ralloc.v0[110]::Taylor1{_S} - tmp3403 = __ralloc.v0[111]::Taylor1{_S} - tmp3404 = __ralloc.v0[112]::Taylor1{_S} - tmp3406 = __ralloc.v0[113]::Taylor1{_S} - tmp3407 = __ralloc.v0[114]::Taylor1{_S} - tmp3408 = __ralloc.v0[115]::Taylor1{_S} - tmp3409 = __ralloc.v0[116]::Taylor1{_S} - tmp3411 = __ralloc.v0[117]::Taylor1{_S} - tmp3412 = __ralloc.v0[118]::Taylor1{_S} - tmp3413 = __ralloc.v0[119]::Taylor1{_S} - tmp3414 = __ralloc.v0[120]::Taylor1{_S} - tmp3419 = __ralloc.v0[121]::Taylor1{_S} - tmp3420 = __ralloc.v0[122]::Taylor1{_S} - tmp3421 = __ralloc.v0[123]::Taylor1{_S} - tmp3422 = __ralloc.v0[124]::Taylor1{_S} - tmp3424 = __ralloc.v0[125]::Taylor1{_S} - tmp3425 = __ralloc.v0[126]::Taylor1{_S} - tmp3426 = __ralloc.v0[127]::Taylor1{_S} - tmp3427 = __ralloc.v0[128]::Taylor1{_S} - tmp3429 = __ralloc.v0[129]::Taylor1{_S} - tmp3430 = __ralloc.v0[130]::Taylor1{_S} - tmp3431 = __ralloc.v0[131]::Taylor1{_S} - tmp3432 = __ralloc.v0[132]::Taylor1{_S} - tmp3434 = __ralloc.v0[133]::Taylor1{_S} - tmp3435 = __ralloc.v0[134]::Taylor1{_S} - tmp3436 = __ralloc.v0[135]::Taylor1{_S} - tmp3437 = __ralloc.v0[136]::Taylor1{_S} - tmp3439 = __ralloc.v0[137]::Taylor1{_S} - tmp3440 = __ralloc.v0[138]::Taylor1{_S} - tmp3441 = __ralloc.v0[139]::Taylor1{_S} - tmp3442 = __ralloc.v0[140]::Taylor1{_S} - tmp3444 = __ralloc.v0[141]::Taylor1{_S} - tmp3445 = __ralloc.v0[142]::Taylor1{_S} - tmp3446 = __ralloc.v0[143]::Taylor1{_S} - tmp3447 = __ralloc.v0[144]::Taylor1{_S} - tmp3449 = __ralloc.v0[145]::Taylor1{_S} - tmp3450 = __ralloc.v0[146]::Taylor1{_S} - tmp3451 = __ralloc.v0[147]::Taylor1{_S} - tmp3452 = __ralloc.v0[148]::Taylor1{_S} - tmp3454 = __ralloc.v0[149]::Taylor1{_S} - tmp3455 = __ralloc.v0[150]::Taylor1{_S} - tmp3456 = __ralloc.v0[151]::Taylor1{_S} - tmp3457 = __ralloc.v0[152]::Taylor1{_S} - tmp3459 = __ralloc.v0[153]::Taylor1{_S} - tmp3460 = __ralloc.v0[154]::Taylor1{_S} - tmp3461 = __ralloc.v0[155]::Taylor1{_S} - tmp3462 = __ralloc.v0[156]::Taylor1{_S} - tmp3464 = __ralloc.v0[157]::Taylor1{_S} - tmp3465 = __ralloc.v0[158]::Taylor1{_S} - tmp3466 = __ralloc.v0[159]::Taylor1{_S} - tmp3467 = __ralloc.v0[160]::Taylor1{_S} - tmp3469 = __ralloc.v0[161]::Taylor1{_S} - tmp3470 = __ralloc.v0[162]::Taylor1{_S} - tmp3471 = __ralloc.v0[163]::Taylor1{_S} - tmp3472 = __ralloc.v0[164]::Taylor1{_S} - tmp3474 = __ralloc.v0[165]::Taylor1{_S} - tmp3475 = __ralloc.v0[166]::Taylor1{_S} - tmp3476 = __ralloc.v0[167]::Taylor1{_S} - tmp3477 = __ralloc.v0[168]::Taylor1{_S} - tmp3479 = __ralloc.v0[169]::Taylor1{_S} - tmp3480 = __ralloc.v0[170]::Taylor1{_S} - tmp3482 = __ralloc.v0[171]::Taylor1{_S} - tmp3483 = __ralloc.v0[172]::Taylor1{_S} - tmp3485 = __ralloc.v0[173]::Taylor1{_S} - tmp3486 = __ralloc.v0[174]::Taylor1{_S} - tmp3488 = __ralloc.v0[175]::Taylor1{_S} - tmp3489 = __ralloc.v0[176]::Taylor1{_S} - tmp3491 = __ralloc.v0[177]::Taylor1{_S} - tmp3492 = __ralloc.v0[178]::Taylor1{_S} - tmp3494 = __ralloc.v0[179]::Taylor1{_S} - tmp3495 = __ralloc.v0[180]::Taylor1{_S} - tmp3497 = __ralloc.v0[181]::Taylor1{_S} - tmp3498 = __ralloc.v0[182]::Taylor1{_S} - tmp3500 = __ralloc.v0[183]::Taylor1{_S} - tmp3501 = __ralloc.v0[184]::Taylor1{_S} - tmp3503 = __ralloc.v0[185]::Taylor1{_S} - tmp3504 = __ralloc.v0[186]::Taylor1{_S} - tmp3506 = __ralloc.v0[187]::Taylor1{_S} - tmp3507 = __ralloc.v0[188]::Taylor1{_S} - tmp3509 = __ralloc.v0[189]::Taylor1{_S} - tmp3510 = __ralloc.v0[190]::Taylor1{_S} - tmp3512 = __ralloc.v0[191]::Taylor1{_S} - tmp3513 = __ralloc.v0[192]::Taylor1{_S} - tmp3517 = __ralloc.v0[193]::Taylor1{_S} - tmp3518 = __ralloc.v0[194]::Taylor1{_S} - tmp3523 = __ralloc.v0[195]::Taylor1{_S} - tmp3525 = __ralloc.v0[196]::Taylor1{_S} - tmp3526 = __ralloc.v0[197]::Taylor1{_S} - tmp3527 = __ralloc.v0[198]::Taylor1{_S} - tmp3528 = __ralloc.v0[199]::Taylor1{_S} - tmp3530 = __ralloc.v0[200]::Taylor1{_S} - tmp3531 = __ralloc.v0[201]::Taylor1{_S} - tmp3533 = __ralloc.v0[202]::Taylor1{_S} - tmp3534 = __ralloc.v0[203]::Taylor1{_S} - tmp3535 = __ralloc.v0[204]::Taylor1{_S} - tmp3536 = __ralloc.v0[205]::Taylor1{_S} - tmp3538 = __ralloc.v0[206]::Taylor1{_S} - tmp3539 = __ralloc.v0[207]::Taylor1{_S} - tmp3541 = __ralloc.v0[208]::Taylor1{_S} - tmp3542 = __ralloc.v0[209]::Taylor1{_S} - tmp3543 = __ralloc.v0[210]::Taylor1{_S} - tmp3544 = __ralloc.v0[211]::Taylor1{_S} - tmp3546 = __ralloc.v0[212]::Taylor1{_S} - tmp3547 = __ralloc.v0[213]::Taylor1{_S} - tmp3549 = __ralloc.v0[214]::Taylor1{_S} - tmp3550 = __ralloc.v0[215]::Taylor1{_S} - tmp3551 = __ralloc.v0[216]::Taylor1{_S} - tmp3552 = __ralloc.v0[217]::Taylor1{_S} - tmp3554 = __ralloc.v0[218]::Taylor1{_S} - tmp3555 = __ralloc.v0[219]::Taylor1{_S} - tmp3556 = __ralloc.v0[220]::Taylor1{_S} - tmp3557 = __ralloc.v0[221]::Taylor1{_S} - tmp3559 = __ralloc.v0[222]::Taylor1{_S} - tmp3560 = __ralloc.v0[223]::Taylor1{_S} - tmp3561 = __ralloc.v0[224]::Taylor1{_S} - tmp3562 = __ralloc.v0[225]::Taylor1{_S} - tmp3564 = __ralloc.v0[226]::Taylor1{_S} - tmp3565 = __ralloc.v0[227]::Taylor1{_S} - tmp3566 = __ralloc.v0[228]::Taylor1{_S} - tmp3567 = __ralloc.v0[229]::Taylor1{_S} - tmp3569 = __ralloc.v0[230]::Taylor1{_S} - tmp3570 = __ralloc.v0[231]::Taylor1{_S} - tmp3571 = __ralloc.v0[232]::Taylor1{_S} - tmp3572 = __ralloc.v0[233]::Taylor1{_S} - tmp3574 = __ralloc.v0[234]::Taylor1{_S} - tmp3576 = __ralloc.v0[235]::Taylor1{_S} - tmp3577 = __ralloc.v0[236]::Taylor1{_S} - tmp3578 = __ralloc.v0[237]::Taylor1{_S} - tmp3579 = __ralloc.v0[238]::Taylor1{_S} - tmp3581 = __ralloc.v0[239]::Taylor1{_S} - tmp3582 = __ralloc.v0[240]::Taylor1{_S} - tmp3583 = __ralloc.v0[241]::Taylor1{_S} - tmp3584 = __ralloc.v0[242]::Taylor1{_S} - tmp3586 = __ralloc.v0[243]::Taylor1{_S} - tmp3587 = __ralloc.v0[244]::Taylor1{_S} - tmp3588 = __ralloc.v0[245]::Taylor1{_S} - tmp3589 = __ralloc.v0[246]::Taylor1{_S} - tmp3594 = __ralloc.v0[247]::Taylor1{_S} - tmp3595 = __ralloc.v0[248]::Taylor1{_S} - tmp3597 = __ralloc.v0[249]::Taylor1{_S} - tmp3598 = __ralloc.v0[250]::Taylor1{_S} - tmp3600 = __ralloc.v0[251]::Taylor1{_S} - tmp3601 = __ralloc.v0[252]::Taylor1{_S} - tmp3606 = __ralloc.v0[253]::Taylor1{_S} - tmp3607 = __ralloc.v0[254]::Taylor1{_S} - tmp3608 = __ralloc.v0[255]::Taylor1{_S} - tmp3609 = __ralloc.v0[256]::Taylor1{_S} - tmp3610 = __ralloc.v0[257]::Taylor1{_S} - tmp3611 = __ralloc.v0[258]::Taylor1{_S} - tmp3613 = __ralloc.v0[259]::Taylor1{_S} - tmp3614 = __ralloc.v0[260]::Taylor1{_S} - tmp3615 = __ralloc.v0[261]::Taylor1{_S} - tmp3616 = __ralloc.v0[262]::Taylor1{_S} - tmp3618 = __ralloc.v0[263]::Taylor1{_S} - tmp3619 = __ralloc.v0[264]::Taylor1{_S} - tmp3621 = __ralloc.v0[265]::Taylor1{_S} - tmp3622 = __ralloc.v0[266]::Taylor1{_S} - tmp3623 = __ralloc.v0[267]::Taylor1{_S} - tmp3624 = __ralloc.v0[268]::Taylor1{_S} - tmp3626 = __ralloc.v0[269]::Taylor1{_S} - tmp3627 = __ralloc.v0[270]::Taylor1{_S} - tmp3628 = __ralloc.v0[271]::Taylor1{_S} - tmp3629 = __ralloc.v0[272]::Taylor1{_S} - tmp3631 = __ralloc.v0[273]::Taylor1{_S} - tmp3632 = __ralloc.v0[274]::Taylor1{_S} - tmp3633 = __ralloc.v0[275]::Taylor1{_S} - tmp3634 = __ralloc.v0[276]::Taylor1{_S} - tmp3636 = __ralloc.v0[277]::Taylor1{_S} - tmp3637 = __ralloc.v0[278]::Taylor1{_S} - tmp3639 = __ralloc.v0[279]::Taylor1{_S} - tmp3640 = __ralloc.v0[280]::Taylor1{_S} - ϕ_m = __ralloc.v0[281]::Taylor1{_S} - θ_m = __ralloc.v0[282]::Taylor1{_S} - ψ_m = __ralloc.v0[283]::Taylor1{_S} - tmp3645 = __ralloc.v0[284]::Taylor1{_S} - tmp3646 = __ralloc.v0[285]::Taylor1{_S} - tmp3647 = __ralloc.v0[286]::Taylor1{_S} - tmp3648 = __ralloc.v0[287]::Taylor1{_S} - tmp3649 = __ralloc.v0[288]::Taylor1{_S} - tmp3650 = __ralloc.v0[289]::Taylor1{_S} - tmp3651 = __ralloc.v0[290]::Taylor1{_S} - tmp3652 = __ralloc.v0[291]::Taylor1{_S} - tmp3653 = __ralloc.v0[292]::Taylor1{_S} - tmp3654 = __ralloc.v0[293]::Taylor1{_S} - tmp3655 = __ralloc.v0[294]::Taylor1{_S} - tmp3656 = __ralloc.v0[295]::Taylor1{_S} - tmp3657 = __ralloc.v0[296]::Taylor1{_S} - tmp3658 = __ralloc.v0[297]::Taylor1{_S} - tmp3659 = __ralloc.v0[298]::Taylor1{_S} - tmp3660 = __ralloc.v0[299]::Taylor1{_S} - tmp3661 = __ralloc.v0[300]::Taylor1{_S} - tmp3662 = __ralloc.v0[301]::Taylor1{_S} - tmp3663 = __ralloc.v0[302]::Taylor1{_S} - tmp3664 = __ralloc.v0[303]::Taylor1{_S} - tmp3665 = __ralloc.v0[304]::Taylor1{_S} - tmp3666 = __ralloc.v0[305]::Taylor1{_S} - tmp3667 = __ralloc.v0[306]::Taylor1{_S} - tmp3668 = __ralloc.v0[307]::Taylor1{_S} - tmp3669 = __ralloc.v0[308]::Taylor1{_S} - tmp3670 = __ralloc.v0[309]::Taylor1{_S} - tmp3671 = __ralloc.v0[310]::Taylor1{_S} - tmp3672 = __ralloc.v0[311]::Taylor1{_S} - tmp3673 = __ralloc.v0[312]::Taylor1{_S} - ϕ_c = __ralloc.v0[313]::Taylor1{_S} - tmp3674 = __ralloc.v0[314]::Taylor1{_S} - tmp3675 = __ralloc.v0[315]::Taylor1{_S} - tmp3676 = __ralloc.v0[316]::Taylor1{_S} - tmp3677 = __ralloc.v0[317]::Taylor1{_S} - tmp3678 = __ralloc.v0[318]::Taylor1{_S} - tmp3679 = __ralloc.v0[319]::Taylor1{_S} - tmp3680 = __ralloc.v0[320]::Taylor1{_S} - tmp3681 = __ralloc.v0[321]::Taylor1{_S} - tmp3682 = __ralloc.v0[322]::Taylor1{_S} - tmp3683 = __ralloc.v0[323]::Taylor1{_S} - tmp3684 = __ralloc.v0[324]::Taylor1{_S} - tmp3685 = __ralloc.v0[325]::Taylor1{_S} - ω_c_CE_1 = __ralloc.v0[326]::Taylor1{_S} - ω_c_CE_2 = __ralloc.v0[327]::Taylor1{_S} - ω_c_CE_3 = __ralloc.v0[328]::Taylor1{_S} - J2M_t = __ralloc.v0[329]::Taylor1{_S} - C22M_t = __ralloc.v0[330]::Taylor1{_S} - C21M_t = __ralloc.v0[331]::Taylor1{_S} - S21M_t = __ralloc.v0[332]::Taylor1{_S} - S22M_t = __ralloc.v0[333]::Taylor1{_S} - Iω_x = __ralloc.v0[334]::Taylor1{_S} - Iω_y = __ralloc.v0[335]::Taylor1{_S} - Iω_z = __ralloc.v0[336]::Taylor1{_S} - ωxIω_x = __ralloc.v0[337]::Taylor1{_S} - ωxIω_y = __ralloc.v0[338]::Taylor1{_S} - ωxIω_z = __ralloc.v0[339]::Taylor1{_S} - dIω_x = __ralloc.v0[340]::Taylor1{_S} - dIω_y = __ralloc.v0[341]::Taylor1{_S} - dIω_z = __ralloc.v0[342]::Taylor1{_S} - er_EM_I_1 = __ralloc.v0[343]::Taylor1{_S} - er_EM_I_2 = __ralloc.v0[344]::Taylor1{_S} - er_EM_I_3 = __ralloc.v0[345]::Taylor1{_S} - p_E_I_1 = __ralloc.v0[346]::Taylor1{_S} - p_E_I_2 = __ralloc.v0[347]::Taylor1{_S} - p_E_I_3 = __ralloc.v0[348]::Taylor1{_S} - er_EM_1 = __ralloc.v0[349]::Taylor1{_S} - er_EM_2 = __ralloc.v0[350]::Taylor1{_S} - er_EM_3 = __ralloc.v0[351]::Taylor1{_S} - p_E_1 = __ralloc.v0[352]::Taylor1{_S} - p_E_2 = __ralloc.v0[353]::Taylor1{_S} - p_E_3 = __ralloc.v0[354]::Taylor1{_S} - I_er_EM_1 = __ralloc.v0[355]::Taylor1{_S} - I_er_EM_2 = __ralloc.v0[356]::Taylor1{_S} - I_er_EM_3 = __ralloc.v0[357]::Taylor1{_S} - I_p_E_1 = __ralloc.v0[358]::Taylor1{_S} - I_p_E_2 = __ralloc.v0[359]::Taylor1{_S} - I_p_E_3 = __ralloc.v0[360]::Taylor1{_S} - er_EM_cross_I_er_EM_1 = __ralloc.v0[361]::Taylor1{_S} - er_EM_cross_I_er_EM_2 = __ralloc.v0[362]::Taylor1{_S} - er_EM_cross_I_er_EM_3 = __ralloc.v0[363]::Taylor1{_S} - er_EM_cross_I_p_E_1 = __ralloc.v0[364]::Taylor1{_S} - er_EM_cross_I_p_E_2 = __ralloc.v0[365]::Taylor1{_S} - er_EM_cross_I_p_E_3 = __ralloc.v0[366]::Taylor1{_S} - p_E_cross_I_er_EM_1 = __ralloc.v0[367]::Taylor1{_S} - p_E_cross_I_er_EM_2 = __ralloc.v0[368]::Taylor1{_S} - p_E_cross_I_er_EM_3 = __ralloc.v0[369]::Taylor1{_S} - p_E_cross_I_p_E_1 = __ralloc.v0[370]::Taylor1{_S} - p_E_cross_I_p_E_2 = __ralloc.v0[371]::Taylor1{_S} - p_E_cross_I_p_E_3 = __ralloc.v0[372]::Taylor1{_S} - one_minus_7sin2ϕEM = __ralloc.v0[373]::Taylor1{_S} - two_sinϕEM = __ralloc.v0[374]::Taylor1{_S} - N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[375]::Taylor1{_S} - N_MfigM_figE_1 = __ralloc.v0[376]::Taylor1{_S} - N_MfigM_figE_2 = __ralloc.v0[377]::Taylor1{_S} - N_MfigM_figE_3 = __ralloc.v0[378]::Taylor1{_S} - N_1_LMF = __ralloc.v0[379]::Taylor1{_S} - N_2_LMF = __ralloc.v0[380]::Taylor1{_S} - N_3_LMF = __ralloc.v0[381]::Taylor1{_S} - N_cmb_1 = __ralloc.v0[382]::Taylor1{_S} - N_cmb_2 = __ralloc.v0[383]::Taylor1{_S} - N_cmb_3 = __ralloc.v0[384]::Taylor1{_S} - I_dω_1 = __ralloc.v0[385]::Taylor1{_S} - I_dω_2 = __ralloc.v0[386]::Taylor1{_S} - I_dω_3 = __ralloc.v0[387]::Taylor1{_S} - Ic_ωc_1 = __ralloc.v0[388]::Taylor1{_S} - Ic_ωc_2 = __ralloc.v0[389]::Taylor1{_S} - Ic_ωc_3 = __ralloc.v0[390]::Taylor1{_S} - m_ωm_x_Icωc_1 = __ralloc.v0[391]::Taylor1{_S} - m_ωm_x_Icωc_2 = __ralloc.v0[392]::Taylor1{_S} - m_ωm_x_Icωc_3 = __ralloc.v0[393]::Taylor1{_S} - Ic_dωc_1 = __ralloc.v0[394]::Taylor1{_S} - Ic_dωc_2 = __ralloc.v0[395]::Taylor1{_S} - Ic_dωc_3 = __ralloc.v0[396]::Taylor1{_S} - tmp3686 = __ralloc.v0[397]::Taylor1{_S} - tmp3687 = __ralloc.v0[398]::Taylor1{_S} - tmp3688 = __ralloc.v0[399]::Taylor1{_S} - tmp3689 = __ralloc.v0[400]::Taylor1{_S} - tmp3690 = __ralloc.v0[401]::Taylor1{_S} - tmp3691 = __ralloc.v0[402]::Taylor1{_S} - tmp3692 = __ralloc.v0[403]::Taylor1{_S} - tmp3693 = __ralloc.v0[404]::Taylor1{_S} - newtonX = __ralloc.v1[1]::Vector{Taylor1{_S}} - newtonY = __ralloc.v1[2]::Vector{Taylor1{_S}} - newtonZ = __ralloc.v1[3]::Vector{Taylor1{_S}} - newtonianNb_Potential = __ralloc.v1[4]::Vector{Taylor1{_S}} - v2 = __ralloc.v1[5]::Vector{Taylor1{_S}} - pntempX = __ralloc.v1[6]::Vector{Taylor1{_S}} - pntempY = __ralloc.v1[7]::Vector{Taylor1{_S}} - pntempZ = __ralloc.v1[8]::Vector{Taylor1{_S}} - postNewtonX = __ralloc.v1[9]::Vector{Taylor1{_S}} - postNewtonY = __ralloc.v1[10]::Vector{Taylor1{_S}} - postNewtonZ = __ralloc.v1[11]::Vector{Taylor1{_S}} - accX = __ralloc.v1[12]::Vector{Taylor1{_S}} - accY = __ralloc.v1[13]::Vector{Taylor1{_S}} - accZ = __ralloc.v1[14]::Vector{Taylor1{_S}} - N_MfigM_pmA_x = __ralloc.v1[15]::Vector{Taylor1{_S}} - N_MfigM_pmA_y = __ralloc.v1[16]::Vector{Taylor1{_S}} - N_MfigM_pmA_z = __ralloc.v1[17]::Vector{Taylor1{_S}} - temp_N_M_x = __ralloc.v1[18]::Vector{Taylor1{_S}} - temp_N_M_y = __ralloc.v1[19]::Vector{Taylor1{_S}} - temp_N_M_z = __ralloc.v1[20]::Vector{Taylor1{_S}} - N_MfigM = __ralloc.v1[21]::Vector{Taylor1{_S}} - J2_t = __ralloc.v1[22]::Vector{Taylor1{_S}} - tmp3017 = __ralloc.v1[23]::Vector{Taylor1{_S}} - tmp3019 = __ralloc.v1[24]::Vector{Taylor1{_S}} - tmp3022 = __ralloc.v1[25]::Vector{Taylor1{_S}} - tmp3024 = __ralloc.v1[26]::Vector{Taylor1{_S}} - tmp3027 = __ralloc.v1[27]::Vector{Taylor1{_S}} - tmp3029 = __ralloc.v1[28]::Vector{Taylor1{_S}} - tmp3073 = __ralloc.v1[29]::Vector{Taylor1{_S}} - tmp3075 = __ralloc.v1[30]::Vector{Taylor1{_S}} - tmp3076 = __ralloc.v1[31]::Vector{Taylor1{_S}} - tmp3078 = __ralloc.v1[32]::Vector{Taylor1{_S}} - X = __ralloc.v2[1]::Array{Taylor1{_S}, 2} - Y = __ralloc.v2[2]::Array{Taylor1{_S}, 2} - Z = __ralloc.v2[3]::Array{Taylor1{_S}, 2} - r_p2 = __ralloc.v2[4]::Array{Taylor1{_S}, 2} - r_p1d2 = __ralloc.v2[5]::Array{Taylor1{_S}, 2} - r_p3d2 = __ralloc.v2[6]::Array{Taylor1{_S}, 2} - r_p7d2 = __ralloc.v2[7]::Array{Taylor1{_S}, 2} - newtonianCoeff = __ralloc.v2[8]::Array{Taylor1{_S}, 2} - U = __ralloc.v2[9]::Array{Taylor1{_S}, 2} - V = __ralloc.v2[10]::Array{Taylor1{_S}, 2} - W = __ralloc.v2[11]::Array{Taylor1{_S}, 2} - _4U_m_3X = __ralloc.v2[12]::Array{Taylor1{_S}, 2} - _4V_m_3Y = __ralloc.v2[13]::Array{Taylor1{_S}, 2} - _4W_m_3Z = __ralloc.v2[14]::Array{Taylor1{_S}, 2} - UU = __ralloc.v2[15]::Array{Taylor1{_S}, 2} - VV = __ralloc.v2[16]::Array{Taylor1{_S}, 2} - WW = __ralloc.v2[17]::Array{Taylor1{_S}, 2} - newtonian1b_Potential = __ralloc.v2[18]::Array{Taylor1{_S}, 2} - newton_acc_X = __ralloc.v2[19]::Array{Taylor1{_S}, 2} - newton_acc_Y = __ralloc.v2[20]::Array{Taylor1{_S}, 2} - newton_acc_Z = __ralloc.v2[21]::Array{Taylor1{_S}, 2} - _2v2 = __ralloc.v2[22]::Array{Taylor1{_S}, 2} - vi_dot_vj = __ralloc.v2[23]::Array{Taylor1{_S}, 2} - pn2 = __ralloc.v2[24]::Array{Taylor1{_S}, 2} - U_t_pn2 = __ralloc.v2[25]::Array{Taylor1{_S}, 2} - V_t_pn2 = __ralloc.v2[26]::Array{Taylor1{_S}, 2} - W_t_pn2 = __ralloc.v2[27]::Array{Taylor1{_S}, 2} - pn3 = __ralloc.v2[28]::Array{Taylor1{_S}, 2} - pNX_t_pn3 = __ralloc.v2[29]::Array{Taylor1{_S}, 2} - pNY_t_pn3 = __ralloc.v2[30]::Array{Taylor1{_S}, 2} - pNZ_t_pn3 = __ralloc.v2[31]::Array{Taylor1{_S}, 2} - _4ϕj = __ralloc.v2[32]::Array{Taylor1{_S}, 2} - ϕi_plus_4ϕj = __ralloc.v2[33]::Array{Taylor1{_S}, 2} - sj2_plus_2si2 = __ralloc.v2[34]::Array{Taylor1{_S}, 2} - sj2_plus_2si2_minus_4vivj = __ralloc.v2[35]::Array{Taylor1{_S}, 2} - ϕs_and_vs = __ralloc.v2[36]::Array{Taylor1{_S}, 2} - pn1t1_7 = __ralloc.v2[37]::Array{Taylor1{_S}, 2} - pNX_t_X = __ralloc.v2[38]::Array{Taylor1{_S}, 2} - pNY_t_Y = __ralloc.v2[39]::Array{Taylor1{_S}, 2} - pNZ_t_Z = __ralloc.v2[40]::Array{Taylor1{_S}, 2} - pn1 = __ralloc.v2[41]::Array{Taylor1{_S}, 2} - X_t_pn1 = __ralloc.v2[42]::Array{Taylor1{_S}, 2} - Y_t_pn1 = __ralloc.v2[43]::Array{Taylor1{_S}, 2} - Z_t_pn1 = __ralloc.v2[44]::Array{Taylor1{_S}, 2} - X_bf_1 = __ralloc.v2[45]::Array{Taylor1{_S}, 2} - Y_bf_1 = __ralloc.v2[46]::Array{Taylor1{_S}, 2} - Z_bf_1 = __ralloc.v2[47]::Array{Taylor1{_S}, 2} - X_bf_2 = __ralloc.v2[48]::Array{Taylor1{_S}, 2} - Y_bf_2 = __ralloc.v2[49]::Array{Taylor1{_S}, 2} - Z_bf_2 = __ralloc.v2[50]::Array{Taylor1{_S}, 2} - X_bf_3 = __ralloc.v2[51]::Array{Taylor1{_S}, 2} - Y_bf_3 = __ralloc.v2[52]::Array{Taylor1{_S}, 2} - Z_bf_3 = __ralloc.v2[53]::Array{Taylor1{_S}, 2} - X_bf = __ralloc.v2[54]::Array{Taylor1{_S}, 2} - Y_bf = __ralloc.v2[55]::Array{Taylor1{_S}, 2} - Z_bf = __ralloc.v2[56]::Array{Taylor1{_S}, 2} - F_JCS_x = __ralloc.v2[57]::Array{Taylor1{_S}, 2} - F_JCS_y = __ralloc.v2[58]::Array{Taylor1{_S}, 2} - F_JCS_z = __ralloc.v2[59]::Array{Taylor1{_S}, 2} - temp_accX_j = __ralloc.v2[60]::Array{Taylor1{_S}, 2} - temp_accY_j = __ralloc.v2[61]::Array{Taylor1{_S}, 2} - temp_accZ_j = __ralloc.v2[62]::Array{Taylor1{_S}, 2} - temp_accX_i = __ralloc.v2[63]::Array{Taylor1{_S}, 2} - temp_accY_i = __ralloc.v2[64]::Array{Taylor1{_S}, 2} - temp_accZ_i = __ralloc.v2[65]::Array{Taylor1{_S}, 2} - sin_ϕ = __ralloc.v2[66]::Array{Taylor1{_S}, 2} - cos_ϕ = __ralloc.v2[67]::Array{Taylor1{_S}, 2} - sin_λ = __ralloc.v2[68]::Array{Taylor1{_S}, 2} - cos_λ = __ralloc.v2[69]::Array{Taylor1{_S}, 2} - r_xy = __ralloc.v2[70]::Array{Taylor1{_S}, 2} - r_p4 = __ralloc.v2[71]::Array{Taylor1{_S}, 2} - F_CS_ξ_36 = __ralloc.v2[72]::Array{Taylor1{_S}, 2} - F_CS_η_36 = __ralloc.v2[73]::Array{Taylor1{_S}, 2} - F_CS_ζ_36 = __ralloc.v2[74]::Array{Taylor1{_S}, 2} - F_J_ξ_36 = __ralloc.v2[75]::Array{Taylor1{_S}, 2} - F_J_ζ_36 = __ralloc.v2[76]::Array{Taylor1{_S}, 2} - F_J_ξ = __ralloc.v2[77]::Array{Taylor1{_S}, 2} - F_J_ζ = __ralloc.v2[78]::Array{Taylor1{_S}, 2} - F_CS_ξ = __ralloc.v2[79]::Array{Taylor1{_S}, 2} - F_CS_η = __ralloc.v2[80]::Array{Taylor1{_S}, 2} - F_CS_ζ = __ralloc.v2[81]::Array{Taylor1{_S}, 2} - F_JCS_ξ = __ralloc.v2[82]::Array{Taylor1{_S}, 2} - F_JCS_η = __ralloc.v2[83]::Array{Taylor1{_S}, 2} - F_JCS_ζ = __ralloc.v2[84]::Array{Taylor1{_S}, 2} - mantlef2coref = __ralloc.v2[85]::Array{Taylor1{_S}, 2} - pn2x = __ralloc.v2[86]::Array{Taylor1{_S}, 2} - pn2y = __ralloc.v2[87]::Array{Taylor1{_S}, 2} - pn2z = __ralloc.v2[88]::Array{Taylor1{_S}, 2} - tmp3037 = __ralloc.v2[89]::Array{Taylor1{_S}, 2} - tmp3040 = __ralloc.v2[90]::Array{Taylor1{_S}, 2} - tmp3042 = __ralloc.v2[91]::Array{Taylor1{_S}, 2} - tmp3043 = __ralloc.v2[92]::Array{Taylor1{_S}, 2} - tmp3045 = __ralloc.v2[93]::Array{Taylor1{_S}, 2} - tmp3053 = __ralloc.v2[94]::Array{Taylor1{_S}, 2} - tmp3054 = __ralloc.v2[95]::Array{Taylor1{_S}, 2} - tmp3065 = __ralloc.v2[96]::Array{Taylor1{_S}, 2} - temp_001 = __ralloc.v2[97]::Array{Taylor1{_S}, 2} - tmp3067 = __ralloc.v2[98]::Array{Taylor1{_S}, 2} - temp_002 = __ralloc.v2[99]::Array{Taylor1{_S}, 2} - tmp3069 = __ralloc.v2[100]::Array{Taylor1{_S}, 2} - temp_003 = __ralloc.v2[101]::Array{Taylor1{_S}, 2} - temp_004 = __ralloc.v2[102]::Array{Taylor1{_S}, 2} - tmp3106 = __ralloc.v2[103]::Array{Taylor1{_S}, 2} - tmp3108 = __ralloc.v2[104]::Array{Taylor1{_S}, 2} - tmp3110 = __ralloc.v2[105]::Array{Taylor1{_S}, 2} - tmp3114 = __ralloc.v2[106]::Array{Taylor1{_S}, 2} - tmp3116 = __ralloc.v2[107]::Array{Taylor1{_S}, 2} - tmp3117 = __ralloc.v2[108]::Array{Taylor1{_S}, 2} - tmp3223 = __ralloc.v2[109]::Array{Taylor1{_S}, 2} - tmp3224 = __ralloc.v2[110]::Array{Taylor1{_S}, 2} - tmp3227 = __ralloc.v2[111]::Array{Taylor1{_S}, 2} - tmp3228 = __ralloc.v2[112]::Array{Taylor1{_S}, 2} - tmp3234 = __ralloc.v2[113]::Array{Taylor1{_S}, 2} - tmp3237 = __ralloc.v2[114]::Array{Taylor1{_S}, 2} - tmp3299 = __ralloc.v2[115]::Array{Taylor1{_S}, 2} - tmp3301 = __ralloc.v2[116]::Array{Taylor1{_S}, 2} - tmp3303 = __ralloc.v2[117]::Array{Taylor1{_S}, 2} - tmp3305 = __ralloc.v2[118]::Array{Taylor1{_S}, 2} - tmp3307 = __ralloc.v2[119]::Array{Taylor1{_S}, 2} - tmp3309 = __ralloc.v2[120]::Array{Taylor1{_S}, 2} - tmp3311 = __ralloc.v2[121]::Array{Taylor1{_S}, 2} - tmp3312 = __ralloc.v2[122]::Array{Taylor1{_S}, 2} - tmp3313 = __ralloc.v2[123]::Array{Taylor1{_S}, 2} - tmp3315 = __ralloc.v2[124]::Array{Taylor1{_S}, 2} - tmp3316 = __ralloc.v2[125]::Array{Taylor1{_S}, 2} - tmp3317 = __ralloc.v2[126]::Array{Taylor1{_S}, 2} - tmp3319 = __ralloc.v2[127]::Array{Taylor1{_S}, 2} - tmp3320 = __ralloc.v2[128]::Array{Taylor1{_S}, 2} - tmp3321 = __ralloc.v2[129]::Array{Taylor1{_S}, 2} - tmp3333 = __ralloc.v2[130]::Array{Taylor1{_S}, 2} - Xij_t_Ui = __ralloc.v2[131]::Array{Taylor1{_S}, 2} - Yij_t_Vi = __ralloc.v2[132]::Array{Taylor1{_S}, 2} - Zij_t_Wi = __ralloc.v2[133]::Array{Taylor1{_S}, 2} - tmp3339 = __ralloc.v2[134]::Array{Taylor1{_S}, 2} - Rij_dot_Vi = __ralloc.v2[135]::Array{Taylor1{_S}, 2} - tmp3342 = __ralloc.v2[136]::Array{Taylor1{_S}, 2} - pn1t7 = __ralloc.v2[137]::Array{Taylor1{_S}, 2} - tmp3345 = __ralloc.v2[138]::Array{Taylor1{_S}, 2} - pn1t2_7 = __ralloc.v2[139]::Array{Taylor1{_S}, 2} - tmp3352 = __ralloc.v2[140]::Array{Taylor1{_S}, 2} - tmp3353 = __ralloc.v2[141]::Array{Taylor1{_S}, 2} - tmp3354 = __ralloc.v2[142]::Array{Taylor1{_S}, 2} - tmp3362 = __ralloc.v2[143]::Array{Taylor1{_S}, 2} - termpnx = __ralloc.v2[144]::Array{Taylor1{_S}, 2} - sumpnx = __ralloc.v2[145]::Array{Taylor1{_S}, 2} - tmp3365 = __ralloc.v2[146]::Array{Taylor1{_S}, 2} - termpny = __ralloc.v2[147]::Array{Taylor1{_S}, 2} - sumpny = __ralloc.v2[148]::Array{Taylor1{_S}, 2} - tmp3368 = __ralloc.v2[149]::Array{Taylor1{_S}, 2} - termpnz = __ralloc.v2[150]::Array{Taylor1{_S}, 2} - sumpnz = __ralloc.v2[151]::Array{Taylor1{_S}, 2} - P_n = __ralloc.v3[1]::Array{Taylor1{_S}, 3} - dP_n = __ralloc.v3[2]::Array{Taylor1{_S}, 3} - temp_fjξ = __ralloc.v3[3]::Array{Taylor1{_S}, 3} - temp_fjζ = __ralloc.v3[4]::Array{Taylor1{_S}, 3} - temp_rn = __ralloc.v3[5]::Array{Taylor1{_S}, 3} - sin_mλ = __ralloc.v3[6]::Array{Taylor1{_S}, 3} - cos_mλ = __ralloc.v3[7]::Array{Taylor1{_S}, 3} - RotM = __ralloc.v3[8]::Array{Taylor1{_S}, 3} - tmp3122 = __ralloc.v3[9]::Array{Taylor1{_S}, 3} - tmp3123 = __ralloc.v3[10]::Array{Taylor1{_S}, 3} - tmp3124 = __ralloc.v3[11]::Array{Taylor1{_S}, 3} - tmp3126 = __ralloc.v3[12]::Array{Taylor1{_S}, 3} - tmp3127 = __ralloc.v3[13]::Array{Taylor1{_S}, 3} - tmp3132 = __ralloc.v3[14]::Array{Taylor1{_S}, 3} - tmp3133 = __ralloc.v3[15]::Array{Taylor1{_S}, 3} - tmp3135 = __ralloc.v3[16]::Array{Taylor1{_S}, 3} - tmp3136 = __ralloc.v3[17]::Array{Taylor1{_S}, 3} - tmp3137 = __ralloc.v3[18]::Array{Taylor1{_S}, 3} - tmp3139 = __ralloc.v3[19]::Array{Taylor1{_S}, 3} - tmp3140 = __ralloc.v3[20]::Array{Taylor1{_S}, 3} - tmp3141 = __ralloc.v3[21]::Array{Taylor1{_S}, 3} - tmp3143 = __ralloc.v3[22]::Array{Taylor1{_S}, 3} - tmp3144 = __ralloc.v3[23]::Array{Taylor1{_S}, 3} - tmp3145 = __ralloc.v3[24]::Array{Taylor1{_S}, 3} - tmp3146 = __ralloc.v3[25]::Array{Taylor1{_S}, 3} - tmp3149 = __ralloc.v3[26]::Array{Taylor1{_S}, 3} - tmp3150 = __ralloc.v3[27]::Array{Taylor1{_S}, 3} - tmp3152 = __ralloc.v3[28]::Array{Taylor1{_S}, 3} - tmp3153 = __ralloc.v3[29]::Array{Taylor1{_S}, 3} - tmp3172 = __ralloc.v3[30]::Array{Taylor1{_S}, 3} - tmp3173 = __ralloc.v3[31]::Array{Taylor1{_S}, 3} - tmp3174 = __ralloc.v3[32]::Array{Taylor1{_S}, 3} - tmp3177 = __ralloc.v3[33]::Array{Taylor1{_S}, 3} - tmp3178 = __ralloc.v3[34]::Array{Taylor1{_S}, 3} - tmp3179 = __ralloc.v3[35]::Array{Taylor1{_S}, 3} - tmp3184 = __ralloc.v3[36]::Array{Taylor1{_S}, 3} - tmp3185 = __ralloc.v3[37]::Array{Taylor1{_S}, 3} - tmp3186 = __ralloc.v3[38]::Array{Taylor1{_S}, 3} - tmp3189 = __ralloc.v3[39]::Array{Taylor1{_S}, 3} - tmp3190 = __ralloc.v3[40]::Array{Taylor1{_S}, 3} - tmp3191 = __ralloc.v3[41]::Array{Taylor1{_S}, 3} - tmp3195 = __ralloc.v3[42]::Array{Taylor1{_S}, 3} - tmp3196 = __ralloc.v3[43]::Array{Taylor1{_S}, 3} - tmp3197 = __ralloc.v3[44]::Array{Taylor1{_S}, 3} - tmp3199 = __ralloc.v3[45]::Array{Taylor1{_S}, 3} - tmp3200 = __ralloc.v3[46]::Array{Taylor1{_S}, 3} - tmp3201 = __ralloc.v3[47]::Array{Taylor1{_S}, 3} - temp_CS_ξ = __ralloc.v4[1]::Array{Taylor1{_S}, 4} - temp_CS_η = __ralloc.v4[2]::Array{Taylor1{_S}, 4} - temp_CS_ζ = __ralloc.v4[3]::Array{Taylor1{_S}, 4} - Cnm_cosmλ = __ralloc.v4[4]::Array{Taylor1{_S}, 4} - Cnm_sinmλ = __ralloc.v4[5]::Array{Taylor1{_S}, 4} - Snm_cosmλ = __ralloc.v4[6]::Array{Taylor1{_S}, 4} - Snm_sinmλ = __ralloc.v4[7]::Array{Taylor1{_S}, 4} - secϕ_P_nm = __ralloc.v4[8]::Array{Taylor1{_S}, 4} - P_nm = __ralloc.v4[9]::Array{Taylor1{_S}, 4} - cosϕ_dP_nm = __ralloc.v4[10]::Array{Taylor1{_S}, 4} - Rb2p = __ralloc.v4[11]::Array{Taylor1{_S}, 4} - Gc2p = __ralloc.v4[12]::Array{Taylor1{_S}, 4} - tmp3155 = __ralloc.v4[13]::Array{Taylor1{_S}, 4} - tmp3158 = __ralloc.v4[14]::Array{Taylor1{_S}, 4} - tmp3160 = __ralloc.v4[15]::Array{Taylor1{_S}, 4} - tmp3162 = __ralloc.v4[16]::Array{Taylor1{_S}, 4} - tmp3163 = __ralloc.v4[17]::Array{Taylor1{_S}, 4} - tmp3164 = __ralloc.v4[18]::Array{Taylor1{_S}, 4} - tmp3167 = __ralloc.v4[19]::Array{Taylor1{_S}, 4} - tmp3168 = __ralloc.v4[20]::Array{Taylor1{_S}, 4} - tmp3169 = __ralloc.v4[21]::Array{Taylor1{_S}, 4} - tmp3171 = __ralloc.v4[22]::Array{Taylor1{_S}, 4} - tmp3175 = __ralloc.v4[23]::Array{Taylor1{_S}, 4} - tmp3176 = __ralloc.v4[24]::Array{Taylor1{_S}, 4} - tmp3180 = __ralloc.v4[25]::Array{Taylor1{_S}, 4} - tmp3181 = __ralloc.v4[26]::Array{Taylor1{_S}, 4} - tmp3183 = __ralloc.v4[27]::Array{Taylor1{_S}, 4} - tmp3187 = __ralloc.v4[28]::Array{Taylor1{_S}, 4} - tmp3188 = __ralloc.v4[29]::Array{Taylor1{_S}, 4} - tmp3192 = __ralloc.v4[30]::Array{Taylor1{_S}, 4} - tmp3193 = __ralloc.v4[31]::Array{Taylor1{_S}, 4} - tmp3198 = __ralloc.v4[32]::Array{Taylor1{_S}, 4} - tmp3202 = __ralloc.v4[33]::Array{Taylor1{_S}, 4} - tmp3203 = __ralloc.v4[34]::Array{Taylor1{_S}, 4} - tmp3209 = __ralloc.v4[35]::Array{Taylor1{_S}, 4} - tmp3210 = __ralloc.v4[36]::Array{Taylor1{_S}, 4} - tmp3211 = __ralloc.v4[37]::Array{Taylor1{_S}, 4} - tmp3212 = __ralloc.v4[38]::Array{Taylor1{_S}, 4} - tmp3214 = __ralloc.v4[39]::Array{Taylor1{_S}, 4} - tmp3215 = __ralloc.v4[40]::Array{Taylor1{_S}, 4} - tmp3216 = __ralloc.v4[41]::Array{Taylor1{_S}, 4} - tmp3217 = __ralloc.v4[42]::Array{Taylor1{_S}, 4} - tmp3219 = __ralloc.v4[43]::Array{Taylor1{_S}, 4} - tmp3220 = __ralloc.v4[44]::Array{Taylor1{_S}, 4} - tmp3221 = __ralloc.v4[45]::Array{Taylor1{_S}, 4} - tmp3239 = __ralloc.v4[46]::Array{Taylor1{_S}, 4} - tmp3240 = __ralloc.v4[47]::Array{Taylor1{_S}, 4} - tmp3241 = __ralloc.v4[48]::Array{Taylor1{_S}, 4} - tmp3242 = __ralloc.v4[49]::Array{Taylor1{_S}, 4} - tmp3244 = __ralloc.v4[50]::Array{Taylor1{_S}, 4} - tmp3245 = __ralloc.v4[51]::Array{Taylor1{_S}, 4} - tmp3246 = __ralloc.v4[52]::Array{Taylor1{_S}, 4} - tmp3247 = __ralloc.v4[53]::Array{Taylor1{_S}, 4} - tmp3249 = __ralloc.v4[54]::Array{Taylor1{_S}, 4} - tmp3250 = __ralloc.v4[55]::Array{Taylor1{_S}, 4} - tmp3251 = __ralloc.v4[56]::Array{Taylor1{_S}, 4} - tmp3252 = __ralloc.v4[57]::Array{Taylor1{_S}, 4} - tmp3254 = __ralloc.v4[58]::Array{Taylor1{_S}, 4} - tmp3255 = __ralloc.v4[59]::Array{Taylor1{_S}, 4} - tmp3256 = __ralloc.v4[60]::Array{Taylor1{_S}, 4} - tmp3257 = __ralloc.v4[61]::Array{Taylor1{_S}, 4} - tmp3259 = __ralloc.v4[62]::Array{Taylor1{_S}, 4} - tmp3260 = __ralloc.v4[63]::Array{Taylor1{_S}, 4} - tmp3261 = __ralloc.v4[64]::Array{Taylor1{_S}, 4} - tmp3262 = __ralloc.v4[65]::Array{Taylor1{_S}, 4} - tmp3264 = __ralloc.v4[66]::Array{Taylor1{_S}, 4} - tmp3265 = __ralloc.v4[67]::Array{Taylor1{_S}, 4} - tmp3266 = __ralloc.v4[68]::Array{Taylor1{_S}, 4} - tmp3267 = __ralloc.v4[69]::Array{Taylor1{_S}, 4} - tmp3269 = __ralloc.v4[70]::Array{Taylor1{_S}, 4} - tmp3270 = __ralloc.v4[71]::Array{Taylor1{_S}, 4} - tmp3271 = __ralloc.v4[72]::Array{Taylor1{_S}, 4} - tmp3272 = __ralloc.v4[73]::Array{Taylor1{_S}, 4} - tmp3274 = __ralloc.v4[74]::Array{Taylor1{_S}, 4} - tmp3275 = __ralloc.v4[75]::Array{Taylor1{_S}, 4} - tmp3276 = __ralloc.v4[76]::Array{Taylor1{_S}, 4} - tmp3277 = __ralloc.v4[77]::Array{Taylor1{_S}, 4} - tmp3279 = __ralloc.v4[78]::Array{Taylor1{_S}, 4} - tmp3280 = __ralloc.v4[79]::Array{Taylor1{_S}, 4} - tmp3281 = __ralloc.v4[80]::Array{Taylor1{_S}, 4} - tmp3282 = __ralloc.v4[81]::Array{Taylor1{_S}, 4} - tmp3284 = __ralloc.v4[82]::Array{Taylor1{_S}, 4} - tmp3285 = __ralloc.v4[83]::Array{Taylor1{_S}, 4} - tmp3286 = __ralloc.v4[84]::Array{Taylor1{_S}, 4} - tmp3287 = __ralloc.v4[85]::Array{Taylor1{_S}, 4} - tmp3289 = __ralloc.v4[86]::Array{Taylor1{_S}, 4} - tmp3290 = __ralloc.v4[87]::Array{Taylor1{_S}, 4} - tmp3291 = __ralloc.v4[88]::Array{Taylor1{_S}, 4} - tmp3292 = __ralloc.v4[89]::Array{Taylor1{_S}, 4} - tmp3294 = __ralloc.v4[90]::Array{Taylor1{_S}, 4} - tmp3295 = __ralloc.v4[91]::Array{Taylor1{_S}, 4} - tmp3296 = __ralloc.v4[92]::Array{Taylor1{_S}, 4} - tmp3297 = __ralloc.v4[93]::Array{Taylor1{_S}, 4} + tmp1133 = __ralloc.v0[1] + tmp1134 = __ralloc.v0[2] + tmp1135 = __ralloc.v0[3] + tmp1136 = __ralloc.v0[4] + tmp1137 = __ralloc.v0[5] + tmp1138 = __ralloc.v0[6] + tmp1139 = __ralloc.v0[7] + tmp1140 = __ralloc.v0[8] + tmp1142 = __ralloc.v0[9] + tmp1143 = __ralloc.v0[10] + tmp1144 = __ralloc.v0[11] + tmp1145 = __ralloc.v0[12] + tmp1146 = __ralloc.v0[13] + tmp1147 = __ralloc.v0[14] + tmp1148 = __ralloc.v0[15] + tmp1149 = __ralloc.v0[16] + tmp1150 = __ralloc.v0[17] + tmp1152 = __ralloc.v0[18] + tmp1153 = __ralloc.v0[19] + tmp1155 = __ralloc.v0[20] + tmp1156 = __ralloc.v0[21] + tmp1157 = __ralloc.v0[22] + tmp1158 = __ralloc.v0[23] + tmp1159 = __ralloc.v0[24] + tmp1160 = __ralloc.v0[25] + tmp1161 = __ralloc.v0[26] + tmp1162 = __ralloc.v0[27] + tmp1164 = __ralloc.v0[28] + tmp1165 = __ralloc.v0[29] + tmp1166 = __ralloc.v0[30] + tmp1167 = __ralloc.v0[31] + tmp1168 = __ralloc.v0[32] + tmp1169 = __ralloc.v0[33] + tmp1170 = __ralloc.v0[34] + tmp1171 = __ralloc.v0[35] + tmp1173 = __ralloc.v0[36] + tmp1174 = __ralloc.v0[37] + tmp1175 = __ralloc.v0[38] + tmp1177 = __ralloc.v0[39] + tmp1178 = __ralloc.v0[40] + tmp1180 = __ralloc.v0[41] + tmp1181 = __ralloc.v0[42] + tmp1184 = __ralloc.v0[43] + tmp1185 = __ralloc.v0[44] + tmp1186 = __ralloc.v0[45] + tmp1187 = __ralloc.v0[46] + tmp1189 = __ralloc.v0[47] + tmp1190 = __ralloc.v0[48] + tmp1191 = __ralloc.v0[49] + tmp1192 = __ralloc.v0[50] + tmp1193 = __ralloc.v0[51] + tmp1195 = __ralloc.v0[52] + tmp1196 = __ralloc.v0[53] + tmp1197 = __ralloc.v0[54] + tmp1198 = __ralloc.v0[55] + tmp1200 = __ralloc.v0[56] + tmp1201 = __ralloc.v0[57] + tmp1202 = __ralloc.v0[58] + tmp1203 = __ralloc.v0[59] + tmp1204 = __ralloc.v0[60] + tmp1206 = __ralloc.v0[61] + tmp1207 = __ralloc.v0[62] + tmp1208 = __ralloc.v0[63] + tmp1209 = __ralloc.v0[64] + tmp1211 = __ralloc.v0[65] + tmp1212 = __ralloc.v0[66] + tmp1213 = __ralloc.v0[67] + tmp1214 = __ralloc.v0[68] + tmp1215 = __ralloc.v0[69] + tmp1217 = __ralloc.v0[70] + tmp1218 = __ralloc.v0[71] + tmp1219 = __ralloc.v0[72] + tmp1220 = __ralloc.v0[73] + tmp1222 = __ralloc.v0[74] + tmp1223 = __ralloc.v0[75] + tmp1224 = __ralloc.v0[76] + tmp1225 = __ralloc.v0[77] + tmp1227 = __ralloc.v0[78] + tmp1228 = __ralloc.v0[79] + tmp1229 = __ralloc.v0[80] + tmp1230 = __ralloc.v0[81] + tmp1302 = __ralloc.v0[82] + tmp1304 = __ralloc.v0[83] + tmp1305 = __ralloc.v0[84] + tmp1307 = __ralloc.v0[85] + tmp1308 = __ralloc.v0[86] + tmp1311 = __ralloc.v0[87] + tmp1313 = __ralloc.v0[88] + tmp1315 = __ralloc.v0[89] + tmp1316 = __ralloc.v0[90] + tmp1599 = __ralloc.v0[91] + tmp1600 = __ralloc.v0[92] + tmp1601 = __ralloc.v0[93] + tmp1602 = __ralloc.v0[94] + tmp1604 = __ralloc.v0[95] + tmp1605 = __ralloc.v0[96] + tmp1606 = __ralloc.v0[97] + tmp1607 = __ralloc.v0[98] + tmp1609 = __ralloc.v0[99] + tmp1610 = __ralloc.v0[100] + tmp1611 = __ralloc.v0[101] + tmp1612 = __ralloc.v0[102] + tmp1614 = __ralloc.v0[103] + tmp1615 = __ralloc.v0[104] + tmp1617 = __ralloc.v0[105] + tmp1618 = __ralloc.v0[106] + tmp1620 = __ralloc.v0[107] + tmp1621 = __ralloc.v0[108] + tmp1623 = __ralloc.v0[109] + tmp1624 = __ralloc.v0[110] + tmp1625 = __ralloc.v0[111] + tmp1626 = __ralloc.v0[112] + tmp1628 = __ralloc.v0[113] + tmp1629 = __ralloc.v0[114] + tmp1630 = __ralloc.v0[115] + tmp1631 = __ralloc.v0[116] + tmp1633 = __ralloc.v0[117] + tmp1634 = __ralloc.v0[118] + tmp1635 = __ralloc.v0[119] + tmp1636 = __ralloc.v0[120] + tmp1641 = __ralloc.v0[121] + tmp1642 = __ralloc.v0[122] + tmp1643 = __ralloc.v0[123] + tmp1644 = __ralloc.v0[124] + tmp1646 = __ralloc.v0[125] + tmp1647 = __ralloc.v0[126] + tmp1648 = __ralloc.v0[127] + tmp1649 = __ralloc.v0[128] + tmp1651 = __ralloc.v0[129] + tmp1652 = __ralloc.v0[130] + tmp1653 = __ralloc.v0[131] + tmp1654 = __ralloc.v0[132] + tmp1656 = __ralloc.v0[133] + tmp1657 = __ralloc.v0[134] + tmp1658 = __ralloc.v0[135] + tmp1659 = __ralloc.v0[136] + tmp1661 = __ralloc.v0[137] + tmp1662 = __ralloc.v0[138] + tmp1663 = __ralloc.v0[139] + tmp1664 = __ralloc.v0[140] + tmp1666 = __ralloc.v0[141] + tmp1667 = __ralloc.v0[142] + tmp1668 = __ralloc.v0[143] + tmp1669 = __ralloc.v0[144] + tmp1671 = __ralloc.v0[145] + tmp1672 = __ralloc.v0[146] + tmp1673 = __ralloc.v0[147] + tmp1674 = __ralloc.v0[148] + tmp1676 = __ralloc.v0[149] + tmp1677 = __ralloc.v0[150] + tmp1678 = __ralloc.v0[151] + tmp1679 = __ralloc.v0[152] + tmp1681 = __ralloc.v0[153] + tmp1682 = __ralloc.v0[154] + tmp1683 = __ralloc.v0[155] + tmp1684 = __ralloc.v0[156] + tmp1686 = __ralloc.v0[157] + tmp1687 = __ralloc.v0[158] + tmp1688 = __ralloc.v0[159] + tmp1689 = __ralloc.v0[160] + tmp1691 = __ralloc.v0[161] + tmp1692 = __ralloc.v0[162] + tmp1693 = __ralloc.v0[163] + tmp1694 = __ralloc.v0[164] + tmp1696 = __ralloc.v0[165] + tmp1697 = __ralloc.v0[166] + tmp1698 = __ralloc.v0[167] + tmp1699 = __ralloc.v0[168] + tmp1701 = __ralloc.v0[169] + tmp1702 = __ralloc.v0[170] + tmp1704 = __ralloc.v0[171] + tmp1705 = __ralloc.v0[172] + tmp1707 = __ralloc.v0[173] + tmp1708 = __ralloc.v0[174] + tmp1710 = __ralloc.v0[175] + tmp1711 = __ralloc.v0[176] + tmp1713 = __ralloc.v0[177] + tmp1714 = __ralloc.v0[178] + tmp1716 = __ralloc.v0[179] + tmp1717 = __ralloc.v0[180] + tmp1719 = __ralloc.v0[181] + tmp1720 = __ralloc.v0[182] + tmp1722 = __ralloc.v0[183] + tmp1723 = __ralloc.v0[184] + tmp1725 = __ralloc.v0[185] + tmp1726 = __ralloc.v0[186] + tmp1728 = __ralloc.v0[187] + tmp1729 = __ralloc.v0[188] + tmp1731 = __ralloc.v0[189] + tmp1732 = __ralloc.v0[190] + tmp1734 = __ralloc.v0[191] + tmp1735 = __ralloc.v0[192] + tmp1739 = __ralloc.v0[193] + tmp1740 = __ralloc.v0[194] + tmp1745 = __ralloc.v0[195] + tmp1747 = __ralloc.v0[196] + tmp1748 = __ralloc.v0[197] + tmp1749 = __ralloc.v0[198] + tmp1750 = __ralloc.v0[199] + tmp1752 = __ralloc.v0[200] + tmp1753 = __ralloc.v0[201] + tmp1755 = __ralloc.v0[202] + tmp1756 = __ralloc.v0[203] + tmp1757 = __ralloc.v0[204] + tmp1758 = __ralloc.v0[205] + tmp1760 = __ralloc.v0[206] + tmp1761 = __ralloc.v0[207] + tmp1763 = __ralloc.v0[208] + tmp1764 = __ralloc.v0[209] + tmp1765 = __ralloc.v0[210] + tmp1766 = __ralloc.v0[211] + tmp1768 = __ralloc.v0[212] + tmp1769 = __ralloc.v0[213] + tmp1771 = __ralloc.v0[214] + tmp1772 = __ralloc.v0[215] + tmp1773 = __ralloc.v0[216] + tmp1774 = __ralloc.v0[217] + tmp1776 = __ralloc.v0[218] + tmp1777 = __ralloc.v0[219] + tmp1778 = __ralloc.v0[220] + tmp1779 = __ralloc.v0[221] + tmp1781 = __ralloc.v0[222] + tmp1782 = __ralloc.v0[223] + tmp1783 = __ralloc.v0[224] + tmp1784 = __ralloc.v0[225] + tmp1786 = __ralloc.v0[226] + tmp1787 = __ralloc.v0[227] + tmp1788 = __ralloc.v0[228] + tmp1789 = __ralloc.v0[229] + tmp1791 = __ralloc.v0[230] + tmp1792 = __ralloc.v0[231] + tmp1793 = __ralloc.v0[232] + tmp1794 = __ralloc.v0[233] + tmp1796 = __ralloc.v0[234] + tmp1798 = __ralloc.v0[235] + tmp1799 = __ralloc.v0[236] + tmp1800 = __ralloc.v0[237] + tmp1801 = __ralloc.v0[238] + tmp1803 = __ralloc.v0[239] + tmp1804 = __ralloc.v0[240] + tmp1805 = __ralloc.v0[241] + tmp1806 = __ralloc.v0[242] + tmp1808 = __ralloc.v0[243] + tmp1809 = __ralloc.v0[244] + tmp1810 = __ralloc.v0[245] + tmp1811 = __ralloc.v0[246] + tmp1816 = __ralloc.v0[247] + tmp1817 = __ralloc.v0[248] + tmp1819 = __ralloc.v0[249] + tmp1820 = __ralloc.v0[250] + tmp1822 = __ralloc.v0[251] + tmp1823 = __ralloc.v0[252] + tmp1828 = __ralloc.v0[253] + tmp1829 = __ralloc.v0[254] + tmp1830 = __ralloc.v0[255] + tmp1831 = __ralloc.v0[256] + tmp1832 = __ralloc.v0[257] + tmp1833 = __ralloc.v0[258] + tmp1835 = __ralloc.v0[259] + tmp1836 = __ralloc.v0[260] + tmp1837 = __ralloc.v0[261] + tmp1838 = __ralloc.v0[262] + tmp1840 = __ralloc.v0[263] + tmp1841 = __ralloc.v0[264] + tmp1843 = __ralloc.v0[265] + tmp1844 = __ralloc.v0[266] + tmp1845 = __ralloc.v0[267] + tmp1846 = __ralloc.v0[268] + tmp1848 = __ralloc.v0[269] + tmp1849 = __ralloc.v0[270] + tmp1850 = __ralloc.v0[271] + tmp1851 = __ralloc.v0[272] + tmp1853 = __ralloc.v0[273] + tmp1854 = __ralloc.v0[274] + tmp1855 = __ralloc.v0[275] + tmp1856 = __ralloc.v0[276] + tmp1858 = __ralloc.v0[277] + tmp1859 = __ralloc.v0[278] + tmp1861 = __ralloc.v0[279] + tmp1862 = __ralloc.v0[280] + ϕ_m = __ralloc.v0[281] + θ_m = __ralloc.v0[282] + ψ_m = __ralloc.v0[283] + tmp1867 = __ralloc.v0[284] + tmp1868 = __ralloc.v0[285] + tmp1869 = __ralloc.v0[286] + tmp1870 = __ralloc.v0[287] + tmp1871 = __ralloc.v0[288] + tmp1872 = __ralloc.v0[289] + tmp1873 = __ralloc.v0[290] + tmp1874 = __ralloc.v0[291] + tmp1875 = __ralloc.v0[292] + tmp1876 = __ralloc.v0[293] + tmp1877 = __ralloc.v0[294] + tmp1878 = __ralloc.v0[295] + tmp1879 = __ralloc.v0[296] + tmp1880 = __ralloc.v0[297] + tmp1881 = __ralloc.v0[298] + tmp1882 = __ralloc.v0[299] + tmp1883 = __ralloc.v0[300] + tmp1884 = __ralloc.v0[301] + tmp1885 = __ralloc.v0[302] + tmp1886 = __ralloc.v0[303] + tmp1887 = __ralloc.v0[304] + tmp1888 = __ralloc.v0[305] + tmp1889 = __ralloc.v0[306] + tmp1890 = __ralloc.v0[307] + tmp1891 = __ralloc.v0[308] + tmp1892 = __ralloc.v0[309] + tmp1893 = __ralloc.v0[310] + tmp1894 = __ralloc.v0[311] + tmp1895 = __ralloc.v0[312] + ϕ_c = __ralloc.v0[313] + tmp1896 = __ralloc.v0[314] + tmp1897 = __ralloc.v0[315] + tmp1898 = __ralloc.v0[316] + tmp1899 = __ralloc.v0[317] + tmp1900 = __ralloc.v0[318] + tmp1901 = __ralloc.v0[319] + tmp1902 = __ralloc.v0[320] + tmp1903 = __ralloc.v0[321] + tmp1904 = __ralloc.v0[322] + tmp1905 = __ralloc.v0[323] + tmp1906 = __ralloc.v0[324] + tmp1907 = __ralloc.v0[325] + ω_c_CE_1 = __ralloc.v0[326] + ω_c_CE_2 = __ralloc.v0[327] + ω_c_CE_3 = __ralloc.v0[328] + J2M_t = __ralloc.v0[329] + C22M_t = __ralloc.v0[330] + C21M_t = __ralloc.v0[331] + S21M_t = __ralloc.v0[332] + S22M_t = __ralloc.v0[333] + Iω_x = __ralloc.v0[334] + Iω_y = __ralloc.v0[335] + Iω_z = __ralloc.v0[336] + ωxIω_x = __ralloc.v0[337] + ωxIω_y = __ralloc.v0[338] + ωxIω_z = __ralloc.v0[339] + dIω_x = __ralloc.v0[340] + dIω_y = __ralloc.v0[341] + dIω_z = __ralloc.v0[342] + er_EM_I_1 = __ralloc.v0[343] + er_EM_I_2 = __ralloc.v0[344] + er_EM_I_3 = __ralloc.v0[345] + p_E_I_1 = __ralloc.v0[346] + p_E_I_2 = __ralloc.v0[347] + p_E_I_3 = __ralloc.v0[348] + er_EM_1 = __ralloc.v0[349] + er_EM_2 = __ralloc.v0[350] + er_EM_3 = __ralloc.v0[351] + p_E_1 = __ralloc.v0[352] + p_E_2 = __ralloc.v0[353] + p_E_3 = __ralloc.v0[354] + I_er_EM_1 = __ralloc.v0[355] + I_er_EM_2 = __ralloc.v0[356] + I_er_EM_3 = __ralloc.v0[357] + I_p_E_1 = __ralloc.v0[358] + I_p_E_2 = __ralloc.v0[359] + I_p_E_3 = __ralloc.v0[360] + er_EM_cross_I_er_EM_1 = __ralloc.v0[361] + er_EM_cross_I_er_EM_2 = __ralloc.v0[362] + er_EM_cross_I_er_EM_3 = __ralloc.v0[363] + er_EM_cross_I_p_E_1 = __ralloc.v0[364] + er_EM_cross_I_p_E_2 = __ralloc.v0[365] + er_EM_cross_I_p_E_3 = __ralloc.v0[366] + p_E_cross_I_er_EM_1 = __ralloc.v0[367] + p_E_cross_I_er_EM_2 = __ralloc.v0[368] + p_E_cross_I_er_EM_3 = __ralloc.v0[369] + p_E_cross_I_p_E_1 = __ralloc.v0[370] + p_E_cross_I_p_E_2 = __ralloc.v0[371] + p_E_cross_I_p_E_3 = __ralloc.v0[372] + one_minus_7sin2ϕEM = __ralloc.v0[373] + two_sinϕEM = __ralloc.v0[374] + N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[375] + N_MfigM_figE_1 = __ralloc.v0[376] + N_MfigM_figE_2 = __ralloc.v0[377] + N_MfigM_figE_3 = __ralloc.v0[378] + N_1_LMF = __ralloc.v0[379] + N_2_LMF = __ralloc.v0[380] + N_3_LMF = __ralloc.v0[381] + N_cmb_1 = __ralloc.v0[382] + N_cmb_2 = __ralloc.v0[383] + N_cmb_3 = __ralloc.v0[384] + I_dω_1 = __ralloc.v0[385] + I_dω_2 = __ralloc.v0[386] + I_dω_3 = __ralloc.v0[387] + Ic_ωc_1 = __ralloc.v0[388] + Ic_ωc_2 = __ralloc.v0[389] + Ic_ωc_3 = __ralloc.v0[390] + m_ωm_x_Icωc_1 = __ralloc.v0[391] + m_ωm_x_Icωc_2 = __ralloc.v0[392] + m_ωm_x_Icωc_3 = __ralloc.v0[393] + Ic_dωc_1 = __ralloc.v0[394] + Ic_dωc_2 = __ralloc.v0[395] + Ic_dωc_3 = __ralloc.v0[396] + tmp1908 = __ralloc.v0[397] + tmp1909 = __ralloc.v0[398] + tmp1910 = __ralloc.v0[399] + tmp1911 = __ralloc.v0[400] + tmp1912 = __ralloc.v0[401] + tmp1913 = __ralloc.v0[402] + tmp1914 = __ralloc.v0[403] + tmp1915 = __ralloc.v0[404] + newtonX = __ralloc.v1[1] + newtonY = __ralloc.v1[2] + newtonZ = __ralloc.v1[3] + newtonianNb_Potential = __ralloc.v1[4] + v2 = __ralloc.v1[5] + pntempX = __ralloc.v1[6] + pntempY = __ralloc.v1[7] + pntempZ = __ralloc.v1[8] + postNewtonX = __ralloc.v1[9] + postNewtonY = __ralloc.v1[10] + postNewtonZ = __ralloc.v1[11] + accX = __ralloc.v1[12] + accY = __ralloc.v1[13] + accZ = __ralloc.v1[14] + N_MfigM_pmA_x = __ralloc.v1[15] + N_MfigM_pmA_y = __ralloc.v1[16] + N_MfigM_pmA_z = __ralloc.v1[17] + temp_N_M_x = __ralloc.v1[18] + temp_N_M_y = __ralloc.v1[19] + temp_N_M_z = __ralloc.v1[20] + N_MfigM = __ralloc.v1[21] + J2_t = __ralloc.v1[22] + tmp1239 = __ralloc.v1[23] + tmp1241 = __ralloc.v1[24] + tmp1244 = __ralloc.v1[25] + tmp1246 = __ralloc.v1[26] + tmp1249 = __ralloc.v1[27] + tmp1251 = __ralloc.v1[28] + tmp1295 = __ralloc.v1[29] + tmp1297 = __ralloc.v1[30] + tmp1298 = __ralloc.v1[31] + tmp1300 = __ralloc.v1[32] + X = __ralloc.v2[1] + Y = __ralloc.v2[2] + Z = __ralloc.v2[3] + r_p2 = __ralloc.v2[4] + r_p1d2 = __ralloc.v2[5] + r_p3d2 = __ralloc.v2[6] + r_p7d2 = __ralloc.v2[7] + newtonianCoeff = __ralloc.v2[8] + U = __ralloc.v2[9] + V = __ralloc.v2[10] + W = __ralloc.v2[11] + _4U_m_3X = __ralloc.v2[12] + _4V_m_3Y = __ralloc.v2[13] + _4W_m_3Z = __ralloc.v2[14] + UU = __ralloc.v2[15] + VV = __ralloc.v2[16] + WW = __ralloc.v2[17] + newtonian1b_Potential = __ralloc.v2[18] + newton_acc_X = __ralloc.v2[19] + newton_acc_Y = __ralloc.v2[20] + newton_acc_Z = __ralloc.v2[21] + _2v2 = __ralloc.v2[22] + vi_dot_vj = __ralloc.v2[23] + pn2 = __ralloc.v2[24] + U_t_pn2 = __ralloc.v2[25] + V_t_pn2 = __ralloc.v2[26] + W_t_pn2 = __ralloc.v2[27] + pn3 = __ralloc.v2[28] + pNX_t_pn3 = __ralloc.v2[29] + pNY_t_pn3 = __ralloc.v2[30] + pNZ_t_pn3 = __ralloc.v2[31] + _4ϕj = __ralloc.v2[32] + ϕi_plus_4ϕj = __ralloc.v2[33] + sj2_plus_2si2 = __ralloc.v2[34] + sj2_plus_2si2_minus_4vivj = __ralloc.v2[35] + ϕs_and_vs = __ralloc.v2[36] + pn1t1_7 = __ralloc.v2[37] + pNX_t_X = __ralloc.v2[38] + pNY_t_Y = __ralloc.v2[39] + pNZ_t_Z = __ralloc.v2[40] + pn1 = __ralloc.v2[41] + X_t_pn1 = __ralloc.v2[42] + Y_t_pn1 = __ralloc.v2[43] + Z_t_pn1 = __ralloc.v2[44] + X_bf_1 = __ralloc.v2[45] + Y_bf_1 = __ralloc.v2[46] + Z_bf_1 = __ralloc.v2[47] + X_bf_2 = __ralloc.v2[48] + Y_bf_2 = __ralloc.v2[49] + Z_bf_2 = __ralloc.v2[50] + X_bf_3 = __ralloc.v2[51] + Y_bf_3 = __ralloc.v2[52] + Z_bf_3 = __ralloc.v2[53] + X_bf = __ralloc.v2[54] + Y_bf = __ralloc.v2[55] + Z_bf = __ralloc.v2[56] + F_JCS_x = __ralloc.v2[57] + F_JCS_y = __ralloc.v2[58] + F_JCS_z = __ralloc.v2[59] + temp_accX_j = __ralloc.v2[60] + temp_accY_j = __ralloc.v2[61] + temp_accZ_j = __ralloc.v2[62] + temp_accX_i = __ralloc.v2[63] + temp_accY_i = __ralloc.v2[64] + temp_accZ_i = __ralloc.v2[65] + sin_ϕ = __ralloc.v2[66] + cos_ϕ = __ralloc.v2[67] + sin_λ = __ralloc.v2[68] + cos_λ = __ralloc.v2[69] + r_xy = __ralloc.v2[70] + r_p4 = __ralloc.v2[71] + F_CS_ξ_36 = __ralloc.v2[72] + F_CS_η_36 = __ralloc.v2[73] + F_CS_ζ_36 = __ralloc.v2[74] + F_J_ξ_36 = __ralloc.v2[75] + F_J_ζ_36 = __ralloc.v2[76] + F_J_ξ = __ralloc.v2[77] + F_J_ζ = __ralloc.v2[78] + F_CS_ξ = __ralloc.v2[79] + F_CS_η = __ralloc.v2[80] + F_CS_ζ = __ralloc.v2[81] + F_JCS_ξ = __ralloc.v2[82] + F_JCS_η = __ralloc.v2[83] + F_JCS_ζ = __ralloc.v2[84] + mantlef2coref = __ralloc.v2[85] + pn2x = __ralloc.v2[86] + pn2y = __ralloc.v2[87] + pn2z = __ralloc.v2[88] + tmp1259 = __ralloc.v2[89] + tmp1262 = __ralloc.v2[90] + tmp1264 = __ralloc.v2[91] + tmp1265 = __ralloc.v2[92] + tmp1267 = __ralloc.v2[93] + tmp1275 = __ralloc.v2[94] + tmp1276 = __ralloc.v2[95] + tmp1287 = __ralloc.v2[96] + temp_001 = __ralloc.v2[97] + tmp1289 = __ralloc.v2[98] + temp_002 = __ralloc.v2[99] + tmp1291 = __ralloc.v2[100] + temp_003 = __ralloc.v2[101] + temp_004 = __ralloc.v2[102] + tmp1328 = __ralloc.v2[103] + tmp1330 = __ralloc.v2[104] + tmp1332 = __ralloc.v2[105] + tmp1336 = __ralloc.v2[106] + tmp1338 = __ralloc.v2[107] + tmp1339 = __ralloc.v2[108] + tmp1445 = __ralloc.v2[109] + tmp1446 = __ralloc.v2[110] + tmp1449 = __ralloc.v2[111] + tmp1450 = __ralloc.v2[112] + tmp1456 = __ralloc.v2[113] + tmp1459 = __ralloc.v2[114] + tmp1521 = __ralloc.v2[115] + tmp1523 = __ralloc.v2[116] + tmp1525 = __ralloc.v2[117] + tmp1527 = __ralloc.v2[118] + tmp1529 = __ralloc.v2[119] + tmp1531 = __ralloc.v2[120] + tmp1533 = __ralloc.v2[121] + tmp1534 = __ralloc.v2[122] + tmp1535 = __ralloc.v2[123] + tmp1537 = __ralloc.v2[124] + tmp1538 = __ralloc.v2[125] + tmp1539 = __ralloc.v2[126] + tmp1541 = __ralloc.v2[127] + tmp1542 = __ralloc.v2[128] + tmp1543 = __ralloc.v2[129] + tmp1555 = __ralloc.v2[130] + Xij_t_Ui = __ralloc.v2[131] + Yij_t_Vi = __ralloc.v2[132] + Zij_t_Wi = __ralloc.v2[133] + tmp1561 = __ralloc.v2[134] + Rij_dot_Vi = __ralloc.v2[135] + tmp1564 = __ralloc.v2[136] + pn1t7 = __ralloc.v2[137] + tmp1567 = __ralloc.v2[138] + pn1t2_7 = __ralloc.v2[139] + tmp1574 = __ralloc.v2[140] + tmp1575 = __ralloc.v2[141] + tmp1576 = __ralloc.v2[142] + tmp1584 = __ralloc.v2[143] + termpnx = __ralloc.v2[144] + sumpnx = __ralloc.v2[145] + tmp1587 = __ralloc.v2[146] + termpny = __ralloc.v2[147] + sumpny = __ralloc.v2[148] + tmp1590 = __ralloc.v2[149] + termpnz = __ralloc.v2[150] + sumpnz = __ralloc.v2[151] + P_n = __ralloc.v3[1] + dP_n = __ralloc.v3[2] + temp_fjξ = __ralloc.v3[3] + temp_fjζ = __ralloc.v3[4] + temp_rn = __ralloc.v3[5] + sin_mλ = __ralloc.v3[6] + cos_mλ = __ralloc.v3[7] + RotM = __ralloc.v3[8] + tmp1344 = __ralloc.v3[9] + tmp1345 = __ralloc.v3[10] + tmp1346 = __ralloc.v3[11] + tmp1348 = __ralloc.v3[12] + tmp1349 = __ralloc.v3[13] + tmp1354 = __ralloc.v3[14] + tmp1355 = __ralloc.v3[15] + tmp1357 = __ralloc.v3[16] + tmp1358 = __ralloc.v3[17] + tmp1359 = __ralloc.v3[18] + tmp1361 = __ralloc.v3[19] + tmp1362 = __ralloc.v3[20] + tmp1363 = __ralloc.v3[21] + tmp1365 = __ralloc.v3[22] + tmp1366 = __ralloc.v3[23] + tmp1367 = __ralloc.v3[24] + tmp1368 = __ralloc.v3[25] + tmp1371 = __ralloc.v3[26] + tmp1372 = __ralloc.v3[27] + tmp1374 = __ralloc.v3[28] + tmp1375 = __ralloc.v3[29] + tmp1394 = __ralloc.v3[30] + tmp1395 = __ralloc.v3[31] + tmp1396 = __ralloc.v3[32] + tmp1399 = __ralloc.v3[33] + tmp1400 = __ralloc.v3[34] + tmp1401 = __ralloc.v3[35] + tmp1406 = __ralloc.v3[36] + tmp1407 = __ralloc.v3[37] + tmp1408 = __ralloc.v3[38] + tmp1411 = __ralloc.v3[39] + tmp1412 = __ralloc.v3[40] + tmp1413 = __ralloc.v3[41] + tmp1417 = __ralloc.v3[42] + tmp1418 = __ralloc.v3[43] + tmp1419 = __ralloc.v3[44] + tmp1421 = __ralloc.v3[45] + tmp1422 = __ralloc.v3[46] + tmp1423 = __ralloc.v3[47] + temp_CS_ξ = __ralloc.v4[1] + temp_CS_η = __ralloc.v4[2] + temp_CS_ζ = __ralloc.v4[3] + Cnm_cosmλ = __ralloc.v4[4] + Cnm_sinmλ = __ralloc.v4[5] + Snm_cosmλ = __ralloc.v4[6] + Snm_sinmλ = __ralloc.v4[7] + secϕ_P_nm = __ralloc.v4[8] + P_nm = __ralloc.v4[9] + cosϕ_dP_nm = __ralloc.v4[10] + Rb2p = __ralloc.v4[11] + Gc2p = __ralloc.v4[12] + tmp1377 = __ralloc.v4[13] + tmp1380 = __ralloc.v4[14] + tmp1382 = __ralloc.v4[15] + tmp1384 = __ralloc.v4[16] + tmp1385 = __ralloc.v4[17] + tmp1386 = __ralloc.v4[18] + tmp1389 = __ralloc.v4[19] + tmp1390 = __ralloc.v4[20] + tmp1391 = __ralloc.v4[21] + tmp1393 = __ralloc.v4[22] + tmp1397 = __ralloc.v4[23] + tmp1398 = __ralloc.v4[24] + tmp1402 = __ralloc.v4[25] + tmp1403 = __ralloc.v4[26] + tmp1405 = __ralloc.v4[27] + tmp1409 = __ralloc.v4[28] + tmp1410 = __ralloc.v4[29] + tmp1414 = __ralloc.v4[30] + tmp1415 = __ralloc.v4[31] + tmp1420 = __ralloc.v4[32] + tmp1424 = __ralloc.v4[33] + tmp1425 = __ralloc.v4[34] + tmp1431 = __ralloc.v4[35] + tmp1432 = __ralloc.v4[36] + tmp1433 = __ralloc.v4[37] + tmp1434 = __ralloc.v4[38] + tmp1436 = __ralloc.v4[39] + tmp1437 = __ralloc.v4[40] + tmp1438 = __ralloc.v4[41] + tmp1439 = __ralloc.v4[42] + tmp1441 = __ralloc.v4[43] + tmp1442 = __ralloc.v4[44] + tmp1443 = __ralloc.v4[45] + tmp1461 = __ralloc.v4[46] + tmp1462 = __ralloc.v4[47] + tmp1463 = __ralloc.v4[48] + tmp1464 = __ralloc.v4[49] + tmp1466 = __ralloc.v4[50] + tmp1467 = __ralloc.v4[51] + tmp1468 = __ralloc.v4[52] + tmp1469 = __ralloc.v4[53] + tmp1471 = __ralloc.v4[54] + tmp1472 = __ralloc.v4[55] + tmp1473 = __ralloc.v4[56] + tmp1474 = __ralloc.v4[57] + tmp1476 = __ralloc.v4[58] + tmp1477 = __ralloc.v4[59] + tmp1478 = __ralloc.v4[60] + tmp1479 = __ralloc.v4[61] + tmp1481 = __ralloc.v4[62] + tmp1482 = __ralloc.v4[63] + tmp1483 = __ralloc.v4[64] + tmp1484 = __ralloc.v4[65] + tmp1486 = __ralloc.v4[66] + tmp1487 = __ralloc.v4[67] + tmp1488 = __ralloc.v4[68] + tmp1489 = __ralloc.v4[69] + tmp1491 = __ralloc.v4[70] + tmp1492 = __ralloc.v4[71] + tmp1493 = __ralloc.v4[72] + tmp1494 = __ralloc.v4[73] + tmp1496 = __ralloc.v4[74] + tmp1497 = __ralloc.v4[75] + tmp1498 = __ralloc.v4[76] + tmp1499 = __ralloc.v4[77] + tmp1501 = __ralloc.v4[78] + tmp1502 = __ralloc.v4[79] + tmp1503 = __ralloc.v4[80] + tmp1504 = __ralloc.v4[81] + tmp1506 = __ralloc.v4[82] + tmp1507 = __ralloc.v4[83] + tmp1508 = __ralloc.v4[84] + tmp1509 = __ralloc.v4[85] + tmp1511 = __ralloc.v4[86] + tmp1512 = __ralloc.v4[87] + tmp1513 = __ralloc.v4[88] + tmp1514 = __ralloc.v4[89] + tmp1516 = __ralloc.v4[90] + tmp1517 = __ralloc.v4[91] + tmp1518 = __ralloc.v4[92] + tmp1519 = __ralloc.v4[93] local (N, jd0) = params local S = eltype(q) local zero_q_1 = zero(q[1]) @@ -2194,968 +2586,968 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: local I_c_t = I_c .* one_t local inv_I_c_t = inv(I_c_t) local I_M_t = I_m_t + I_c_t + TaylorSeries.zero!(N_MfigM[1]) (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[2]) (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[3]) (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) local αs = deg2rad(α_p_sun * one_t) local δs = deg2rad(δ_p_sun * one_t) local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) local RotM[:, :, su] = pole_rotation(αs, δs) + TaylorSeries.zero!(ϕ_m) ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) - ϕ_m.coeffs[2:order + 1] .= zero(ϕ_m.coeffs[1]) + TaylorSeries.zero!(θ_m) θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) - θ_m.coeffs[2:order + 1] .= zero(θ_m.coeffs[1]) + TaylorSeries.zero!(ψ_m) ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) - ψ_m.coeffs[2:order + 1] .= zero(ψ_m.coeffs[1]) - tmp2911.coeffs[1] = cos(constant_term(ϕ_m)) - tmp2911.coeffs[2:order + 1] .= zero(tmp2911.coeffs[1]) - tmp3645.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3645.coeffs[2:order + 1] .= zero(tmp3645.coeffs[1]) - tmp2912.coeffs[1] = cos(constant_term(ψ_m)) - tmp2912.coeffs[2:order + 1] .= zero(tmp2912.coeffs[1]) - tmp3646.coeffs[1] = sin(constant_term(ψ_m)) - tmp3646.coeffs[2:order + 1] .= zero(tmp3646.coeffs[1]) - tmp2913.coeffs[1] = constant_term(tmp2911) * constant_term(tmp2912) - tmp2913.coeffs[2:order + 1] .= zero(tmp2913.coeffs[1]) - tmp2914.coeffs[1] = cos(constant_term(θ_m)) - tmp2914.coeffs[2:order + 1] .= zero(tmp2914.coeffs[1]) - tmp3647.coeffs[1] = sin(constant_term(θ_m)) - tmp3647.coeffs[2:order + 1] .= zero(tmp3647.coeffs[1]) - tmp2915.coeffs[1] = sin(constant_term(ϕ_m)) - tmp2915.coeffs[2:order + 1] .= zero(tmp2915.coeffs[1]) - tmp3648.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3648.coeffs[2:order + 1] .= zero(tmp3648.coeffs[1]) - tmp2916.coeffs[1] = constant_term(tmp2914) * constant_term(tmp2915) - tmp2916.coeffs[2:order + 1] .= zero(tmp2916.coeffs[1]) - tmp2917.coeffs[1] = sin(constant_term(ψ_m)) - tmp2917.coeffs[2:order + 1] .= zero(tmp2917.coeffs[1]) - tmp3649.coeffs[1] = cos(constant_term(ψ_m)) - tmp3649.coeffs[2:order + 1] .= zero(tmp3649.coeffs[1]) - tmp2918.coeffs[1] = constant_term(tmp2916) * constant_term(tmp2917) - tmp2918.coeffs[2:order + 1] .= zero(tmp2918.coeffs[1]) - (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp2913) - constant_term(tmp2918) - (RotM[1, 1, mo]).coeffs[2:order + 1] .= zero((RotM[1, 1, mo]).coeffs[1]) - tmp2920.coeffs[1] = cos(constant_term(θ_m)) - tmp2920.coeffs[2:order + 1] .= zero(tmp2920.coeffs[1]) - tmp3650.coeffs[1] = sin(constant_term(θ_m)) - tmp3650.coeffs[2:order + 1] .= zero(tmp3650.coeffs[1]) - tmp2921.coeffs[1] = -(constant_term(tmp2920)) - tmp2921.coeffs[2:order + 1] .= zero(tmp2921.coeffs[1]) - tmp2922.coeffs[1] = cos(constant_term(ψ_m)) - tmp2922.coeffs[2:order + 1] .= zero(tmp2922.coeffs[1]) - tmp3651.coeffs[1] = sin(constant_term(ψ_m)) - tmp3651.coeffs[2:order + 1] .= zero(tmp3651.coeffs[1]) - tmp2923.coeffs[1] = constant_term(tmp2921) * constant_term(tmp2922) - tmp2923.coeffs[2:order + 1] .= zero(tmp2923.coeffs[1]) - tmp2924.coeffs[1] = sin(constant_term(ϕ_m)) - tmp2924.coeffs[2:order + 1] .= zero(tmp2924.coeffs[1]) - tmp3652.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3652.coeffs[2:order + 1] .= zero(tmp3652.coeffs[1]) - tmp2925.coeffs[1] = constant_term(tmp2923) * constant_term(tmp2924) - tmp2925.coeffs[2:order + 1] .= zero(tmp2925.coeffs[1]) - tmp2926.coeffs[1] = cos(constant_term(ϕ_m)) - tmp2926.coeffs[2:order + 1] .= zero(tmp2926.coeffs[1]) - tmp3653.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3653.coeffs[2:order + 1] .= zero(tmp3653.coeffs[1]) - tmp2927.coeffs[1] = sin(constant_term(ψ_m)) - tmp2927.coeffs[2:order + 1] .= zero(tmp2927.coeffs[1]) - tmp3654.coeffs[1] = cos(constant_term(ψ_m)) - tmp3654.coeffs[2:order + 1] .= zero(tmp3654.coeffs[1]) - tmp2928.coeffs[1] = constant_term(tmp2926) * constant_term(tmp2927) - tmp2928.coeffs[2:order + 1] .= zero(tmp2928.coeffs[1]) - (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp2925) - constant_term(tmp2928) - (RotM[2, 1, mo]).coeffs[2:order + 1] .= zero((RotM[2, 1, mo]).coeffs[1]) - tmp2930.coeffs[1] = sin(constant_term(θ_m)) - tmp2930.coeffs[2:order + 1] .= zero(tmp2930.coeffs[1]) - tmp3655.coeffs[1] = cos(constant_term(θ_m)) - tmp3655.coeffs[2:order + 1] .= zero(tmp3655.coeffs[1]) - tmp2931.coeffs[1] = sin(constant_term(ϕ_m)) - tmp2931.coeffs[2:order + 1] .= zero(tmp2931.coeffs[1]) - tmp3656.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3656.coeffs[2:order + 1] .= zero(tmp3656.coeffs[1]) - (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp2930) * constant_term(tmp2931) - (RotM[3, 1, mo]).coeffs[2:order + 1] .= zero((RotM[3, 1, mo]).coeffs[1]) - tmp2933.coeffs[1] = cos(constant_term(ψ_m)) - tmp2933.coeffs[2:order + 1] .= zero(tmp2933.coeffs[1]) - tmp3657.coeffs[1] = sin(constant_term(ψ_m)) - tmp3657.coeffs[2:order + 1] .= zero(tmp3657.coeffs[1]) - tmp2934.coeffs[1] = sin(constant_term(ϕ_m)) - tmp2934.coeffs[2:order + 1] .= zero(tmp2934.coeffs[1]) - tmp3658.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3658.coeffs[2:order + 1] .= zero(tmp3658.coeffs[1]) - tmp2935.coeffs[1] = constant_term(tmp2933) * constant_term(tmp2934) - tmp2935.coeffs[2:order + 1] .= zero(tmp2935.coeffs[1]) - tmp2936.coeffs[1] = cos(constant_term(θ_m)) - tmp2936.coeffs[2:order + 1] .= zero(tmp2936.coeffs[1]) - tmp3659.coeffs[1] = sin(constant_term(θ_m)) - tmp3659.coeffs[2:order + 1] .= zero(tmp3659.coeffs[1]) - tmp2937.coeffs[1] = cos(constant_term(ϕ_m)) - tmp2937.coeffs[2:order + 1] .= zero(tmp2937.coeffs[1]) - tmp3660.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3660.coeffs[2:order + 1] .= zero(tmp3660.coeffs[1]) - tmp2938.coeffs[1] = constant_term(tmp2936) * constant_term(tmp2937) - tmp2938.coeffs[2:order + 1] .= zero(tmp2938.coeffs[1]) - tmp2939.coeffs[1] = sin(constant_term(ψ_m)) - tmp2939.coeffs[2:order + 1] .= zero(tmp2939.coeffs[1]) - tmp3661.coeffs[1] = cos(constant_term(ψ_m)) - tmp3661.coeffs[2:order + 1] .= zero(tmp3661.coeffs[1]) - tmp2940.coeffs[1] = constant_term(tmp2938) * constant_term(tmp2939) - tmp2940.coeffs[2:order + 1] .= zero(tmp2940.coeffs[1]) - (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp2935) + constant_term(tmp2940) - (RotM[1, 2, mo]).coeffs[2:order + 1] .= zero((RotM[1, 2, mo]).coeffs[1]) - tmp2942.coeffs[1] = cos(constant_term(θ_m)) - tmp2942.coeffs[2:order + 1] .= zero(tmp2942.coeffs[1]) - tmp3662.coeffs[1] = sin(constant_term(θ_m)) - tmp3662.coeffs[2:order + 1] .= zero(tmp3662.coeffs[1]) - tmp2943.coeffs[1] = cos(constant_term(ϕ_m)) - tmp2943.coeffs[2:order + 1] .= zero(tmp2943.coeffs[1]) - tmp3663.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3663.coeffs[2:order + 1] .= zero(tmp3663.coeffs[1]) - tmp2944.coeffs[1] = constant_term(tmp2942) * constant_term(tmp2943) - tmp2944.coeffs[2:order + 1] .= zero(tmp2944.coeffs[1]) - tmp2945.coeffs[1] = cos(constant_term(ψ_m)) - tmp2945.coeffs[2:order + 1] .= zero(tmp2945.coeffs[1]) - tmp3664.coeffs[1] = sin(constant_term(ψ_m)) - tmp3664.coeffs[2:order + 1] .= zero(tmp3664.coeffs[1]) - tmp2946.coeffs[1] = constant_term(tmp2944) * constant_term(tmp2945) - tmp2946.coeffs[2:order + 1] .= zero(tmp2946.coeffs[1]) - tmp2947.coeffs[1] = sin(constant_term(ϕ_m)) - tmp2947.coeffs[2:order + 1] .= zero(tmp2947.coeffs[1]) - tmp3665.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3665.coeffs[2:order + 1] .= zero(tmp3665.coeffs[1]) - tmp2948.coeffs[1] = sin(constant_term(ψ_m)) - tmp2948.coeffs[2:order + 1] .= zero(tmp2948.coeffs[1]) - tmp3666.coeffs[1] = cos(constant_term(ψ_m)) - tmp3666.coeffs[2:order + 1] .= zero(tmp3666.coeffs[1]) - tmp2949.coeffs[1] = constant_term(tmp2947) * constant_term(tmp2948) - tmp2949.coeffs[2:order + 1] .= zero(tmp2949.coeffs[1]) - (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp2946) - constant_term(tmp2949) - (RotM[2, 2, mo]).coeffs[2:order + 1] .= zero((RotM[2, 2, mo]).coeffs[1]) - tmp2951.coeffs[1] = cos(constant_term(ϕ_m)) - tmp2951.coeffs[2:order + 1] .= zero(tmp2951.coeffs[1]) - tmp3667.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3667.coeffs[2:order + 1] .= zero(tmp3667.coeffs[1]) - tmp2952.coeffs[1] = -(constant_term(tmp2951)) - tmp2952.coeffs[2:order + 1] .= zero(tmp2952.coeffs[1]) - tmp2953.coeffs[1] = sin(constant_term(θ_m)) - tmp2953.coeffs[2:order + 1] .= zero(tmp2953.coeffs[1]) - tmp3668.coeffs[1] = cos(constant_term(θ_m)) - tmp3668.coeffs[2:order + 1] .= zero(tmp3668.coeffs[1]) - (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp2952) * constant_term(tmp2953) - (RotM[3, 2, mo]).coeffs[2:order + 1] .= zero((RotM[3, 2, mo]).coeffs[1]) - tmp2955.coeffs[1] = sin(constant_term(θ_m)) - tmp2955.coeffs[2:order + 1] .= zero(tmp2955.coeffs[1]) - tmp3669.coeffs[1] = cos(constant_term(θ_m)) - tmp3669.coeffs[2:order + 1] .= zero(tmp3669.coeffs[1]) - tmp2956.coeffs[1] = sin(constant_term(ψ_m)) - tmp2956.coeffs[2:order + 1] .= zero(tmp2956.coeffs[1]) - tmp3670.coeffs[1] = cos(constant_term(ψ_m)) - tmp3670.coeffs[2:order + 1] .= zero(tmp3670.coeffs[1]) - (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp2955) * constant_term(tmp2956) - (RotM[1, 3, mo]).coeffs[2:order + 1] .= zero((RotM[1, 3, mo]).coeffs[1]) - tmp2958.coeffs[1] = cos(constant_term(ψ_m)) - tmp2958.coeffs[2:order + 1] .= zero(tmp2958.coeffs[1]) - tmp3671.coeffs[1] = sin(constant_term(ψ_m)) - tmp3671.coeffs[2:order + 1] .= zero(tmp3671.coeffs[1]) - tmp2959.coeffs[1] = sin(constant_term(θ_m)) - tmp2959.coeffs[2:order + 1] .= zero(tmp2959.coeffs[1]) - tmp3672.coeffs[1] = cos(constant_term(θ_m)) - tmp3672.coeffs[2:order + 1] .= zero(tmp3672.coeffs[1]) - (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp2958) * constant_term(tmp2959) - (RotM[2, 3, mo]).coeffs[2:order + 1] .= zero((RotM[2, 3, mo]).coeffs[1]) + TaylorSeries.zero!(tmp1133) + tmp1133.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1867) + tmp1867.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1134) + tmp1134.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1868) + tmp1868.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1135) + tmp1135.coeffs[1] = constant_term(tmp1133) * constant_term(tmp1134) + TaylorSeries.zero!(tmp1136) + tmp1136.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp1869) + tmp1869.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1137) + tmp1137.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1870) + tmp1870.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1138) + tmp1138.coeffs[1] = constant_term(tmp1136) * constant_term(tmp1137) + TaylorSeries.zero!(tmp1139) + tmp1139.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1871) + tmp1871.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1140) + tmp1140.coeffs[1] = constant_term(tmp1138) * constant_term(tmp1139) + TaylorSeries.zero!(RotM[1, 1, mo]) + (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp1135) - constant_term(tmp1140) + TaylorSeries.zero!(tmp1142) + tmp1142.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp1872) + tmp1872.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1143) + tmp1143.coeffs[1] = -(constant_term(tmp1142)) + TaylorSeries.zero!(tmp1144) + tmp1144.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1873) + tmp1873.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1145) + tmp1145.coeffs[1] = constant_term(tmp1143) * constant_term(tmp1144) + TaylorSeries.zero!(tmp1146) + tmp1146.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1874) + tmp1874.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1147) + tmp1147.coeffs[1] = constant_term(tmp1145) * constant_term(tmp1146) + TaylorSeries.zero!(tmp1148) + tmp1148.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1875) + tmp1875.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1149) + tmp1149.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1876) + tmp1876.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1150) + tmp1150.coeffs[1] = constant_term(tmp1148) * constant_term(tmp1149) + TaylorSeries.zero!(RotM[2, 1, mo]) + (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp1147) - constant_term(tmp1150) + TaylorSeries.zero!(tmp1152) + tmp1152.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1877) + tmp1877.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp1153) + tmp1153.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1878) + tmp1878.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(RotM[3, 1, mo]) + (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp1152) * constant_term(tmp1153) + TaylorSeries.zero!(tmp1155) + tmp1155.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1879) + tmp1879.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1156) + tmp1156.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1880) + tmp1880.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1157) + tmp1157.coeffs[1] = constant_term(tmp1155) * constant_term(tmp1156) + TaylorSeries.zero!(tmp1158) + tmp1158.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp1881) + tmp1881.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1159) + tmp1159.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1882) + tmp1882.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1160) + tmp1160.coeffs[1] = constant_term(tmp1158) * constant_term(tmp1159) + TaylorSeries.zero!(tmp1161) + tmp1161.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1883) + tmp1883.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1162) + tmp1162.coeffs[1] = constant_term(tmp1160) * constant_term(tmp1161) + TaylorSeries.zero!(RotM[1, 2, mo]) + (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp1157) + constant_term(tmp1162) + TaylorSeries.zero!(tmp1164) + tmp1164.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp1884) + tmp1884.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1165) + tmp1165.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1885) + tmp1885.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1166) + tmp1166.coeffs[1] = constant_term(tmp1164) * constant_term(tmp1165) + TaylorSeries.zero!(tmp1167) + tmp1167.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1886) + tmp1886.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1168) + tmp1168.coeffs[1] = constant_term(tmp1166) * constant_term(tmp1167) + TaylorSeries.zero!(tmp1169) + tmp1169.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1887) + tmp1887.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1170) + tmp1170.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1888) + tmp1888.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1171) + tmp1171.coeffs[1] = constant_term(tmp1169) * constant_term(tmp1170) + TaylorSeries.zero!(RotM[2, 2, mo]) + (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp1168) - constant_term(tmp1171) + TaylorSeries.zero!(tmp1173) + tmp1173.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1889) + tmp1889.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp1174) + tmp1174.coeffs[1] = -(constant_term(tmp1173)) + TaylorSeries.zero!(tmp1175) + tmp1175.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1890) + tmp1890.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(RotM[3, 2, mo]) + (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp1174) * constant_term(tmp1175) + TaylorSeries.zero!(tmp1177) + tmp1177.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1891) + tmp1891.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp1178) + tmp1178.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1892) + tmp1892.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(RotM[1, 3, mo]) + (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp1177) * constant_term(tmp1178) + TaylorSeries.zero!(tmp1180) + tmp1180.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1893) + tmp1893.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp1181) + tmp1181.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp1894) + tmp1894.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(RotM[2, 3, mo]) + (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp1180) * constant_term(tmp1181) + TaylorSeries.zero!(RotM[3, 3, mo]) (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) - (RotM[3, 3, mo]).coeffs[2:order + 1] .= zero((RotM[3, 3, mo]).coeffs[1]) - tmp3673.coeffs[1] = sin(constant_term(θ_m)) - tmp3673.coeffs[2:order + 1] .= zero(tmp3673.coeffs[1]) + TaylorSeries.zero!(tmp1895) + tmp1895.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(ϕ_c) ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) - ϕ_c.coeffs[2:order + 1] .= zero(ϕ_c.coeffs[1]) - tmp2962.coeffs[1] = cos(constant_term(ϕ_c)) - tmp2962.coeffs[2:order + 1] .= zero(tmp2962.coeffs[1]) - tmp3674.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3674.coeffs[2:order + 1] .= zero(tmp3674.coeffs[1]) - tmp2963.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp2962) - tmp2963.coeffs[2:order + 1] .= zero(tmp2963.coeffs[1]) - tmp2964.coeffs[1] = sin(constant_term(ϕ_c)) - tmp2964.coeffs[2:order + 1] .= zero(tmp2964.coeffs[1]) - tmp3675.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3675.coeffs[2:order + 1] .= zero(tmp3675.coeffs[1]) - tmp2965.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp2964) - tmp2965.coeffs[2:order + 1] .= zero(tmp2965.coeffs[1]) - (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp2963) + constant_term(tmp2965) - (mantlef2coref[1, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 1]).coeffs[1]) - tmp2967.coeffs[1] = -(constant_term(RotM[1, 1, mo])) - tmp2967.coeffs[2:order + 1] .= zero(tmp2967.coeffs[1]) - tmp2968.coeffs[1] = sin(constant_term(ϕ_c)) - tmp2968.coeffs[2:order + 1] .= zero(tmp2968.coeffs[1]) - tmp3676.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3676.coeffs[2:order + 1] .= zero(tmp3676.coeffs[1]) - tmp2969.coeffs[1] = constant_term(tmp2967) * constant_term(tmp2968) - tmp2969.coeffs[2:order + 1] .= zero(tmp2969.coeffs[1]) - tmp2970.coeffs[1] = cos(constant_term(ϕ_c)) - tmp2970.coeffs[2:order + 1] .= zero(tmp2970.coeffs[1]) - tmp3677.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3677.coeffs[2:order + 1] .= zero(tmp3677.coeffs[1]) - tmp2971.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp2970) - tmp2971.coeffs[2:order + 1] .= zero(tmp2971.coeffs[1]) - (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp2969) + constant_term(tmp2971) - (mantlef2coref[2, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 1]).coeffs[1]) + TaylorSeries.zero!(tmp1184) + tmp1184.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1896) + tmp1896.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1185) + tmp1185.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp1184) + TaylorSeries.zero!(tmp1186) + tmp1186.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1897) + tmp1897.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1187) + tmp1187.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1186) + TaylorSeries.zero!(mantlef2coref[1, 1]) + (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp1185) + constant_term(tmp1187) + TaylorSeries.zero!(tmp1189) + tmp1189.coeffs[1] = -(constant_term(RotM[1, 1, mo])) + TaylorSeries.zero!(tmp1190) + tmp1190.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1898) + tmp1898.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1191) + tmp1191.coeffs[1] = constant_term(tmp1189) * constant_term(tmp1190) + TaylorSeries.zero!(tmp1192) + tmp1192.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1899) + tmp1899.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1193) + tmp1193.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1192) + TaylorSeries.zero!(mantlef2coref[2, 1]) + (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp1191) + constant_term(tmp1193) + TaylorSeries.zero!(mantlef2coref[3, 1]) (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) - (mantlef2coref[3, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 1]).coeffs[1]) - tmp2973.coeffs[1] = cos(constant_term(ϕ_c)) - tmp2973.coeffs[2:order + 1] .= zero(tmp2973.coeffs[1]) - tmp3678.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3678.coeffs[2:order + 1] .= zero(tmp3678.coeffs[1]) - tmp2974.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp2973) - tmp2974.coeffs[2:order + 1] .= zero(tmp2974.coeffs[1]) - tmp2975.coeffs[1] = sin(constant_term(ϕ_c)) - tmp2975.coeffs[2:order + 1] .= zero(tmp2975.coeffs[1]) - tmp3679.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3679.coeffs[2:order + 1] .= zero(tmp3679.coeffs[1]) - tmp2976.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp2975) - tmp2976.coeffs[2:order + 1] .= zero(tmp2976.coeffs[1]) - (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp2974) + constant_term(tmp2976) - (mantlef2coref[1, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 2]).coeffs[1]) - tmp2978.coeffs[1] = -(constant_term(RotM[2, 1, mo])) - tmp2978.coeffs[2:order + 1] .= zero(tmp2978.coeffs[1]) - tmp2979.coeffs[1] = sin(constant_term(ϕ_c)) - tmp2979.coeffs[2:order + 1] .= zero(tmp2979.coeffs[1]) - tmp3680.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3680.coeffs[2:order + 1] .= zero(tmp3680.coeffs[1]) - tmp2980.coeffs[1] = constant_term(tmp2978) * constant_term(tmp2979) - tmp2980.coeffs[2:order + 1] .= zero(tmp2980.coeffs[1]) - tmp2981.coeffs[1] = cos(constant_term(ϕ_c)) - tmp2981.coeffs[2:order + 1] .= zero(tmp2981.coeffs[1]) - tmp3681.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3681.coeffs[2:order + 1] .= zero(tmp3681.coeffs[1]) - tmp2982.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp2981) - tmp2982.coeffs[2:order + 1] .= zero(tmp2982.coeffs[1]) - (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp2980) + constant_term(tmp2982) - (mantlef2coref[2, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 2]).coeffs[1]) + TaylorSeries.zero!(tmp1195) + tmp1195.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1900) + tmp1900.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1196) + tmp1196.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp1195) + TaylorSeries.zero!(tmp1197) + tmp1197.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1901) + tmp1901.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1198) + tmp1198.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1197) + TaylorSeries.zero!(mantlef2coref[1, 2]) + (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp1196) + constant_term(tmp1198) + TaylorSeries.zero!(tmp1200) + tmp1200.coeffs[1] = -(constant_term(RotM[2, 1, mo])) + TaylorSeries.zero!(tmp1201) + tmp1201.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1902) + tmp1902.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1202) + tmp1202.coeffs[1] = constant_term(tmp1200) * constant_term(tmp1201) + TaylorSeries.zero!(tmp1203) + tmp1203.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1903) + tmp1903.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1204) + tmp1204.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1203) + TaylorSeries.zero!(mantlef2coref[2, 2]) + (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp1202) + constant_term(tmp1204) + TaylorSeries.zero!(mantlef2coref[3, 2]) (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) - (mantlef2coref[3, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 2]).coeffs[1]) - tmp2984.coeffs[1] = cos(constant_term(ϕ_c)) - tmp2984.coeffs[2:order + 1] .= zero(tmp2984.coeffs[1]) - tmp3682.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3682.coeffs[2:order + 1] .= zero(tmp3682.coeffs[1]) - tmp2985.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp2984) - tmp2985.coeffs[2:order + 1] .= zero(tmp2985.coeffs[1]) - tmp2986.coeffs[1] = sin(constant_term(ϕ_c)) - tmp2986.coeffs[2:order + 1] .= zero(tmp2986.coeffs[1]) - tmp3683.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3683.coeffs[2:order + 1] .= zero(tmp3683.coeffs[1]) - tmp2987.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp2986) - tmp2987.coeffs[2:order + 1] .= zero(tmp2987.coeffs[1]) - (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp2985) + constant_term(tmp2987) - (mantlef2coref[1, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 3]).coeffs[1]) - tmp2989.coeffs[1] = -(constant_term(RotM[3, 1, mo])) - tmp2989.coeffs[2:order + 1] .= zero(tmp2989.coeffs[1]) - tmp2990.coeffs[1] = sin(constant_term(ϕ_c)) - tmp2990.coeffs[2:order + 1] .= zero(tmp2990.coeffs[1]) - tmp3684.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3684.coeffs[2:order + 1] .= zero(tmp3684.coeffs[1]) - tmp2991.coeffs[1] = constant_term(tmp2989) * constant_term(tmp2990) - tmp2991.coeffs[2:order + 1] .= zero(tmp2991.coeffs[1]) - tmp2992.coeffs[1] = cos(constant_term(ϕ_c)) - tmp2992.coeffs[2:order + 1] .= zero(tmp2992.coeffs[1]) - tmp3685.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3685.coeffs[2:order + 1] .= zero(tmp3685.coeffs[1]) - tmp2993.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp2992) - tmp2993.coeffs[2:order + 1] .= zero(tmp2993.coeffs[1]) - (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp2991) + constant_term(tmp2993) - (mantlef2coref[2, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 3]).coeffs[1]) + TaylorSeries.zero!(tmp1206) + tmp1206.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1904) + tmp1904.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1207) + tmp1207.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp1206) + TaylorSeries.zero!(tmp1208) + tmp1208.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1905) + tmp1905.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1209) + tmp1209.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1208) + TaylorSeries.zero!(mantlef2coref[1, 3]) + (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp1207) + constant_term(tmp1209) + TaylorSeries.zero!(tmp1211) + tmp1211.coeffs[1] = -(constant_term(RotM[3, 1, mo])) + TaylorSeries.zero!(tmp1212) + tmp1212.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1906) + tmp1906.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1213) + tmp1213.coeffs[1] = constant_term(tmp1211) * constant_term(tmp1212) + TaylorSeries.zero!(tmp1214) + tmp1214.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1907) + tmp1907.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp1215) + tmp1215.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1214) + TaylorSeries.zero!(mantlef2coref[2, 3]) + (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp1213) + constant_term(tmp1215) + TaylorSeries.zero!(mantlef2coref[3, 3]) (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) - (mantlef2coref[3, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 3]).coeffs[1]) - tmp2995.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) - tmp2995.coeffs[2:order + 1] .= zero(tmp2995.coeffs[1]) - tmp2996.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) - tmp2996.coeffs[2:order + 1] .= zero(tmp2996.coeffs[1]) - tmp2997.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) - tmp2997.coeffs[2:order + 1] .= zero(tmp2997.coeffs[1]) - tmp2998.coeffs[1] = constant_term(tmp2996) + constant_term(tmp2997) - tmp2998.coeffs[2:order + 1] .= zero(tmp2998.coeffs[1]) - ω_c_CE_1.coeffs[1] = constant_term(tmp2995) + constant_term(tmp2998) - ω_c_CE_1.coeffs[2:order + 1] .= zero(ω_c_CE_1.coeffs[1]) - tmp3000.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) - tmp3000.coeffs[2:order + 1] .= zero(tmp3000.coeffs[1]) - tmp3001.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) - tmp3001.coeffs[2:order + 1] .= zero(tmp3001.coeffs[1]) - tmp3002.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) - tmp3002.coeffs[2:order + 1] .= zero(tmp3002.coeffs[1]) - tmp3003.coeffs[1] = constant_term(tmp3001) + constant_term(tmp3002) - tmp3003.coeffs[2:order + 1] .= zero(tmp3003.coeffs[1]) - ω_c_CE_2.coeffs[1] = constant_term(tmp3000) + constant_term(tmp3003) - ω_c_CE_2.coeffs[2:order + 1] .= zero(ω_c_CE_2.coeffs[1]) - tmp3005.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) - tmp3005.coeffs[2:order + 1] .= zero(tmp3005.coeffs[1]) - tmp3006.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) - tmp3006.coeffs[2:order + 1] .= zero(tmp3006.coeffs[1]) - tmp3007.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) - tmp3007.coeffs[2:order + 1] .= zero(tmp3007.coeffs[1]) - tmp3008.coeffs[1] = constant_term(tmp3006) + constant_term(tmp3007) - tmp3008.coeffs[2:order + 1] .= zero(tmp3008.coeffs[1]) - ω_c_CE_3.coeffs[1] = constant_term(tmp3005) + constant_term(tmp3008) - ω_c_CE_3.coeffs[2:order + 1] .= zero(ω_c_CE_3.coeffs[1]) + TaylorSeries.zero!(tmp1217) + tmp1217.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) + TaylorSeries.zero!(tmp1218) + tmp1218.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) + TaylorSeries.zero!(tmp1219) + tmp1219.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp1220) + tmp1220.coeffs[1] = constant_term(tmp1218) + constant_term(tmp1219) + TaylorSeries.zero!(ω_c_CE_1) + ω_c_CE_1.coeffs[1] = constant_term(tmp1217) + constant_term(tmp1220) + TaylorSeries.zero!(tmp1222) + tmp1222.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) + TaylorSeries.zero!(tmp1223) + tmp1223.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) + TaylorSeries.zero!(tmp1224) + tmp1224.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp1225) + tmp1225.coeffs[1] = constant_term(tmp1223) + constant_term(tmp1224) + TaylorSeries.zero!(ω_c_CE_2) + ω_c_CE_2.coeffs[1] = constant_term(tmp1222) + constant_term(tmp1225) + TaylorSeries.zero!(tmp1227) + tmp1227.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) + TaylorSeries.zero!(tmp1228) + tmp1228.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) + TaylorSeries.zero!(tmp1229) + tmp1229.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp1230) + tmp1230.coeffs[1] = constant_term(tmp1228) + constant_term(tmp1229) + TaylorSeries.zero!(ω_c_CE_3) + ω_c_CE_3.coeffs[1] = constant_term(tmp1227) + constant_term(tmp1230) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t + TaylorSeries.zero!(J2_t[su]) (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) - (J2_t[su]).coeffs[2:order + 1] .= zero((J2_t[su]).coeffs[1]) + TaylorSeries.zero!(J2_t[ea]) (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) - (J2_t[ea]).coeffs[2:order + 1] .= zero((J2_t[ea]).coeffs[1]) local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:307 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:309 =# Threads.@threads for j = 1:N + TaylorSeries.zero!(newtonX[j]) (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + TaylorSeries.zero!(newtonY[j]) (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + TaylorSeries.zero!(newtonZ[j]) (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + TaylorSeries.zero!(newtonianNb_Potential[j]) (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + TaylorSeries.zero!(dq[3j - 2]) (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) - (dq[3j - 2]).coeffs[2:order + 1] .= zero((dq[3j - 2]).coeffs[1]) + TaylorSeries.zero!(dq[3j - 1]) (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) - (dq[3j - 1]).coeffs[2:order + 1] .= zero((dq[3j - 1]).coeffs[1]) + TaylorSeries.zero!(dq[3j]) (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) - (dq[3j]).coeffs[2:order + 1] .= zero((dq[3j]).coeffs[1]) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:319 =# Threads.@threads for j = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:321 =# Threads.@threads for j = 1:N_ext + TaylorSeries.zero!(accX[j]) (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + TaylorSeries.zero!(accY[j]) (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + TaylorSeries.zero!(accZ[j]) (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:325 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:327 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue else + TaylorSeries.zero!(X[i, j]) (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) - (X[i, j]).coeffs[2:order + 1] .= zero((X[i, j]).coeffs[1]) + TaylorSeries.zero!(Y[i, j]) (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) - (Y[i, j]).coeffs[2:order + 1] .= zero((Y[i, j]).coeffs[1]) + TaylorSeries.zero!(Z[i, j]) (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) - (Z[i, j]).coeffs[2:order + 1] .= zero((Z[i, j]).coeffs[1]) + TaylorSeries.zero!(U[i, j]) (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) - (U[i, j]).coeffs[2:order + 1] .= zero((U[i, j]).coeffs[1]) + TaylorSeries.zero!(V[i, j]) (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) - (V[i, j]).coeffs[2:order + 1] .= zero((V[i, j]).coeffs[1]) + TaylorSeries.zero!(W[i, j]) (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) - (W[i, j]).coeffs[2:order + 1] .= zero((W[i, j]).coeffs[1]) - (tmp3017[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) - (tmp3017[3j - 2]).coeffs[2:order + 1] .= zero((tmp3017[3j - 2]).coeffs[1]) - (tmp3019[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) - (tmp3019[3i - 2]).coeffs[2:order + 1] .= zero((tmp3019[3i - 2]).coeffs[1]) - (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp3017[3j - 2]) - constant_term(tmp3019[3i - 2]) - (_4U_m_3X[i, j]).coeffs[2:order + 1] .= zero((_4U_m_3X[i, j]).coeffs[1]) - (tmp3022[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) - (tmp3022[3j - 1]).coeffs[2:order + 1] .= zero((tmp3022[3j - 1]).coeffs[1]) - (tmp3024[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) - (tmp3024[3i - 1]).coeffs[2:order + 1] .= zero((tmp3024[3i - 1]).coeffs[1]) - (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp3022[3j - 1]) - constant_term(tmp3024[3i - 1]) - (_4V_m_3Y[i, j]).coeffs[2:order + 1] .= zero((_4V_m_3Y[i, j]).coeffs[1]) - (tmp3027[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) - (tmp3027[3j]).coeffs[2:order + 1] .= zero((tmp3027[3j]).coeffs[1]) - (tmp3029[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) - (tmp3029[3i]).coeffs[2:order + 1] .= zero((tmp3029[3i]).coeffs[1]) - (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp3027[3j]) - constant_term(tmp3029[3i]) - (_4W_m_3Z[i, j]).coeffs[2:order + 1] .= zero((_4W_m_3Z[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1239[3j - 2]) + (tmp1239[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) + TaylorSeries.zero!(tmp1241[3i - 2]) + (tmp1241[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) + TaylorSeries.zero!(_4U_m_3X[i, j]) + (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp1239[3j - 2]) - constant_term(tmp1241[3i - 2]) + TaylorSeries.zero!(tmp1244[3j - 1]) + (tmp1244[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) + TaylorSeries.zero!(tmp1246[3i - 1]) + (tmp1246[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) + TaylorSeries.zero!(_4V_m_3Y[i, j]) + (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp1244[3j - 1]) - constant_term(tmp1246[3i - 1]) + TaylorSeries.zero!(tmp1249[3j]) + (tmp1249[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) + TaylorSeries.zero!(tmp1251[3i]) + (tmp1251[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) + TaylorSeries.zero!(_4W_m_3Z[i, j]) + (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp1249[3j]) - constant_term(tmp1251[3i]) + TaylorSeries.zero!(pn2x[i, j]) (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) - (pn2x[i, j]).coeffs[2:order + 1] .= zero((pn2x[i, j]).coeffs[1]) + TaylorSeries.zero!(pn2y[i, j]) (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) - (pn2y[i, j]).coeffs[2:order + 1] .= zero((pn2y[i, j]).coeffs[1]) + TaylorSeries.zero!(pn2z[i, j]) (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) - (pn2z[i, j]).coeffs[2:order + 1] .= zero((pn2z[i, j]).coeffs[1]) + TaylorSeries.zero!(UU[i, j]) (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) - (UU[i, j]).coeffs[2:order + 1] .= zero((UU[i, j]).coeffs[1]) + TaylorSeries.zero!(VV[i, j]) (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) - (VV[i, j]).coeffs[2:order + 1] .= zero((VV[i, j]).coeffs[1]) + TaylorSeries.zero!(WW[i, j]) (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) - (WW[i, j]).coeffs[2:order + 1] .= zero((WW[i, j]).coeffs[1]) - (tmp3037[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) - (tmp3037[i, j]).coeffs[2:order + 1] .= zero((tmp3037[i, j]).coeffs[1]) - (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp3037[i, j]) + constant_term(WW[i, j]) - (vi_dot_vj[i, j]).coeffs[2:order + 1] .= zero((vi_dot_vj[i, j]).coeffs[1]) - (tmp3040[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) - (tmp3040[i, j]).coeffs[2:order + 1] .= zero((tmp3040[i, j]).coeffs[1]) - (tmp3042[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) - (tmp3042[i, j]).coeffs[2:order + 1] .= zero((tmp3042[i, j]).coeffs[1]) - (tmp3043[i, j]).coeffs[1] = constant_term(tmp3040[i, j]) + constant_term(tmp3042[i, j]) - (tmp3043[i, j]).coeffs[2:order + 1] .= zero((tmp3043[i, j]).coeffs[1]) - (tmp3045[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) - (tmp3045[i, j]).coeffs[2:order + 1] .= zero((tmp3045[i, j]).coeffs[1]) - (r_p2[i, j]).coeffs[1] = constant_term(tmp3043[i, j]) + constant_term(tmp3045[i, j]) - (r_p2[i, j]).coeffs[2:order + 1] .= zero((r_p2[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1259[i, j]) + (tmp1259[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) + TaylorSeries.zero!(vi_dot_vj[i, j]) + (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp1259[i, j]) + constant_term(WW[i, j]) + TaylorSeries.zero!(tmp1262[i, j]) + (tmp1262[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp1264[i, j]) + (tmp1264[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp1265[i, j]) + (tmp1265[i, j]).coeffs[1] = constant_term(tmp1262[i, j]) + constant_term(tmp1264[i, j]) + TaylorSeries.zero!(tmp1267[i, j]) + (tmp1267[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(r_p2[i, j]) + (r_p2[i, j]).coeffs[1] = constant_term(tmp1265[i, j]) + constant_term(tmp1267[i, j]) + TaylorSeries.zero!(r_p1d2[i, j]) (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) - (r_p1d2[i, j]).coeffs[2:order + 1] .= zero((r_p1d2[i, j]).coeffs[1]) + TaylorSeries.zero!(r_p3d2[i, j]) (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) - (r_p3d2[i, j]).coeffs[2:order + 1] .= zero((r_p3d2[i, j]).coeffs[1]) + TaylorSeries.zero!(r_p7d2[i, j]) (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) - (r_p7d2[i, j]).coeffs[2:order + 1] .= zero((r_p7d2[i, j]).coeffs[1]) + TaylorSeries.zero!(newtonianCoeff[i, j]) (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) - (newtonianCoeff[i, j]).coeffs[2:order + 1] .= zero((newtonianCoeff[i, j]).coeffs[1]) - (tmp3053[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) - (tmp3053[i, j]).coeffs[2:order + 1] .= zero((tmp3053[i, j]).coeffs[1]) - (tmp3054[i, j]).coeffs[1] = constant_term(tmp3053[i, j]) + constant_term(pn2z[i, j]) - (tmp3054[i, j]).coeffs[2:order + 1] .= zero((tmp3054[i, j]).coeffs[1]) - (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp3054[i, j]) - (pn2[i, j]).coeffs[2:order + 1] .= zero((pn2[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1275[i, j]) + (tmp1275[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) + TaylorSeries.zero!(tmp1276[i, j]) + (tmp1276[i, j]).coeffs[1] = constant_term(tmp1275[i, j]) + constant_term(pn2z[i, j]) + TaylorSeries.zero!(pn2[i, j]) + (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp1276[i, j]) + TaylorSeries.zero!(newton_acc_X[i, j]) (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_X[i, j]).coeffs[2:order + 1] .= zero((newton_acc_X[i, j]).coeffs[1]) + TaylorSeries.zero!(newton_acc_Y[i, j]) (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_Y[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Y[i, j]).coeffs[1]) + TaylorSeries.zero!(newton_acc_Z[i, j]) (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_Z[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Z[i, j]).coeffs[1]) + TaylorSeries.zero!(newtonian1b_Potential[i, j]) (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) - (newtonian1b_Potential[i, j]).coeffs[2:order + 1] .= zero((newtonian1b_Potential[i, j]).coeffs[1]) + TaylorSeries.zero!(pn3[i, j]) (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) - (pn3[i, j]).coeffs[2:order + 1] .= zero((pn3[i, j]).coeffs[1]) + TaylorSeries.zero!(U_t_pn2[i, j]) (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) - (U_t_pn2[i, j]).coeffs[2:order + 1] .= zero((U_t_pn2[i, j]).coeffs[1]) + TaylorSeries.zero!(V_t_pn2[i, j]) (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) - (V_t_pn2[i, j]).coeffs[2:order + 1] .= zero((V_t_pn2[i, j]).coeffs[1]) + TaylorSeries.zero!(W_t_pn2[i, j]) (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) - (W_t_pn2[i, j]).coeffs[2:order + 1] .= zero((W_t_pn2[i, j]).coeffs[1]) - (tmp3065[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp3065[i, j]).coeffs[2:order + 1] .= zero((tmp3065[i, j]).coeffs[1]) - (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp3065[i, j]) - (temp_001[i, j]).coeffs[2:order + 1] .= zero((temp_001[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1287[i, j]) + (tmp1287[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + TaylorSeries.zero!(temp_001[i, j]) + (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp1287[i, j]) + TaylorSeries.zero!(newtonX[j]) (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) - (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) - (tmp3067[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp3067[i, j]).coeffs[2:order + 1] .= zero((tmp3067[i, j]).coeffs[1]) - (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp3067[i, j]) - (temp_002[i, j]).coeffs[2:order + 1] .= zero((temp_002[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1289[i, j]) + (tmp1289[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + TaylorSeries.zero!(temp_002[i, j]) + (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp1289[i, j]) + TaylorSeries.zero!(newtonY[j]) (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) - (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) - (tmp3069[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp3069[i, j]).coeffs[2:order + 1] .= zero((tmp3069[i, j]).coeffs[1]) - (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp3069[i, j]) - (temp_003[i, j]).coeffs[2:order + 1] .= zero((temp_003[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1291[i, j]) + (tmp1291[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + TaylorSeries.zero!(temp_003[i, j]) + (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp1291[i, j]) + TaylorSeries.zero!(newtonZ[j]) (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) - (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + TaylorSeries.zero!(temp_004[i, j]) (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) - (temp_004[i, j]).coeffs[2:order + 1] .= zero((temp_004[i, j]).coeffs[1]) + TaylorSeries.zero!(newtonianNb_Potential[j]) (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) - (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) end end - (tmp3073[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) - (tmp3073[3j - 2]).coeffs[2:order + 1] .= zero((tmp3073[3j - 2]).coeffs[1]) - (tmp3075[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) - (tmp3075[3j - 1]).coeffs[2:order + 1] .= zero((tmp3075[3j - 1]).coeffs[1]) - (tmp3076[3j - 2]).coeffs[1] = constant_term(tmp3073[3j - 2]) + constant_term(tmp3075[3j - 1]) - (tmp3076[3j - 2]).coeffs[2:order + 1] .= zero((tmp3076[3j - 2]).coeffs[1]) - (tmp3078[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) - (tmp3078[3j]).coeffs[2:order + 1] .= zero((tmp3078[3j]).coeffs[1]) - (v2[j]).coeffs[1] = constant_term(tmp3076[3j - 2]) + constant_term(tmp3078[3j]) - (v2[j]).coeffs[2:order + 1] .= zero((v2[j]).coeffs[1]) + TaylorSeries.zero!(tmp1295[3j - 2]) + (tmp1295[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp1297[3j - 1]) + (tmp1297[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp1298[3j - 2]) + (tmp1298[3j - 2]).coeffs[1] = constant_term(tmp1295[3j - 2]) + constant_term(tmp1297[3j - 1]) + TaylorSeries.zero!(tmp1300[3j]) + (tmp1300[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) + TaylorSeries.zero!(v2[j]) + (v2[j]).coeffs[1] = constant_term(tmp1298[3j - 2]) + constant_term(tmp1300[3j]) end - tmp3080.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) - tmp3080.coeffs[2:order + 1] .= zero(tmp3080.coeffs[1]) - tmp3082.coeffs[1] = constant_term(tmp3080) / constant_term(2) - tmp3082.coeffs[2:order + 1] .= zero(tmp3082.coeffs[1]) - tmp3083.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp3082) - tmp3083.coeffs[2:order + 1] .= zero(tmp3083.coeffs[1]) - J2M_t.coeffs[1] = constant_term(tmp3083) / constant_term(μ[mo]) - J2M_t.coeffs[2:order + 1] .= zero(J2M_t.coeffs[1]) - tmp3085.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) - tmp3085.coeffs[2:order + 1] .= zero(tmp3085.coeffs[1]) - tmp3086.coeffs[1] = constant_term(tmp3085) / constant_term(μ[mo]) - tmp3086.coeffs[2:order + 1] .= zero(tmp3086.coeffs[1]) - C22M_t.coeffs[1] = constant_term(tmp3086) / constant_term(4) - C22M_t.coeffs[2:order + 1] .= zero(C22M_t.coeffs[1]) - tmp3089.coeffs[1] = -(constant_term(I_M_t[1, 3])) - tmp3089.coeffs[2:order + 1] .= zero(tmp3089.coeffs[1]) - C21M_t.coeffs[1] = constant_term(tmp3089) / constant_term(μ[mo]) - C21M_t.coeffs[2:order + 1] .= zero(C21M_t.coeffs[1]) - tmp3091.coeffs[1] = -(constant_term(I_M_t[3, 2])) - tmp3091.coeffs[2:order + 1] .= zero(tmp3091.coeffs[1]) - S21M_t.coeffs[1] = constant_term(tmp3091) / constant_term(μ[mo]) - S21M_t.coeffs[2:order + 1] .= zero(S21M_t.coeffs[1]) - tmp3093.coeffs[1] = -(constant_term(I_M_t[2, 1])) - tmp3093.coeffs[2:order + 1] .= zero(tmp3093.coeffs[1]) - tmp3094.coeffs[1] = constant_term(tmp3093) / constant_term(μ[mo]) - tmp3094.coeffs[2:order + 1] .= zero(tmp3094.coeffs[1]) - S22M_t.coeffs[1] = constant_term(tmp3094) / constant_term(2) - S22M_t.coeffs[2:order + 1] .= zero(S22M_t.coeffs[1]) + TaylorSeries.zero!(tmp1302) + tmp1302.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) + TaylorSeries.zero!(tmp1304) + tmp1304.coeffs[1] = constant_term(tmp1302) / constant_term(2) + TaylorSeries.zero!(tmp1305) + tmp1305.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp1304) + TaylorSeries.zero!(J2M_t) + J2M_t.coeffs[1] = constant_term(tmp1305) / constant_term(μ[mo]) + TaylorSeries.zero!(tmp1307) + tmp1307.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) + TaylorSeries.zero!(tmp1308) + tmp1308.coeffs[1] = constant_term(tmp1307) / constant_term(μ[mo]) + TaylorSeries.zero!(C22M_t) + C22M_t.coeffs[1] = constant_term(tmp1308) / constant_term(4) + TaylorSeries.zero!(tmp1311) + tmp1311.coeffs[1] = -(constant_term(I_M_t[1, 3])) + TaylorSeries.zero!(C21M_t) + C21M_t.coeffs[1] = constant_term(tmp1311) / constant_term(μ[mo]) + TaylorSeries.zero!(tmp1313) + tmp1313.coeffs[1] = -(constant_term(I_M_t[3, 2])) + TaylorSeries.zero!(S21M_t) + S21M_t.coeffs[1] = constant_term(tmp1313) / constant_term(μ[mo]) + TaylorSeries.zero!(tmp1315) + tmp1315.coeffs[1] = -(constant_term(I_M_t[2, 1])) + TaylorSeries.zero!(tmp1316) + tmp1316.coeffs[1] = constant_term(tmp1315) / constant_term(μ[mo]) + TaylorSeries.zero!(S22M_t) + S22M_t.coeffs[1] = constant_term(tmp1316) / constant_term(2) + TaylorSeries.zero!(J2_t[mo]) (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) - (J2_t[mo]).coeffs[2:order + 1] .= zero((J2_t[mo]).coeffs[1]) - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:416 =# Threads.@threads for j = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:418 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue else if UJ_interaction[i, j] + TaylorSeries.zero!(X_bf_1[i, j]) (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) - (X_bf_1[i, j]).coeffs[2:order + 1] .= zero((X_bf_1[i, j]).coeffs[1]) + TaylorSeries.zero!(X_bf_2[i, j]) (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) - (X_bf_2[i, j]).coeffs[2:order + 1] .= zero((X_bf_2[i, j]).coeffs[1]) + TaylorSeries.zero!(X_bf_3[i, j]) (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) - (X_bf_3[i, j]).coeffs[2:order + 1] .= zero((X_bf_3[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_bf_1[i, j]) (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) - (Y_bf_1[i, j]).coeffs[2:order + 1] .= zero((Y_bf_1[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_bf_2[i, j]) (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) - (Y_bf_2[i, j]).coeffs[2:order + 1] .= zero((Y_bf_2[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_bf_3[i, j]) (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) - (Y_bf_3[i, j]).coeffs[2:order + 1] .= zero((Y_bf_3[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_bf_1[i, j]) (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) - (Z_bf_1[i, j]).coeffs[2:order + 1] .= zero((Z_bf_1[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_bf_2[i, j]) (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) - (Z_bf_2[i, j]).coeffs[2:order + 1] .= zero((Z_bf_2[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_bf_3[i, j]) (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) - (Z_bf_3[i, j]).coeffs[2:order + 1] .= zero((Z_bf_3[i, j]).coeffs[1]) - (tmp3106[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) - (tmp3106[i, j]).coeffs[2:order + 1] .= zero((tmp3106[i, j]).coeffs[1]) - (X_bf[i, j]).coeffs[1] = constant_term(tmp3106[i, j]) + constant_term(X_bf_3[i, j]) - (X_bf[i, j]).coeffs[2:order + 1] .= zero((X_bf[i, j]).coeffs[1]) - (tmp3108[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) - (tmp3108[i, j]).coeffs[2:order + 1] .= zero((tmp3108[i, j]).coeffs[1]) - (Y_bf[i, j]).coeffs[1] = constant_term(tmp3108[i, j]) + constant_term(Y_bf_3[i, j]) - (Y_bf[i, j]).coeffs[2:order + 1] .= zero((Y_bf[i, j]).coeffs[1]) - (tmp3110[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) - (tmp3110[i, j]).coeffs[2:order + 1] .= zero((tmp3110[i, j]).coeffs[1]) - (Z_bf[i, j]).coeffs[1] = constant_term(tmp3110[i, j]) + constant_term(Z_bf_3[i, j]) - (Z_bf[i, j]).coeffs[2:order + 1] .= zero((Z_bf[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1328[i, j]) + (tmp1328[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) + TaylorSeries.zero!(X_bf[i, j]) + (X_bf[i, j]).coeffs[1] = constant_term(tmp1328[i, j]) + constant_term(X_bf_3[i, j]) + TaylorSeries.zero!(tmp1330[i, j]) + (tmp1330[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) + TaylorSeries.zero!(Y_bf[i, j]) + (Y_bf[i, j]).coeffs[1] = constant_term(tmp1330[i, j]) + constant_term(Y_bf_3[i, j]) + TaylorSeries.zero!(tmp1332[i, j]) + (tmp1332[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) + TaylorSeries.zero!(Z_bf[i, j]) + (Z_bf[i, j]).coeffs[1] = constant_term(tmp1332[i, j]) + constant_term(Z_bf_3[i, j]) + TaylorSeries.zero!(sin_ϕ[i, j]) (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) - (sin_ϕ[i, j]).coeffs[2:order + 1] .= zero((sin_ϕ[i, j]).coeffs[1]) - (tmp3114[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) - (tmp3114[i, j]).coeffs[2:order + 1] .= zero((tmp3114[i, j]).coeffs[1]) - (tmp3116[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) - (tmp3116[i, j]).coeffs[2:order + 1] .= zero((tmp3116[i, j]).coeffs[1]) - (tmp3117[i, j]).coeffs[1] = constant_term(tmp3114[i, j]) + constant_term(tmp3116[i, j]) - (tmp3117[i, j]).coeffs[2:order + 1] .= zero((tmp3117[i, j]).coeffs[1]) - (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp3117[i, j])) - (r_xy[i, j]).coeffs[2:order + 1] .= zero((r_xy[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1336[i, j]) + (tmp1336[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp1338[i, j]) + (tmp1338[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp1339[i, j]) + (tmp1339[i, j]).coeffs[1] = constant_term(tmp1336[i, j]) + constant_term(tmp1338[i, j]) + TaylorSeries.zero!(r_xy[i, j]) + (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp1339[i, j])) + TaylorSeries.zero!(cos_ϕ[i, j]) (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) - (cos_ϕ[i, j]).coeffs[2:order + 1] .= zero((cos_ϕ[i, j]).coeffs[1]) + TaylorSeries.zero!(sin_λ[i, j]) (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) - (sin_λ[i, j]).coeffs[2:order + 1] .= zero((sin_λ[i, j]).coeffs[1]) + TaylorSeries.zero!(cos_λ[i, j]) (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) - (cos_λ[i, j]).coeffs[2:order + 1] .= zero((cos_λ[i, j]).coeffs[1]) + TaylorSeries.zero!(P_n[i, j, 1]) (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) - (P_n[i, j, 1]).coeffs[2:order + 1] .= zero((P_n[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(P_n[i, j, 2]) (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - (P_n[i, j, 2]).coeffs[2:order + 1] .= zero((P_n[i, j, 2]).coeffs[1]) + TaylorSeries.zero!(dP_n[i, j, 1]) (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) - (dP_n[i, j, 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(dP_n[i, j, 2]) (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) - (dP_n[i, j, 2]).coeffs[2:order + 1] .= zero((dP_n[i, j, 2]).coeffs[1]) for n = 2:n1SEM[j] - (tmp3122[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - (tmp3122[i, j, n]).coeffs[2:order + 1] .= zero((tmp3122[i, j, n]).coeffs[1]) - (tmp3123[i, j, n]).coeffs[1] = constant_term(tmp3122[i, j, n]) * constant_term(fact1_jsem[n]) - (tmp3123[i, j, n]).coeffs[2:order + 1] .= zero((tmp3123[i, j, n]).coeffs[1]) - (tmp3124[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) - (tmp3124[i, j, n - 1]).coeffs[2:order + 1] .= zero((tmp3124[i, j, n - 1]).coeffs[1]) - (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3123[i, j, n]) - constant_term(tmp3124[i, j, n - 1]) - (P_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((P_n[i, j, n + 1]).coeffs[1]) - (tmp3126[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - (tmp3126[i, j, n]).coeffs[2:order + 1] .= zero((tmp3126[i, j, n]).coeffs[1]) - (tmp3127[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) - (tmp3127[i, j, n]).coeffs[2:order + 1] .= zero((tmp3127[i, j, n]).coeffs[1]) - (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3126[i, j, n]) + constant_term(tmp3127[i, j, n]) - (dP_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, n + 1]).coeffs[1]) + TaylorSeries.zero!(tmp1344[i, j, n]) + (tmp1344[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp1345[i, j, n]) + (tmp1345[i, j, n]).coeffs[1] = constant_term(tmp1344[i, j, n]) * constant_term(fact1_jsem[n]) + TaylorSeries.zero!(tmp1346[i, j, n - 1]) + (tmp1346[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) + TaylorSeries.zero!(P_n[i, j, n + 1]) + (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1345[i, j, n]) - constant_term(tmp1346[i, j, n - 1]) + TaylorSeries.zero!(tmp1348[i, j, n]) + (tmp1348[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp1349[i, j, n]) + (tmp1349[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) + TaylorSeries.zero!(dP_n[i, j, n + 1]) + (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1348[i, j, n]) + constant_term(tmp1349[i, j, n]) + TaylorSeries.zero!(temp_rn[i, j, n]) (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) - (temp_rn[i, j, n]).coeffs[2:order + 1] .= zero((temp_rn[i, j, n]).coeffs[1]) end + TaylorSeries.zero!(r_p4[i, j]) (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) - (r_p4[i, j]).coeffs[2:order + 1] .= zero((r_p4[i, j]).coeffs[1]) - (tmp3132[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) - (tmp3132[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3132[i, j, 3]).coeffs[1]) - (tmp3133[i, j, 3]).coeffs[1] = constant_term(tmp3132[i, j, 3]) * constant_term(J2_t[j]) - (tmp3133[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3133[i, j, 3]).coeffs[1]) - (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp3133[i, j, 3]) / constant_term(r_p4[i, j]) - (F_J_ξ[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ[i, j]).coeffs[1]) - (tmp3135[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) - (tmp3135[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3135[i, j, 3]).coeffs[1]) - (tmp3136[i, j, 3]).coeffs[1] = constant_term(tmp3135[i, j, 3]) * constant_term(cos_ϕ[i, j]) - (tmp3136[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3136[i, j, 3]).coeffs[1]) - (tmp3137[i, j, 3]).coeffs[1] = constant_term(tmp3136[i, j, 3]) * constant_term(J2_t[j]) - (tmp3137[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3137[i, j, 3]).coeffs[1]) - (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp3137[i, j, 3]) / constant_term(r_p4[i, j]) - (F_J_ζ[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1354[i, j, 3]) + (tmp1354[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) + TaylorSeries.zero!(tmp1355[i, j, 3]) + (tmp1355[i, j, 3]).coeffs[1] = constant_term(tmp1354[i, j, 3]) * constant_term(J2_t[j]) + TaylorSeries.zero!(F_J_ξ[i, j]) + (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp1355[i, j, 3]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(tmp1357[i, j, 3]) + (tmp1357[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) + TaylorSeries.zero!(tmp1358[i, j, 3]) + (tmp1358[i, j, 3]).coeffs[1] = constant_term(tmp1357[i, j, 3]) * constant_term(cos_ϕ[i, j]) + TaylorSeries.zero!(tmp1359[i, j, 3]) + (tmp1359[i, j, 3]).coeffs[1] = constant_term(tmp1358[i, j, 3]) * constant_term(J2_t[j]) + TaylorSeries.zero!(F_J_ζ[i, j]) + (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp1359[i, j, 3]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(F_J_ξ_36[i, j]) (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_J_ζ_36[i, j]) (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) for n = 3:n1SEM[j] - (tmp3139[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) - (tmp3139[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3139[i, j, n + 1]).coeffs[1]) - (tmp3140[i, j, n + 1]).coeffs[1] = constant_term(tmp3139[i, j, n + 1]) * constant_term(JSEM[j, n]) - (tmp3140[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3140[i, j, n + 1]).coeffs[1]) - (tmp3141[i, j, n + 1]).coeffs[1] = constant_term(tmp3140[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - (tmp3141[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3141[i, j, n + 1]).coeffs[1]) - (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp3141[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) - (temp_fjξ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjξ[i, j, n]).coeffs[1]) - (tmp3143[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) - (tmp3143[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3143[i, j, n + 1]).coeffs[1]) - (tmp3144[i, j, n + 1]).coeffs[1] = constant_term(tmp3143[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) - (tmp3144[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3144[i, j, n + 1]).coeffs[1]) - (tmp3145[i, j, n + 1]).coeffs[1] = constant_term(tmp3144[i, j, n + 1]) * constant_term(JSEM[j, n]) - (tmp3145[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3145[i, j, n + 1]).coeffs[1]) - (tmp3146[i, j, n + 1]).coeffs[1] = constant_term(tmp3145[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - (tmp3146[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3146[i, j, n + 1]).coeffs[1]) - (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp3146[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) - (temp_fjζ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjζ[i, j, n]).coeffs[1]) + TaylorSeries.zero!(tmp1361[i, j, n + 1]) + (tmp1361[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) + TaylorSeries.zero!(tmp1362[i, j, n + 1]) + (tmp1362[i, j, n + 1]).coeffs[1] = constant_term(tmp1361[i, j, n + 1]) * constant_term(JSEM[j, n]) + TaylorSeries.zero!(tmp1363[i, j, n + 1]) + (tmp1363[i, j, n + 1]).coeffs[1] = constant_term(tmp1362[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_fjξ[i, j, n]) + (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp1363[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) + TaylorSeries.zero!(tmp1365[i, j, n + 1]) + (tmp1365[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) + TaylorSeries.zero!(tmp1366[i, j, n + 1]) + (tmp1366[i, j, n + 1]).coeffs[1] = constant_term(tmp1365[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) + TaylorSeries.zero!(tmp1367[i, j, n + 1]) + (tmp1367[i, j, n + 1]).coeffs[1] = constant_term(tmp1366[i, j, n + 1]) * constant_term(JSEM[j, n]) + TaylorSeries.zero!(tmp1368[i, j, n + 1]) + (tmp1368[i, j, n + 1]).coeffs[1] = constant_term(tmp1367[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_fjζ[i, j, n]) + (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp1368[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) + TaylorSeries.zero!(F_J_ξ_36[i, j]) (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) - (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_J_ζ_36[i, j]) (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) - (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) end if j == mo for m = 1:n1SEM[mo] if m == 1 + TaylorSeries.zero!(sin_mλ[i, j, 1]) (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) - (sin_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(cos_mλ[i, j, 1]) (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - (cos_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(secϕ_P_nm[i, j, 1, 1]) (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) - (secϕ_P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, 1, 1]).coeffs[1]) + TaylorSeries.zero!(P_nm[i, j, 1, 1]) (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - (P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((P_nm[i, j, 1, 1]).coeffs[1]) + TaylorSeries.zero!(cosϕ_dP_nm[i, j, 1, 1]) (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) - (cosϕ_dP_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, 1, 1]).coeffs[1]) else - (tmp3149[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - (tmp3149[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3149[i, j, m - 1]).coeffs[1]) - (tmp3150[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - (tmp3150[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3150[i, j, m - 1]).coeffs[1]) - (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp3149[i, j, m - 1]) + constant_term(tmp3150[i, j, m - 1]) - (sin_mλ[i, j, m]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, m]).coeffs[1]) - (tmp3152[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - (tmp3152[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3152[i, j, m - 1]).coeffs[1]) - (tmp3153[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - (tmp3153[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3153[i, j, m - 1]).coeffs[1]) - (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp3152[i, j, m - 1]) - constant_term(tmp3153[i, j, m - 1]) - (cos_mλ[i, j, m]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, m]).coeffs[1]) - (tmp3155[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) - (tmp3155[i, j, m - 1, m - 1]).coeffs[2:order + 1] .= zero((tmp3155[i, j, m - 1, m - 1]).coeffs[1]) - (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3155[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) - (secϕ_P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, m, m]).coeffs[1]) + TaylorSeries.zero!(tmp1371[i, j, m - 1]) + (tmp1371[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1372[i, j, m - 1]) + (tmp1372[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(sin_mλ[i, j, m]) + (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp1371[i, j, m - 1]) + constant_term(tmp1372[i, j, m - 1]) + TaylorSeries.zero!(tmp1374[i, j, m - 1]) + (tmp1374[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1375[i, j, m - 1]) + (tmp1375[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(cos_mλ[i, j, m]) + (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp1374[i, j, m - 1]) - constant_term(tmp1375[i, j, m - 1]) + TaylorSeries.zero!(tmp1377[i, j, m - 1, m - 1]) + (tmp1377[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) + TaylorSeries.zero!(secϕ_P_nm[i, j, m, m]) + (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1377[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) + TaylorSeries.zero!(P_nm[i, j, m, m]) (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) - (P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, m, m]).coeffs[1]) - (tmp3158[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) - (tmp3158[i, j, m, m]).coeffs[2:order + 1] .= zero((tmp3158[i, j, m, m]).coeffs[1]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3158[i, j, m, m]) * constant_term(lnm3[m]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, m, m]).coeffs[1]) + TaylorSeries.zero!(tmp1380[i, j, m, m]) + (tmp1380[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(cosϕ_dP_nm[i, j, m, m]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1380[i, j, m, m]) * constant_term(lnm3[m]) end for n = m + 1:n1SEM[mo] if n == m + 1 - (tmp3160[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - (tmp3160[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3160[i, j, n - 1, m]).coeffs[1]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3160[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp1382[i, j, n - 1, m]) + (tmp1382[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1382[i, j, n - 1, m]) * constant_term(lnm1[n, m]) else - (tmp3162[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - (tmp3162[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3162[i, j, n - 1, m]).coeffs[1]) - (tmp3163[i, j, n - 1, m]).coeffs[1] = constant_term(tmp3162[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - (tmp3163[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3163[i, j, n - 1, m]).coeffs[1]) - (tmp3164[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) - (tmp3164[i, j, n - 2, m]).coeffs[2:order + 1] .= zero((tmp3164[i, j, n - 2, m]).coeffs[1]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3163[i, j, n - 1, m]) + constant_term(tmp3164[i, j, n - 2, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp1384[i, j, n - 1, m]) + (tmp1384[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp1385[i, j, n - 1, m]) + (tmp1385[i, j, n - 1, m]).coeffs[1] = constant_term(tmp1384[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + TaylorSeries.zero!(tmp1386[i, j, n - 2, m]) + (tmp1386[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) + TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1385[i, j, n - 1, m]) + constant_term(tmp1386[i, j, n - 2, m]) end + TaylorSeries.zero!(P_nm[i, j, n, m]) (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) - (P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, n, m]).coeffs[1]) - (tmp3167[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) - (tmp3167[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3167[i, j, n, m]).coeffs[1]) - (tmp3168[i, j, n, m]).coeffs[1] = constant_term(tmp3167[i, j, n, m]) * constant_term(lnm3[n]) - (tmp3168[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3168[i, j, n, m]).coeffs[1]) - (tmp3169[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) - (tmp3169[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3169[i, j, n - 1, m]).coeffs[1]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3168[i, j, n, m]) + constant_term(tmp3169[i, j, n - 1, m]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp1389[i, j, n, m]) + (tmp1389[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp1390[i, j, n, m]) + (tmp1390[i, j, n, m]).coeffs[1] = constant_term(tmp1389[i, j, n, m]) * constant_term(lnm3[n]) + TaylorSeries.zero!(tmp1391[i, j, n - 1, m]) + (tmp1391[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) + TaylorSeries.zero!(cosϕ_dP_nm[i, j, n, m]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1390[i, j, n, m]) + constant_term(tmp1391[i, j, n - 1, m]) end end - (tmp3171[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) - (tmp3171[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3171[i, j, 2, 1]).coeffs[1]) - (tmp3172[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp3172[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3172[i, j, 1]).coeffs[1]) - (tmp3173[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp3173[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3173[i, j, 1]).coeffs[1]) - (tmp3174[i, j, 1]).coeffs[1] = constant_term(tmp3172[i, j, 1]) + constant_term(tmp3173[i, j, 1]) - (tmp3174[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3174[i, j, 1]).coeffs[1]) - (tmp3175[i, j, 2, 1]).coeffs[1] = constant_term(tmp3171[i, j, 2, 1]) * constant_term(tmp3174[i, j, 1]) - (tmp3175[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3175[i, j, 2, 1]).coeffs[1]) - (tmp3176[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) - (tmp3176[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3176[i, j, 2, 2]).coeffs[1]) - (tmp3177[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp3177[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3177[i, j, 2]).coeffs[1]) - (tmp3178[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp3178[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3178[i, j, 2]).coeffs[1]) - (tmp3179[i, j, 2]).coeffs[1] = constant_term(tmp3177[i, j, 2]) + constant_term(tmp3178[i, j, 2]) - (tmp3179[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3179[i, j, 2]).coeffs[1]) - (tmp3180[i, j, 2, 2]).coeffs[1] = constant_term(tmp3176[i, j, 2, 2]) * constant_term(tmp3179[i, j, 2]) - (tmp3180[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3180[i, j, 2, 2]).coeffs[1]) - (tmp3181[i, j, 2, 1]).coeffs[1] = constant_term(tmp3175[i, j, 2, 1]) + constant_term(tmp3180[i, j, 2, 2]) - (tmp3181[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3181[i, j, 2, 1]).coeffs[1]) - (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp3181[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ[i, j]).coeffs[1]) - (tmp3183[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) - (tmp3183[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3183[i, j, 2, 1]).coeffs[1]) - (tmp3184[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp3184[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3184[i, j, 1]).coeffs[1]) - (tmp3185[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp3185[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3185[i, j, 1]).coeffs[1]) - (tmp3186[i, j, 1]).coeffs[1] = constant_term(tmp3184[i, j, 1]) - constant_term(tmp3185[i, j, 1]) - (tmp3186[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3186[i, j, 1]).coeffs[1]) - (tmp3187[i, j, 2, 1]).coeffs[1] = constant_term(tmp3183[i, j, 2, 1]) * constant_term(tmp3186[i, j, 1]) - (tmp3187[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3187[i, j, 2, 1]).coeffs[1]) - (tmp3188[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) - (tmp3188[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3188[i, j, 2, 2]).coeffs[1]) - (tmp3189[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp3189[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3189[i, j, 2]).coeffs[1]) - (tmp3190[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp3190[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3190[i, j, 2]).coeffs[1]) - (tmp3191[i, j, 2]).coeffs[1] = constant_term(tmp3189[i, j, 2]) - constant_term(tmp3190[i, j, 2]) - (tmp3191[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3191[i, j, 2]).coeffs[1]) - (tmp3192[i, j, 2, 2]).coeffs[1] = constant_term(tmp3188[i, j, 2, 2]) * constant_term(tmp3191[i, j, 2]) - (tmp3192[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3192[i, j, 2, 2]).coeffs[1]) - (tmp3193[i, j, 2, 1]).coeffs[1] = constant_term(tmp3187[i, j, 2, 1]) + constant_term(tmp3192[i, j, 2, 2]) - (tmp3193[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3193[i, j, 2, 1]).coeffs[1]) - (F_CS_η[i, j]).coeffs[1] = constant_term(tmp3193[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_η[i, j]).coeffs[2:order + 1] .= zero((F_CS_η[i, j]).coeffs[1]) - (tmp3195[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp3195[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3195[i, j, 1]).coeffs[1]) - (tmp3196[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp3196[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3196[i, j, 1]).coeffs[1]) - (tmp3197[i, j, 1]).coeffs[1] = constant_term(tmp3195[i, j, 1]) + constant_term(tmp3196[i, j, 1]) - (tmp3197[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3197[i, j, 1]).coeffs[1]) - (tmp3198[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3197[i, j, 1]) - (tmp3198[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3198[i, j, 2, 1]).coeffs[1]) - (tmp3199[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp3199[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3199[i, j, 2]).coeffs[1]) - (tmp3200[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp3200[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3200[i, j, 2]).coeffs[1]) - (tmp3201[i, j, 2]).coeffs[1] = constant_term(tmp3199[i, j, 2]) + constant_term(tmp3200[i, j, 2]) - (tmp3201[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3201[i, j, 2]).coeffs[1]) - (tmp3202[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3201[i, j, 2]) - (tmp3202[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3202[i, j, 2, 2]).coeffs[1]) - (tmp3203[i, j, 2, 1]).coeffs[1] = constant_term(tmp3198[i, j, 2, 1]) + constant_term(tmp3202[i, j, 2, 2]) - (tmp3203[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3203[i, j, 2, 1]).coeffs[1]) - (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp3203[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1393[i, j, 2, 1]) + (tmp1393[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) + TaylorSeries.zero!(tmp1394[i, j, 1]) + (tmp1394[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1395[i, j, 1]) + (tmp1395[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1396[i, j, 1]) + (tmp1396[i, j, 1]).coeffs[1] = constant_term(tmp1394[i, j, 1]) + constant_term(tmp1395[i, j, 1]) + TaylorSeries.zero!(tmp1397[i, j, 2, 1]) + (tmp1397[i, j, 2, 1]).coeffs[1] = constant_term(tmp1393[i, j, 2, 1]) * constant_term(tmp1396[i, j, 1]) + TaylorSeries.zero!(tmp1398[i, j, 2, 2]) + (tmp1398[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) + TaylorSeries.zero!(tmp1399[i, j, 2]) + (tmp1399[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + TaylorSeries.zero!(tmp1400[i, j, 2]) + (tmp1400[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + TaylorSeries.zero!(tmp1401[i, j, 2]) + (tmp1401[i, j, 2]).coeffs[1] = constant_term(tmp1399[i, j, 2]) + constant_term(tmp1400[i, j, 2]) + TaylorSeries.zero!(tmp1402[i, j, 2, 2]) + (tmp1402[i, j, 2, 2]).coeffs[1] = constant_term(tmp1398[i, j, 2, 2]) * constant_term(tmp1401[i, j, 2]) + TaylorSeries.zero!(tmp1403[i, j, 2, 1]) + (tmp1403[i, j, 2, 1]).coeffs[1] = constant_term(tmp1397[i, j, 2, 1]) + constant_term(tmp1402[i, j, 2, 2]) + TaylorSeries.zero!(F_CS_ξ[i, j]) + (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp1403[i, j, 2, 1]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(tmp1405[i, j, 2, 1]) + (tmp1405[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) + TaylorSeries.zero!(tmp1406[i, j, 1]) + (tmp1406[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1407[i, j, 1]) + (tmp1407[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1408[i, j, 1]) + (tmp1408[i, j, 1]).coeffs[1] = constant_term(tmp1406[i, j, 1]) - constant_term(tmp1407[i, j, 1]) + TaylorSeries.zero!(tmp1409[i, j, 2, 1]) + (tmp1409[i, j, 2, 1]).coeffs[1] = constant_term(tmp1405[i, j, 2, 1]) * constant_term(tmp1408[i, j, 1]) + TaylorSeries.zero!(tmp1410[i, j, 2, 2]) + (tmp1410[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) + TaylorSeries.zero!(tmp1411[i, j, 2]) + (tmp1411[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) + TaylorSeries.zero!(tmp1412[i, j, 2]) + (tmp1412[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) + TaylorSeries.zero!(tmp1413[i, j, 2]) + (tmp1413[i, j, 2]).coeffs[1] = constant_term(tmp1411[i, j, 2]) - constant_term(tmp1412[i, j, 2]) + TaylorSeries.zero!(tmp1414[i, j, 2, 2]) + (tmp1414[i, j, 2, 2]).coeffs[1] = constant_term(tmp1410[i, j, 2, 2]) * constant_term(tmp1413[i, j, 2]) + TaylorSeries.zero!(tmp1415[i, j, 2, 1]) + (tmp1415[i, j, 2, 1]).coeffs[1] = constant_term(tmp1409[i, j, 2, 1]) + constant_term(tmp1414[i, j, 2, 2]) + TaylorSeries.zero!(F_CS_η[i, j]) + (F_CS_η[i, j]).coeffs[1] = constant_term(tmp1415[i, j, 2, 1]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(tmp1417[i, j, 1]) + (tmp1417[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1418[i, j, 1]) + (tmp1418[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp1419[i, j, 1]) + (tmp1419[i, j, 1]).coeffs[1] = constant_term(tmp1417[i, j, 1]) + constant_term(tmp1418[i, j, 1]) + TaylorSeries.zero!(tmp1420[i, j, 2, 1]) + (tmp1420[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1419[i, j, 1]) + TaylorSeries.zero!(tmp1421[i, j, 2]) + (tmp1421[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + TaylorSeries.zero!(tmp1422[i, j, 2]) + (tmp1422[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + TaylorSeries.zero!(tmp1423[i, j, 2]) + (tmp1423[i, j, 2]).coeffs[1] = constant_term(tmp1421[i, j, 2]) + constant_term(tmp1422[i, j, 2]) + TaylorSeries.zero!(tmp1424[i, j, 2, 2]) + (tmp1424[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1423[i, j, 2]) + TaylorSeries.zero!(tmp1425[i, j, 2, 1]) + (tmp1425[i, j, 2, 1]).coeffs[1] = constant_term(tmp1420[i, j, 2, 1]) + constant_term(tmp1424[i, j, 2, 2]) + TaylorSeries.zero!(F_CS_ζ[i, j]) + (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp1425[i, j, 2, 1]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(F_CS_ξ_36[i, j]) (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_η_36[i, j]) (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_ζ_36[i, j]) (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) for n = 3:n2M for m = 1:n + TaylorSeries.zero!(Cnm_cosmλ[i, j, n, m]) (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) - (Cnm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_cosmλ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(Cnm_sinmλ[i, j, n, m]) (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) - (Cnm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_sinmλ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(Snm_cosmλ[i, j, n, m]) (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) - (Snm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_cosmλ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(Snm_sinmλ[i, j, n, m]) (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) - (Snm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_sinmλ[i, j, n, m]).coeffs[1]) - (tmp3209[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) - (tmp3209[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3209[i, j, n, m]).coeffs[1]) - (tmp3210[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - (tmp3210[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3210[i, j, n, m]).coeffs[1]) - (tmp3211[i, j, n, m]).coeffs[1] = constant_term(tmp3209[i, j, n, m]) * constant_term(tmp3210[i, j, n, m]) - (tmp3211[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3211[i, j, n, m]).coeffs[1]) - (tmp3212[i, j, n, m]).coeffs[1] = constant_term(tmp3211[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp3212[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3212[i, j, n, m]).coeffs[1]) - (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp3212[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) - (temp_CS_ξ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ξ[i, j, n, m]).coeffs[1]) - (tmp3214[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) - (tmp3214[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3214[i, j, n, m]).coeffs[1]) - (tmp3215[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) - (tmp3215[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3215[i, j, n, m]).coeffs[1]) - (tmp3216[i, j, n, m]).coeffs[1] = constant_term(tmp3214[i, j, n, m]) * constant_term(tmp3215[i, j, n, m]) - (tmp3216[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3216[i, j, n, m]).coeffs[1]) - (tmp3217[i, j, n, m]).coeffs[1] = constant_term(tmp3216[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp3217[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3217[i, j, n, m]).coeffs[1]) - (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp3217[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) - (temp_CS_η[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_η[i, j, n, m]).coeffs[1]) - (tmp3219[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - (tmp3219[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3219[i, j, n, m]).coeffs[1]) - (tmp3220[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3219[i, j, n, m]) - (tmp3220[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3220[i, j, n, m]).coeffs[1]) - (tmp3221[i, j, n, m]).coeffs[1] = constant_term(tmp3220[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp3221[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3221[i, j, n, m]).coeffs[1]) - (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp3221[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) - (temp_CS_ζ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ζ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp1431[i, j, n, m]) + (tmp1431[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) + TaylorSeries.zero!(tmp1432[i, j, n, m]) + (tmp1432[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + TaylorSeries.zero!(tmp1433[i, j, n, m]) + (tmp1433[i, j, n, m]).coeffs[1] = constant_term(tmp1431[i, j, n, m]) * constant_term(tmp1432[i, j, n, m]) + TaylorSeries.zero!(tmp1434[i, j, n, m]) + (tmp1434[i, j, n, m]).coeffs[1] = constant_term(tmp1433[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_CS_ξ[i, j, n, m]) + (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp1434[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) + TaylorSeries.zero!(tmp1436[i, j, n, m]) + (tmp1436[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) + TaylorSeries.zero!(tmp1437[i, j, n, m]) + (tmp1437[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) + TaylorSeries.zero!(tmp1438[i, j, n, m]) + (tmp1438[i, j, n, m]).coeffs[1] = constant_term(tmp1436[i, j, n, m]) * constant_term(tmp1437[i, j, n, m]) + TaylorSeries.zero!(tmp1439[i, j, n, m]) + (tmp1439[i, j, n, m]).coeffs[1] = constant_term(tmp1438[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_CS_η[i, j, n, m]) + (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp1439[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) + TaylorSeries.zero!(tmp1441[i, j, n, m]) + (tmp1441[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + TaylorSeries.zero!(tmp1442[i, j, n, m]) + (tmp1442[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1441[i, j, n, m]) + TaylorSeries.zero!(tmp1443[i, j, n, m]) + (tmp1443[i, j, n, m]).coeffs[1] = constant_term(tmp1442[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_CS_ζ[i, j, n, m]) + (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp1443[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) + TaylorSeries.zero!(F_CS_ξ_36[i, j]) (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) - (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_η_36[i, j]) (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) - (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_ζ_36[i, j]) (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) - (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) end end - (tmp3223[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - (tmp3223[i, j]).coeffs[2:order + 1] .= zero((tmp3223[i, j]).coeffs[1]) - (tmp3224[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) - (tmp3224[i, j]).coeffs[2:order + 1] .= zero((tmp3224[i, j]).coeffs[1]) - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp3223[i, j]) + constant_term(tmp3224[i, j]) - (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1445[i, j]) + (tmp1445[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + TaylorSeries.zero!(tmp1446[i, j]) + (tmp1446[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) + TaylorSeries.zero!(F_JCS_ξ[i, j]) + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp1445[i, j]) + constant_term(tmp1446[i, j]) + TaylorSeries.zero!(F_JCS_η[i, j]) (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) - (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) - (tmp3227[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - (tmp3227[i, j]).coeffs[2:order + 1] .= zero((tmp3227[i, j]).coeffs[1]) - (tmp3228[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) - (tmp3228[i, j]).coeffs[2:order + 1] .= zero((tmp3228[i, j]).coeffs[1]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp3227[i, j]) + constant_term(tmp3228[i, j]) - (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1449[i, j]) + (tmp1449[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + TaylorSeries.zero!(tmp1450[i, j]) + (tmp1450[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) + TaylorSeries.zero!(F_JCS_ζ[i, j]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp1449[i, j]) + constant_term(tmp1450[i, j]) else + TaylorSeries.zero!(F_JCS_ξ[i, j]) (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + TaylorSeries.zero!(F_JCS_η[i, j]) (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + TaylorSeries.zero!(F_JCS_ζ[i, j]) (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) end + TaylorSeries.zero!(Rb2p[i, j, 1, 1]) (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) - (Rb2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 1]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 2, 1]) (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) - (Rb2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 1]).coeffs[1]) - (tmp3234[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - (tmp3234[i, j]).coeffs[2:order + 1] .= zero((tmp3234[i, j]).coeffs[1]) - (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3234[i, j]) * constant_term(cos_λ[i, j]) - (Rb2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 1]).coeffs[1]) + TaylorSeries.zero!(tmp1456[i, j]) + (tmp1456[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + TaylorSeries.zero!(Rb2p[i, j, 3, 1]) + (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1456[i, j]) * constant_term(cos_λ[i, j]) + TaylorSeries.zero!(Rb2p[i, j, 1, 2]) (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) - (Rb2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 2]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 2, 2]) (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - (Rb2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 2]).coeffs[1]) - (tmp3237[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - (tmp3237[i, j]).coeffs[2:order + 1] .= zero((tmp3237[i, j]).coeffs[1]) - (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3237[i, j]) * constant_term(sin_λ[i, j]) - (Rb2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 2]).coeffs[1]) + TaylorSeries.zero!(tmp1459[i, j]) + (tmp1459[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + TaylorSeries.zero!(Rb2p[i, j, 3, 2]) + (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1459[i, j]) * constant_term(sin_λ[i, j]) + TaylorSeries.zero!(Rb2p[i, j, 1, 3]) (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - (Rb2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 3]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 2, 3]) (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) - (Rb2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 3]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 3, 3]) (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - (Rb2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 3]).coeffs[1]) - (tmp3239[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) - (tmp3239[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3239[i, j, 1, 1]).coeffs[1]) - (tmp3240[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) - (tmp3240[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3240[i, j, 1, 2]).coeffs[1]) - (tmp3241[i, j, 1, 1]).coeffs[1] = constant_term(tmp3239[i, j, 1, 1]) + constant_term(tmp3240[i, j, 1, 2]) - (tmp3241[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3241[i, j, 1, 1]).coeffs[1]) - (tmp3242[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) - (tmp3242[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3242[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp3241[i, j, 1, 1]) + constant_term(tmp3242[i, j, 1, 3]) - (Gc2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 1]).coeffs[1]) - (tmp3244[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) - (tmp3244[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3244[i, j, 2, 1]).coeffs[1]) - (tmp3245[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) - (tmp3245[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3245[i, j, 2, 2]).coeffs[1]) - (tmp3246[i, j, 2, 1]).coeffs[1] = constant_term(tmp3244[i, j, 2, 1]) + constant_term(tmp3245[i, j, 2, 2]) - (tmp3246[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3246[i, j, 2, 1]).coeffs[1]) - (tmp3247[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) - (tmp3247[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3247[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp3246[i, j, 2, 1]) + constant_term(tmp3247[i, j, 2, 3]) - (Gc2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 1]).coeffs[1]) - (tmp3249[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) - (tmp3249[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3249[i, j, 3, 1]).coeffs[1]) - (tmp3250[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) - (tmp3250[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3250[i, j, 3, 2]).coeffs[1]) - (tmp3251[i, j, 3, 1]).coeffs[1] = constant_term(tmp3249[i, j, 3, 1]) + constant_term(tmp3250[i, j, 3, 2]) - (tmp3251[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3251[i, j, 3, 1]).coeffs[1]) - (tmp3252[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) - (tmp3252[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3252[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3251[i, j, 3, 1]) + constant_term(tmp3252[i, j, 3, 3]) - (Gc2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 1]).coeffs[1]) - (tmp3254[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) - (tmp3254[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3254[i, j, 1, 1]).coeffs[1]) - (tmp3255[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) - (tmp3255[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3255[i, j, 1, 2]).coeffs[1]) - (tmp3256[i, j, 1, 1]).coeffs[1] = constant_term(tmp3254[i, j, 1, 1]) + constant_term(tmp3255[i, j, 1, 2]) - (tmp3256[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3256[i, j, 1, 1]).coeffs[1]) - (tmp3257[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) - (tmp3257[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3257[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp3256[i, j, 1, 1]) + constant_term(tmp3257[i, j, 1, 3]) - (Gc2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 2]).coeffs[1]) - (tmp3259[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) - (tmp3259[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3259[i, j, 2, 1]).coeffs[1]) - (tmp3260[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) - (tmp3260[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3260[i, j, 2, 2]).coeffs[1]) - (tmp3261[i, j, 2, 1]).coeffs[1] = constant_term(tmp3259[i, j, 2, 1]) + constant_term(tmp3260[i, j, 2, 2]) - (tmp3261[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3261[i, j, 2, 1]).coeffs[1]) - (tmp3262[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) - (tmp3262[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3262[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp3261[i, j, 2, 1]) + constant_term(tmp3262[i, j, 2, 3]) - (Gc2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 2]).coeffs[1]) - (tmp3264[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) - (tmp3264[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3264[i, j, 3, 1]).coeffs[1]) - (tmp3265[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) - (tmp3265[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3265[i, j, 3, 2]).coeffs[1]) - (tmp3266[i, j, 3, 1]).coeffs[1] = constant_term(tmp3264[i, j, 3, 1]) + constant_term(tmp3265[i, j, 3, 2]) - (tmp3266[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3266[i, j, 3, 1]).coeffs[1]) - (tmp3267[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) - (tmp3267[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3267[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3266[i, j, 3, 1]) + constant_term(tmp3267[i, j, 3, 3]) - (Gc2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 2]).coeffs[1]) - (tmp3269[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) - (tmp3269[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3269[i, j, 1, 1]).coeffs[1]) - (tmp3270[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) - (tmp3270[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3270[i, j, 1, 2]).coeffs[1]) - (tmp3271[i, j, 1, 1]).coeffs[1] = constant_term(tmp3269[i, j, 1, 1]) + constant_term(tmp3270[i, j, 1, 2]) - (tmp3271[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3271[i, j, 1, 1]).coeffs[1]) - (tmp3272[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) - (tmp3272[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3272[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp3271[i, j, 1, 1]) + constant_term(tmp3272[i, j, 1, 3]) - (Gc2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 3]).coeffs[1]) - (tmp3274[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) - (tmp3274[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3274[i, j, 2, 1]).coeffs[1]) - (tmp3275[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) - (tmp3275[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3275[i, j, 2, 2]).coeffs[1]) - (tmp3276[i, j, 2, 1]).coeffs[1] = constant_term(tmp3274[i, j, 2, 1]) + constant_term(tmp3275[i, j, 2, 2]) - (tmp3276[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3276[i, j, 2, 1]).coeffs[1]) - (tmp3277[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) - (tmp3277[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3277[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp3276[i, j, 2, 1]) + constant_term(tmp3277[i, j, 2, 3]) - (Gc2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 3]).coeffs[1]) - (tmp3279[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) - (tmp3279[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3279[i, j, 3, 1]).coeffs[1]) - (tmp3280[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) - (tmp3280[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3280[i, j, 3, 2]).coeffs[1]) - (tmp3281[i, j, 3, 1]).coeffs[1] = constant_term(tmp3279[i, j, 3, 1]) + constant_term(tmp3280[i, j, 3, 2]) - (tmp3281[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3281[i, j, 3, 1]).coeffs[1]) - (tmp3282[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) - (tmp3282[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3282[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp3281[i, j, 3, 1]) + constant_term(tmp3282[i, j, 3, 3]) - (Gc2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 3]).coeffs[1]) - (tmp3284[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) - (tmp3284[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3284[i, j, 1, 1]).coeffs[1]) - (tmp3285[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) - (tmp3285[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3285[i, j, 2, 1]).coeffs[1]) - (tmp3286[i, j, 1, 1]).coeffs[1] = constant_term(tmp3284[i, j, 1, 1]) + constant_term(tmp3285[i, j, 2, 1]) - (tmp3286[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3286[i, j, 1, 1]).coeffs[1]) - (tmp3287[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) - (tmp3287[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3287[i, j, 3, 1]).coeffs[1]) - (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp3286[i, j, 1, 1]) + constant_term(tmp3287[i, j, 3, 1]) - (F_JCS_x[i, j]).coeffs[2:order + 1] .= zero((F_JCS_x[i, j]).coeffs[1]) - (tmp3289[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) - (tmp3289[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3289[i, j, 1, 2]).coeffs[1]) - (tmp3290[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) - (tmp3290[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3290[i, j, 2, 2]).coeffs[1]) - (tmp3291[i, j, 1, 2]).coeffs[1] = constant_term(tmp3289[i, j, 1, 2]) + constant_term(tmp3290[i, j, 2, 2]) - (tmp3291[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3291[i, j, 1, 2]).coeffs[1]) - (tmp3292[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) - (tmp3292[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3292[i, j, 3, 2]).coeffs[1]) - (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp3291[i, j, 1, 2]) + constant_term(tmp3292[i, j, 3, 2]) - (F_JCS_y[i, j]).coeffs[2:order + 1] .= zero((F_JCS_y[i, j]).coeffs[1]) - (tmp3294[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) - (tmp3294[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3294[i, j, 1, 3]).coeffs[1]) - (tmp3295[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) - (tmp3295[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3295[i, j, 2, 3]).coeffs[1]) - (tmp3296[i, j, 1, 3]).coeffs[1] = constant_term(tmp3294[i, j, 1, 3]) + constant_term(tmp3295[i, j, 2, 3]) - (tmp3296[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3296[i, j, 1, 3]).coeffs[1]) - (tmp3297[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) - (tmp3297[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3297[i, j, 3, 3]).coeffs[1]) - (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp3296[i, j, 1, 3]) + constant_term(tmp3297[i, j, 3, 3]) - (F_JCS_z[i, j]).coeffs[2:order + 1] .= zero((F_JCS_z[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1461[i, j, 1, 1]) + (tmp1461[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) + TaylorSeries.zero!(tmp1462[i, j, 1, 2]) + (tmp1462[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) + TaylorSeries.zero!(tmp1463[i, j, 1, 1]) + (tmp1463[i, j, 1, 1]).coeffs[1] = constant_term(tmp1461[i, j, 1, 1]) + constant_term(tmp1462[i, j, 1, 2]) + TaylorSeries.zero!(tmp1464[i, j, 1, 3]) + (tmp1464[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) + TaylorSeries.zero!(Gc2p[i, j, 1, 1]) + (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp1463[i, j, 1, 1]) + constant_term(tmp1464[i, j, 1, 3]) + TaylorSeries.zero!(tmp1466[i, j, 2, 1]) + (tmp1466[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) + TaylorSeries.zero!(tmp1467[i, j, 2, 2]) + (tmp1467[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) + TaylorSeries.zero!(tmp1468[i, j, 2, 1]) + (tmp1468[i, j, 2, 1]).coeffs[1] = constant_term(tmp1466[i, j, 2, 1]) + constant_term(tmp1467[i, j, 2, 2]) + TaylorSeries.zero!(tmp1469[i, j, 2, 3]) + (tmp1469[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) + TaylorSeries.zero!(Gc2p[i, j, 2, 1]) + (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp1468[i, j, 2, 1]) + constant_term(tmp1469[i, j, 2, 3]) + TaylorSeries.zero!(tmp1471[i, j, 3, 1]) + (tmp1471[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) + TaylorSeries.zero!(tmp1472[i, j, 3, 2]) + (tmp1472[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) + TaylorSeries.zero!(tmp1473[i, j, 3, 1]) + (tmp1473[i, j, 3, 1]).coeffs[1] = constant_term(tmp1471[i, j, 3, 1]) + constant_term(tmp1472[i, j, 3, 2]) + TaylorSeries.zero!(tmp1474[i, j, 3, 3]) + (tmp1474[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) + TaylorSeries.zero!(Gc2p[i, j, 3, 1]) + (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1473[i, j, 3, 1]) + constant_term(tmp1474[i, j, 3, 3]) + TaylorSeries.zero!(tmp1476[i, j, 1, 1]) + (tmp1476[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) + TaylorSeries.zero!(tmp1477[i, j, 1, 2]) + (tmp1477[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) + TaylorSeries.zero!(tmp1478[i, j, 1, 1]) + (tmp1478[i, j, 1, 1]).coeffs[1] = constant_term(tmp1476[i, j, 1, 1]) + constant_term(tmp1477[i, j, 1, 2]) + TaylorSeries.zero!(tmp1479[i, j, 1, 3]) + (tmp1479[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) + TaylorSeries.zero!(Gc2p[i, j, 1, 2]) + (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp1478[i, j, 1, 1]) + constant_term(tmp1479[i, j, 1, 3]) + TaylorSeries.zero!(tmp1481[i, j, 2, 1]) + (tmp1481[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) + TaylorSeries.zero!(tmp1482[i, j, 2, 2]) + (tmp1482[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) + TaylorSeries.zero!(tmp1483[i, j, 2, 1]) + (tmp1483[i, j, 2, 1]).coeffs[1] = constant_term(tmp1481[i, j, 2, 1]) + constant_term(tmp1482[i, j, 2, 2]) + TaylorSeries.zero!(tmp1484[i, j, 2, 3]) + (tmp1484[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) + TaylorSeries.zero!(Gc2p[i, j, 2, 2]) + (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp1483[i, j, 2, 1]) + constant_term(tmp1484[i, j, 2, 3]) + TaylorSeries.zero!(tmp1486[i, j, 3, 1]) + (tmp1486[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) + TaylorSeries.zero!(tmp1487[i, j, 3, 2]) + (tmp1487[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) + TaylorSeries.zero!(tmp1488[i, j, 3, 1]) + (tmp1488[i, j, 3, 1]).coeffs[1] = constant_term(tmp1486[i, j, 3, 1]) + constant_term(tmp1487[i, j, 3, 2]) + TaylorSeries.zero!(tmp1489[i, j, 3, 3]) + (tmp1489[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) + TaylorSeries.zero!(Gc2p[i, j, 3, 2]) + (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1488[i, j, 3, 1]) + constant_term(tmp1489[i, j, 3, 3]) + TaylorSeries.zero!(tmp1491[i, j, 1, 1]) + (tmp1491[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) + TaylorSeries.zero!(tmp1492[i, j, 1, 2]) + (tmp1492[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) + TaylorSeries.zero!(tmp1493[i, j, 1, 1]) + (tmp1493[i, j, 1, 1]).coeffs[1] = constant_term(tmp1491[i, j, 1, 1]) + constant_term(tmp1492[i, j, 1, 2]) + TaylorSeries.zero!(tmp1494[i, j, 1, 3]) + (tmp1494[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) + TaylorSeries.zero!(Gc2p[i, j, 1, 3]) + (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp1493[i, j, 1, 1]) + constant_term(tmp1494[i, j, 1, 3]) + TaylorSeries.zero!(tmp1496[i, j, 2, 1]) + (tmp1496[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) + TaylorSeries.zero!(tmp1497[i, j, 2, 2]) + (tmp1497[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) + TaylorSeries.zero!(tmp1498[i, j, 2, 1]) + (tmp1498[i, j, 2, 1]).coeffs[1] = constant_term(tmp1496[i, j, 2, 1]) + constant_term(tmp1497[i, j, 2, 2]) + TaylorSeries.zero!(tmp1499[i, j, 2, 3]) + (tmp1499[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) + TaylorSeries.zero!(Gc2p[i, j, 2, 3]) + (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp1498[i, j, 2, 1]) + constant_term(tmp1499[i, j, 2, 3]) + TaylorSeries.zero!(tmp1501[i, j, 3, 1]) + (tmp1501[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) + TaylorSeries.zero!(tmp1502[i, j, 3, 2]) + (tmp1502[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) + TaylorSeries.zero!(tmp1503[i, j, 3, 1]) + (tmp1503[i, j, 3, 1]).coeffs[1] = constant_term(tmp1501[i, j, 3, 1]) + constant_term(tmp1502[i, j, 3, 2]) + TaylorSeries.zero!(tmp1504[i, j, 3, 3]) + (tmp1504[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) + TaylorSeries.zero!(Gc2p[i, j, 3, 3]) + (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp1503[i, j, 3, 1]) + constant_term(tmp1504[i, j, 3, 3]) + TaylorSeries.zero!(tmp1506[i, j, 1, 1]) + (tmp1506[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) + TaylorSeries.zero!(tmp1507[i, j, 2, 1]) + (tmp1507[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) + TaylorSeries.zero!(tmp1508[i, j, 1, 1]) + (tmp1508[i, j, 1, 1]).coeffs[1] = constant_term(tmp1506[i, j, 1, 1]) + constant_term(tmp1507[i, j, 2, 1]) + TaylorSeries.zero!(tmp1509[i, j, 3, 1]) + (tmp1509[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) + TaylorSeries.zero!(F_JCS_x[i, j]) + (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp1508[i, j, 1, 1]) + constant_term(tmp1509[i, j, 3, 1]) + TaylorSeries.zero!(tmp1511[i, j, 1, 2]) + (tmp1511[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) + TaylorSeries.zero!(tmp1512[i, j, 2, 2]) + (tmp1512[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) + TaylorSeries.zero!(tmp1513[i, j, 1, 2]) + (tmp1513[i, j, 1, 2]).coeffs[1] = constant_term(tmp1511[i, j, 1, 2]) + constant_term(tmp1512[i, j, 2, 2]) + TaylorSeries.zero!(tmp1514[i, j, 3, 2]) + (tmp1514[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) + TaylorSeries.zero!(F_JCS_y[i, j]) + (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp1513[i, j, 1, 2]) + constant_term(tmp1514[i, j, 3, 2]) + TaylorSeries.zero!(tmp1516[i, j, 1, 3]) + (tmp1516[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) + TaylorSeries.zero!(tmp1517[i, j, 2, 3]) + (tmp1517[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) + TaylorSeries.zero!(tmp1518[i, j, 1, 3]) + (tmp1518[i, j, 1, 3]).coeffs[1] = constant_term(tmp1516[i, j, 1, 3]) + constant_term(tmp1517[i, j, 2, 3]) + TaylorSeries.zero!(tmp1519[i, j, 3, 3]) + (tmp1519[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) + TaylorSeries.zero!(F_JCS_z[i, j]) + (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp1518[i, j, 1, 3]) + constant_term(tmp1519[i, j, 3, 3]) end end end @@ -3166,760 +3558,760 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: continue else if UJ_interaction[i, j] - (tmp3299[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) - (tmp3299[i, j]).coeffs[2:order + 1] .= zero((tmp3299[i, j]).coeffs[1]) - (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp3299[i, j]) - (temp_accX_j[i, j]).coeffs[2:order + 1] .= zero((temp_accX_j[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1521[i, j]) + (tmp1521[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(temp_accX_j[i, j]) + (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp1521[i, j]) + TaylorSeries.zero!(accX[j]) (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) - (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) - (tmp3301[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) - (tmp3301[i, j]).coeffs[2:order + 1] .= zero((tmp3301[i, j]).coeffs[1]) - (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp3301[i, j]) - (temp_accY_j[i, j]).coeffs[2:order + 1] .= zero((temp_accY_j[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1523[i, j]) + (tmp1523[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(temp_accY_j[i, j]) + (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp1523[i, j]) + TaylorSeries.zero!(accY[j]) (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) - (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) - (tmp3303[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) - (tmp3303[i, j]).coeffs[2:order + 1] .= zero((tmp3303[i, j]).coeffs[1]) - (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp3303[i, j]) - (temp_accZ_j[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_j[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1525[i, j]) + (tmp1525[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(temp_accZ_j[i, j]) + (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp1525[i, j]) + TaylorSeries.zero!(accZ[j]) (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) - (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) - (tmp3305[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) - (tmp3305[i, j]).coeffs[2:order + 1] .= zero((tmp3305[i, j]).coeffs[1]) - (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp3305[i, j]) - (temp_accX_i[i, j]).coeffs[2:order + 1] .= zero((temp_accX_i[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1527[i, j]) + (tmp1527[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(temp_accX_i[i, j]) + (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp1527[i, j]) + TaylorSeries.zero!(accX[i]) (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) - (accX[i]).coeffs[2:order + 1] .= zero((accX[i]).coeffs[1]) - (tmp3307[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) - (tmp3307[i, j]).coeffs[2:order + 1] .= zero((tmp3307[i, j]).coeffs[1]) - (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp3307[i, j]) - (temp_accY_i[i, j]).coeffs[2:order + 1] .= zero((temp_accY_i[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1529[i, j]) + (tmp1529[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(temp_accY_i[i, j]) + (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp1529[i, j]) + TaylorSeries.zero!(accY[i]) (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) - (accY[i]).coeffs[2:order + 1] .= zero((accY[i]).coeffs[1]) - (tmp3309[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) - (tmp3309[i, j]).coeffs[2:order + 1] .= zero((tmp3309[i, j]).coeffs[1]) - (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp3309[i, j]) - (temp_accZ_i[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_i[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1531[i, j]) + (tmp1531[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(temp_accZ_i[i, j]) + (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp1531[i, j]) + TaylorSeries.zero!(accZ[i]) (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) - (accZ[i]).coeffs[2:order + 1] .= zero((accZ[i]).coeffs[1]) if j == mo - (tmp3311[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) - (tmp3311[i, j]).coeffs[2:order + 1] .= zero((tmp3311[i, j]).coeffs[1]) - (tmp3312[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) - (tmp3312[i, j]).coeffs[2:order + 1] .= zero((tmp3312[i, j]).coeffs[1]) - (tmp3313[i, j]).coeffs[1] = constant_term(tmp3311[i, j]) - constant_term(tmp3312[i, j]) - (tmp3313[i, j]).coeffs[2:order + 1] .= zero((tmp3313[i, j]).coeffs[1]) - (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3313[i, j]) - (N_MfigM_pmA_x[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_x[i]).coeffs[1]) - (tmp3315[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) - (tmp3315[i, j]).coeffs[2:order + 1] .= zero((tmp3315[i, j]).coeffs[1]) - (tmp3316[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) - (tmp3316[i, j]).coeffs[2:order + 1] .= zero((tmp3316[i, j]).coeffs[1]) - (tmp3317[i, j]).coeffs[1] = constant_term(tmp3315[i, j]) - constant_term(tmp3316[i, j]) - (tmp3317[i, j]).coeffs[2:order + 1] .= zero((tmp3317[i, j]).coeffs[1]) - (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3317[i, j]) - (N_MfigM_pmA_y[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_y[i]).coeffs[1]) - (tmp3319[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) - (tmp3319[i, j]).coeffs[2:order + 1] .= zero((tmp3319[i, j]).coeffs[1]) - (tmp3320[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) - (tmp3320[i, j]).coeffs[2:order + 1] .= zero((tmp3320[i, j]).coeffs[1]) - (tmp3321[i, j]).coeffs[1] = constant_term(tmp3319[i, j]) - constant_term(tmp3320[i, j]) - (tmp3321[i, j]).coeffs[2:order + 1] .= zero((tmp3321[i, j]).coeffs[1]) - (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3321[i, j]) - (N_MfigM_pmA_z[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_z[i]).coeffs[1]) + TaylorSeries.zero!(tmp1533[i, j]) + (tmp1533[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(tmp1534[i, j]) + (tmp1534[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(tmp1535[i, j]) + (tmp1535[i, j]).coeffs[1] = constant_term(tmp1533[i, j]) - constant_term(tmp1534[i, j]) + TaylorSeries.zero!(N_MfigM_pmA_x[i]) + (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1535[i, j]) + TaylorSeries.zero!(tmp1537[i, j]) + (tmp1537[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(tmp1538[i, j]) + (tmp1538[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(tmp1539[i, j]) + (tmp1539[i, j]).coeffs[1] = constant_term(tmp1537[i, j]) - constant_term(tmp1538[i, j]) + TaylorSeries.zero!(N_MfigM_pmA_y[i]) + (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1539[i, j]) + TaylorSeries.zero!(tmp1541[i, j]) + (tmp1541[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(tmp1542[i, j]) + (tmp1542[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(tmp1543[i, j]) + (tmp1543[i, j]).coeffs[1] = constant_term(tmp1541[i, j]) - constant_term(tmp1542[i, j]) + TaylorSeries.zero!(N_MfigM_pmA_z[i]) + (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1543[i, j]) + TaylorSeries.zero!(temp_N_M_x[i]) (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]) - (temp_N_M_x[i]).coeffs[2:order + 1] .= zero((temp_N_M_x[i]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[1]) (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) - (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + TaylorSeries.zero!(temp_N_M_y[i]) (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]) - (temp_N_M_y[i]).coeffs[2:order + 1] .= zero((temp_N_M_y[i]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[2]) (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) - (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + TaylorSeries.zero!(temp_N_M_z[i]) (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(N_MfigM_pmA_z[i]) - (temp_N_M_z[i]).coeffs[2:order + 1] .= zero((temp_N_M_z[i]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[3]) (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) - (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) end end end end end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:656 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:658 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue else + TaylorSeries.zero!(_4ϕj[i, j]) (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) - (_4ϕj[i, j]).coeffs[2:order + 1] .= zero((_4ϕj[i, j]).coeffs[1]) + TaylorSeries.zero!(ϕi_plus_4ϕj[i, j]) (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) - (ϕi_plus_4ϕj[i, j]).coeffs[2:order + 1] .= zero((ϕi_plus_4ϕj[i, j]).coeffs[1]) + TaylorSeries.zero!(_2v2[i, j]) (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) - (_2v2[i, j]).coeffs[2:order + 1] .= zero((_2v2[i, j]).coeffs[1]) + TaylorSeries.zero!(sj2_plus_2si2[i, j]) (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) - (sj2_plus_2si2[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2[i, j]).coeffs[1]) - (tmp3333[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) - (tmp3333[i, j]).coeffs[2:order + 1] .= zero((tmp3333[i, j]).coeffs[1]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3333[i, j]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1555[i, j]) + (tmp1555[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) + TaylorSeries.zero!(sj2_plus_2si2_minus_4vivj[i, j]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1555[i, j]) + TaylorSeries.zero!(ϕs_and_vs[i, j]) (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) - (ϕs_and_vs[i, j]).coeffs[2:order + 1] .= zero((ϕs_and_vs[i, j]).coeffs[1]) + TaylorSeries.zero!(Xij_t_Ui[i, j]) (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) - (Xij_t_Ui[i, j]).coeffs[2:order + 1] .= zero((Xij_t_Ui[i, j]).coeffs[1]) + TaylorSeries.zero!(Yij_t_Vi[i, j]) (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) - (Yij_t_Vi[i, j]).coeffs[2:order + 1] .= zero((Yij_t_Vi[i, j]).coeffs[1]) + TaylorSeries.zero!(Zij_t_Wi[i, j]) (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) - (Zij_t_Wi[i, j]).coeffs[2:order + 1] .= zero((Zij_t_Wi[i, j]).coeffs[1]) - (tmp3339[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) - (tmp3339[i, j]).coeffs[2:order + 1] .= zero((tmp3339[i, j]).coeffs[1]) - (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp3339[i, j]) + constant_term(Zij_t_Wi[i, j]) - (Rij_dot_Vi[i, j]).coeffs[2:order + 1] .= zero((Rij_dot_Vi[i, j]).coeffs[1]) - (tmp3342[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) - (tmp3342[i, j]).coeffs[2:order + 1] .= zero((tmp3342[i, j]).coeffs[1]) - (pn1t7[i, j]).coeffs[1] = constant_term(tmp3342[i, j]) / constant_term(r_p2[i, j]) - (pn1t7[i, j]).coeffs[2:order + 1] .= zero((pn1t7[i, j]).coeffs[1]) - (tmp3345[i, j]).coeffs[1] = constant_term(1.5) * constant_term(pn1t7[i, j]) - (tmp3345[i, j]).coeffs[2:order + 1] .= zero((tmp3345[i, j]).coeffs[1]) - (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3345[i, j]) - (pn1t2_7[i, j]).coeffs[2:order + 1] .= zero((pn1t2_7[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1561[i, j]) + (tmp1561[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) + TaylorSeries.zero!(Rij_dot_Vi[i, j]) + (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp1561[i, j]) + constant_term(Zij_t_Wi[i, j]) + TaylorSeries.zero!(tmp1564[i, j]) + (tmp1564[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(pn1t7[i, j]) + (pn1t7[i, j]).coeffs[1] = constant_term(tmp1564[i, j]) / constant_term(r_p2[i, j]) + TaylorSeries.zero!(tmp1567[i, j]) + (tmp1567[i, j]).coeffs[1] = constant_term(1.5) * constant_term(pn1t7[i, j]) + TaylorSeries.zero!(pn1t2_7[i, j]) + (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1567[i, j]) + TaylorSeries.zero!(pn1t1_7[i, j]) (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) - (pn1t1_7[i, j]).coeffs[2:order + 1] .= zero((pn1t1_7[i, j]).coeffs[1]) end end + TaylorSeries.zero!(pntempX[j]) (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + TaylorSeries.zero!(pntempY[j]) (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + TaylorSeries.zero!(pntempZ[j]) (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:695 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:697 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue else + TaylorSeries.zero!(pNX_t_X[i, j]) (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) - (pNX_t_X[i, j]).coeffs[2:order + 1] .= zero((pNX_t_X[i, j]).coeffs[1]) + TaylorSeries.zero!(pNY_t_Y[i, j]) (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) - (pNY_t_Y[i, j]).coeffs[2:order + 1] .= zero((pNY_t_Y[i, j]).coeffs[1]) + TaylorSeries.zero!(pNZ_t_Z[i, j]) (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) - (pNZ_t_Z[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_Z[i, j]).coeffs[1]) - (tmp3352[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) - (tmp3352[i, j]).coeffs[2:order + 1] .= zero((tmp3352[i, j]).coeffs[1]) - (tmp3353[i, j]).coeffs[1] = constant_term(tmp3352[i, j]) + constant_term(pNZ_t_Z[i, j]) - (tmp3353[i, j]).coeffs[2:order + 1] .= zero((tmp3353[i, j]).coeffs[1]) - (tmp3354[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp3353[i, j]) - (tmp3354[i, j]).coeffs[2:order + 1] .= zero((tmp3354[i, j]).coeffs[1]) - (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp3354[i, j]) - (pn1[i, j]).coeffs[2:order + 1] .= zero((pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1574[i, j]) + (tmp1574[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) + TaylorSeries.zero!(tmp1575[i, j]) + (tmp1575[i, j]).coeffs[1] = constant_term(tmp1574[i, j]) + constant_term(pNZ_t_Z[i, j]) + TaylorSeries.zero!(tmp1576[i, j]) + (tmp1576[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp1575[i, j]) + TaylorSeries.zero!(pn1[i, j]) + (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp1576[i, j]) + TaylorSeries.zero!(X_t_pn1[i, j]) (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) - (X_t_pn1[i, j]).coeffs[2:order + 1] .= zero((X_t_pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_t_pn1[i, j]) (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) - (Y_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Y_t_pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_t_pn1[i, j]) (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) - (Z_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Z_t_pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(pNX_t_pn3[i, j]) (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) - (pNX_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNX_t_pn3[i, j]).coeffs[1]) + TaylorSeries.zero!(pNY_t_pn3[i, j]) (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) - (pNY_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNY_t_pn3[i, j]).coeffs[1]) + TaylorSeries.zero!(pNZ_t_pn3[i, j]) (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) - (pNZ_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_pn3[i, j]).coeffs[1]) - (tmp3362[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) - (tmp3362[i, j]).coeffs[2:order + 1] .= zero((tmp3362[i, j]).coeffs[1]) - (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp3362[i, j]) - (termpnx[i, j]).coeffs[2:order + 1] .= zero((termpnx[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1584[i, j]) + (tmp1584[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) + TaylorSeries.zero!(termpnx[i, j]) + (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp1584[i, j]) + TaylorSeries.zero!(sumpnx[i, j]) (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) - (sumpnx[i, j]).coeffs[2:order + 1] .= zero((sumpnx[i, j]).coeffs[1]) + TaylorSeries.zero!(pntempX[j]) (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) - (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) - (tmp3365[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) - (tmp3365[i, j]).coeffs[2:order + 1] .= zero((tmp3365[i, j]).coeffs[1]) - (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp3365[i, j]) - (termpny[i, j]).coeffs[2:order + 1] .= zero((termpny[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1587[i, j]) + (tmp1587[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) + TaylorSeries.zero!(termpny[i, j]) + (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp1587[i, j]) + TaylorSeries.zero!(sumpny[i, j]) (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) - (sumpny[i, j]).coeffs[2:order + 1] .= zero((sumpny[i, j]).coeffs[1]) + TaylorSeries.zero!(pntempY[j]) (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) - (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) - (tmp3368[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) - (tmp3368[i, j]).coeffs[2:order + 1] .= zero((tmp3368[i, j]).coeffs[1]) - (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp3368[i, j]) - (termpnz[i, j]).coeffs[2:order + 1] .= zero((termpnz[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp1590[i, j]) + (tmp1590[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) + TaylorSeries.zero!(termpnz[i, j]) + (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp1590[i, j]) + TaylorSeries.zero!(sumpnz[i, j]) (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) - (sumpnz[i, j]).coeffs[2:order + 1] .= zero((sumpnz[i, j]).coeffs[1]) + TaylorSeries.zero!(pntempZ[j]) (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) - (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) end end + TaylorSeries.zero!(postNewtonX[j]) (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) - (postNewtonX[j]).coeffs[2:order + 1] .= zero((postNewtonX[j]).coeffs[1]) + TaylorSeries.zero!(postNewtonY[j]) (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) - (postNewtonY[j]).coeffs[2:order + 1] .= zero((postNewtonY[j]).coeffs[1]) + TaylorSeries.zero!(postNewtonZ[j]) (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) - (postNewtonZ[j]).coeffs[2:order + 1] .= zero((postNewtonZ[j]).coeffs[1]) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:741 =# Threads.@threads for i = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:743 =# Threads.@threads for i = 1:N_ext + TaylorSeries.zero!(dq[3 * (N + i) - 2]) (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) - (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i) - 1]) (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) - (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i)]) (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) - (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:746 =# Threads.@threads for i = N_ext + 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:748 =# Threads.@threads for i = N_ext + 1:N + TaylorSeries.zero!(dq[3 * (N + i) - 2]) (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) - (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i) - 1]) (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) - (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i)]) (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) - (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) end - tmp3377.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) - tmp3377.coeffs[2:order + 1] .= zero(tmp3377.coeffs[1]) - tmp3378.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) - tmp3378.coeffs[2:order + 1] .= zero(tmp3378.coeffs[1]) - tmp3379.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) - tmp3379.coeffs[2:order + 1] .= zero(tmp3379.coeffs[1]) - tmp3380.coeffs[1] = constant_term(tmp3378) + constant_term(tmp3379) - tmp3380.coeffs[2:order + 1] .= zero(tmp3380.coeffs[1]) - Iω_x.coeffs[1] = constant_term(tmp3377) + constant_term(tmp3380) - Iω_x.coeffs[2:order + 1] .= zero(Iω_x.coeffs[1]) - tmp3382.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) - tmp3382.coeffs[2:order + 1] .= zero(tmp3382.coeffs[1]) - tmp3383.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) - tmp3383.coeffs[2:order + 1] .= zero(tmp3383.coeffs[1]) - tmp3384.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) - tmp3384.coeffs[2:order + 1] .= zero(tmp3384.coeffs[1]) - tmp3385.coeffs[1] = constant_term(tmp3383) + constant_term(tmp3384) - tmp3385.coeffs[2:order + 1] .= zero(tmp3385.coeffs[1]) - Iω_y.coeffs[1] = constant_term(tmp3382) + constant_term(tmp3385) - Iω_y.coeffs[2:order + 1] .= zero(Iω_y.coeffs[1]) - tmp3387.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) - tmp3387.coeffs[2:order + 1] .= zero(tmp3387.coeffs[1]) - tmp3388.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) - tmp3388.coeffs[2:order + 1] .= zero(tmp3388.coeffs[1]) - tmp3389.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) - tmp3389.coeffs[2:order + 1] .= zero(tmp3389.coeffs[1]) - tmp3390.coeffs[1] = constant_term(tmp3388) + constant_term(tmp3389) - tmp3390.coeffs[2:order + 1] .= zero(tmp3390.coeffs[1]) - Iω_z.coeffs[1] = constant_term(tmp3387) + constant_term(tmp3390) - Iω_z.coeffs[2:order + 1] .= zero(Iω_z.coeffs[1]) - tmp3392.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) - tmp3392.coeffs[2:order + 1] .= zero(tmp3392.coeffs[1]) - tmp3393.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) - tmp3393.coeffs[2:order + 1] .= zero(tmp3393.coeffs[1]) - ωxIω_x.coeffs[1] = constant_term(tmp3392) - constant_term(tmp3393) - ωxIω_x.coeffs[2:order + 1] .= zero(ωxIω_x.coeffs[1]) - tmp3395.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) - tmp3395.coeffs[2:order + 1] .= zero(tmp3395.coeffs[1]) - tmp3396.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) - tmp3396.coeffs[2:order + 1] .= zero(tmp3396.coeffs[1]) - ωxIω_y.coeffs[1] = constant_term(tmp3395) - constant_term(tmp3396) - ωxIω_y.coeffs[2:order + 1] .= zero(ωxIω_y.coeffs[1]) - tmp3398.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) - tmp3398.coeffs[2:order + 1] .= zero(tmp3398.coeffs[1]) - tmp3399.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) - tmp3399.coeffs[2:order + 1] .= zero(tmp3399.coeffs[1]) - ωxIω_z.coeffs[1] = constant_term(tmp3398) - constant_term(tmp3399) - ωxIω_z.coeffs[2:order + 1] .= zero(ωxIω_z.coeffs[1]) - tmp3401.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) - tmp3401.coeffs[2:order + 1] .= zero(tmp3401.coeffs[1]) - tmp3402.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) - tmp3402.coeffs[2:order + 1] .= zero(tmp3402.coeffs[1]) - tmp3403.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) - tmp3403.coeffs[2:order + 1] .= zero(tmp3403.coeffs[1]) - tmp3404.coeffs[1] = constant_term(tmp3402) + constant_term(tmp3403) - tmp3404.coeffs[2:order + 1] .= zero(tmp3404.coeffs[1]) - dIω_x.coeffs[1] = constant_term(tmp3401) + constant_term(tmp3404) - dIω_x.coeffs[2:order + 1] .= zero(dIω_x.coeffs[1]) - tmp3406.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) - tmp3406.coeffs[2:order + 1] .= zero(tmp3406.coeffs[1]) - tmp3407.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) - tmp3407.coeffs[2:order + 1] .= zero(tmp3407.coeffs[1]) - tmp3408.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) - tmp3408.coeffs[2:order + 1] .= zero(tmp3408.coeffs[1]) - tmp3409.coeffs[1] = constant_term(tmp3407) + constant_term(tmp3408) - tmp3409.coeffs[2:order + 1] .= zero(tmp3409.coeffs[1]) - dIω_y.coeffs[1] = constant_term(tmp3406) + constant_term(tmp3409) - dIω_y.coeffs[2:order + 1] .= zero(dIω_y.coeffs[1]) - tmp3411.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) - tmp3411.coeffs[2:order + 1] .= zero(tmp3411.coeffs[1]) - tmp3412.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) - tmp3412.coeffs[2:order + 1] .= zero(tmp3412.coeffs[1]) - tmp3413.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) - tmp3413.coeffs[2:order + 1] .= zero(tmp3413.coeffs[1]) - tmp3414.coeffs[1] = constant_term(tmp3412) + constant_term(tmp3413) - tmp3414.coeffs[2:order + 1] .= zero(tmp3414.coeffs[1]) - dIω_z.coeffs[1] = constant_term(tmp3411) + constant_term(tmp3414) - dIω_z.coeffs[2:order + 1] .= zero(dIω_z.coeffs[1]) + TaylorSeries.zero!(tmp1599) + tmp1599.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp1600) + tmp1600.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp1601) + tmp1601.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp1602) + tmp1602.coeffs[1] = constant_term(tmp1600) + constant_term(tmp1601) + TaylorSeries.zero!(Iω_x) + Iω_x.coeffs[1] = constant_term(tmp1599) + constant_term(tmp1602) + TaylorSeries.zero!(tmp1604) + tmp1604.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp1605) + tmp1605.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp1606) + tmp1606.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp1607) + tmp1607.coeffs[1] = constant_term(tmp1605) + constant_term(tmp1606) + TaylorSeries.zero!(Iω_y) + Iω_y.coeffs[1] = constant_term(tmp1604) + constant_term(tmp1607) + TaylorSeries.zero!(tmp1609) + tmp1609.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp1610) + tmp1610.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp1611) + tmp1611.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp1612) + tmp1612.coeffs[1] = constant_term(tmp1610) + constant_term(tmp1611) + TaylorSeries.zero!(Iω_z) + Iω_z.coeffs[1] = constant_term(tmp1609) + constant_term(tmp1612) + TaylorSeries.zero!(tmp1614) + tmp1614.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) + TaylorSeries.zero!(tmp1615) + tmp1615.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) + TaylorSeries.zero!(ωxIω_x) + ωxIω_x.coeffs[1] = constant_term(tmp1614) - constant_term(tmp1615) + TaylorSeries.zero!(tmp1617) + tmp1617.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) + TaylorSeries.zero!(tmp1618) + tmp1618.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) + TaylorSeries.zero!(ωxIω_y) + ωxIω_y.coeffs[1] = constant_term(tmp1617) - constant_term(tmp1618) + TaylorSeries.zero!(tmp1620) + tmp1620.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) + TaylorSeries.zero!(tmp1621) + tmp1621.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) + TaylorSeries.zero!(ωxIω_z) + ωxIω_z.coeffs[1] = constant_term(tmp1620) - constant_term(tmp1621) + TaylorSeries.zero!(tmp1623) + tmp1623.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp1624) + tmp1624.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp1625) + tmp1625.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp1626) + tmp1626.coeffs[1] = constant_term(tmp1624) + constant_term(tmp1625) + TaylorSeries.zero!(dIω_x) + dIω_x.coeffs[1] = constant_term(tmp1623) + constant_term(tmp1626) + TaylorSeries.zero!(tmp1628) + tmp1628.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp1629) + tmp1629.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp1630) + tmp1630.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp1631) + tmp1631.coeffs[1] = constant_term(tmp1629) + constant_term(tmp1630) + TaylorSeries.zero!(dIω_y) + dIω_y.coeffs[1] = constant_term(tmp1628) + constant_term(tmp1631) + TaylorSeries.zero!(tmp1633) + tmp1633.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp1634) + tmp1634.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp1635) + tmp1635.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp1636) + tmp1636.coeffs[1] = constant_term(tmp1634) + constant_term(tmp1635) + TaylorSeries.zero!(dIω_z) + dIω_z.coeffs[1] = constant_term(tmp1633) + constant_term(tmp1636) + TaylorSeries.zero!(er_EM_I_1) er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_1.coeffs[2:order + 1] .= zero(er_EM_I_1.coeffs[1]) + TaylorSeries.zero!(er_EM_I_2) er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_2.coeffs[2:order + 1] .= zero(er_EM_I_2.coeffs[1]) + TaylorSeries.zero!(er_EM_I_3) er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_3.coeffs[2:order + 1] .= zero(er_EM_I_3.coeffs[1]) + TaylorSeries.zero!(p_E_I_1) p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) - p_E_I_1.coeffs[2:order + 1] .= zero(p_E_I_1.coeffs[1]) + TaylorSeries.zero!(p_E_I_2) p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) - p_E_I_2.coeffs[2:order + 1] .= zero(p_E_I_2.coeffs[1]) + TaylorSeries.zero!(p_E_I_3) p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) - p_E_I_3.coeffs[2:order + 1] .= zero(p_E_I_3.coeffs[1]) - tmp3419.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) - tmp3419.coeffs[2:order + 1] .= zero(tmp3419.coeffs[1]) - tmp3420.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) - tmp3420.coeffs[2:order + 1] .= zero(tmp3420.coeffs[1]) - tmp3421.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) - tmp3421.coeffs[2:order + 1] .= zero(tmp3421.coeffs[1]) - tmp3422.coeffs[1] = constant_term(tmp3420) + constant_term(tmp3421) - tmp3422.coeffs[2:order + 1] .= zero(tmp3422.coeffs[1]) - er_EM_1.coeffs[1] = constant_term(tmp3419) + constant_term(tmp3422) - er_EM_1.coeffs[2:order + 1] .= zero(er_EM_1.coeffs[1]) - tmp3424.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) - tmp3424.coeffs[2:order + 1] .= zero(tmp3424.coeffs[1]) - tmp3425.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) - tmp3425.coeffs[2:order + 1] .= zero(tmp3425.coeffs[1]) - tmp3426.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) - tmp3426.coeffs[2:order + 1] .= zero(tmp3426.coeffs[1]) - tmp3427.coeffs[1] = constant_term(tmp3425) + constant_term(tmp3426) - tmp3427.coeffs[2:order + 1] .= zero(tmp3427.coeffs[1]) - er_EM_2.coeffs[1] = constant_term(tmp3424) + constant_term(tmp3427) - er_EM_2.coeffs[2:order + 1] .= zero(er_EM_2.coeffs[1]) - tmp3429.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) - tmp3429.coeffs[2:order + 1] .= zero(tmp3429.coeffs[1]) - tmp3430.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) - tmp3430.coeffs[2:order + 1] .= zero(tmp3430.coeffs[1]) - tmp3431.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) - tmp3431.coeffs[2:order + 1] .= zero(tmp3431.coeffs[1]) - tmp3432.coeffs[1] = constant_term(tmp3430) + constant_term(tmp3431) - tmp3432.coeffs[2:order + 1] .= zero(tmp3432.coeffs[1]) - er_EM_3.coeffs[1] = constant_term(tmp3429) + constant_term(tmp3432) - er_EM_3.coeffs[2:order + 1] .= zero(er_EM_3.coeffs[1]) - tmp3434.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) - tmp3434.coeffs[2:order + 1] .= zero(tmp3434.coeffs[1]) - tmp3435.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) - tmp3435.coeffs[2:order + 1] .= zero(tmp3435.coeffs[1]) - tmp3436.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) - tmp3436.coeffs[2:order + 1] .= zero(tmp3436.coeffs[1]) - tmp3437.coeffs[1] = constant_term(tmp3435) + constant_term(tmp3436) - tmp3437.coeffs[2:order + 1] .= zero(tmp3437.coeffs[1]) - p_E_1.coeffs[1] = constant_term(tmp3434) + constant_term(tmp3437) - p_E_1.coeffs[2:order + 1] .= zero(p_E_1.coeffs[1]) - tmp3439.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) - tmp3439.coeffs[2:order + 1] .= zero(tmp3439.coeffs[1]) - tmp3440.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) - tmp3440.coeffs[2:order + 1] .= zero(tmp3440.coeffs[1]) - tmp3441.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) - tmp3441.coeffs[2:order + 1] .= zero(tmp3441.coeffs[1]) - tmp3442.coeffs[1] = constant_term(tmp3440) + constant_term(tmp3441) - tmp3442.coeffs[2:order + 1] .= zero(tmp3442.coeffs[1]) - p_E_2.coeffs[1] = constant_term(tmp3439) + constant_term(tmp3442) - p_E_2.coeffs[2:order + 1] .= zero(p_E_2.coeffs[1]) - tmp3444.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) - tmp3444.coeffs[2:order + 1] .= zero(tmp3444.coeffs[1]) - tmp3445.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) - tmp3445.coeffs[2:order + 1] .= zero(tmp3445.coeffs[1]) - tmp3446.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) - tmp3446.coeffs[2:order + 1] .= zero(tmp3446.coeffs[1]) - tmp3447.coeffs[1] = constant_term(tmp3445) + constant_term(tmp3446) - tmp3447.coeffs[2:order + 1] .= zero(tmp3447.coeffs[1]) - p_E_3.coeffs[1] = constant_term(tmp3444) + constant_term(tmp3447) - p_E_3.coeffs[2:order + 1] .= zero(p_E_3.coeffs[1]) - tmp3449.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) - tmp3449.coeffs[2:order + 1] .= zero(tmp3449.coeffs[1]) - tmp3450.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) - tmp3450.coeffs[2:order + 1] .= zero(tmp3450.coeffs[1]) - tmp3451.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) - tmp3451.coeffs[2:order + 1] .= zero(tmp3451.coeffs[1]) - tmp3452.coeffs[1] = constant_term(tmp3450) + constant_term(tmp3451) - tmp3452.coeffs[2:order + 1] .= zero(tmp3452.coeffs[1]) - I_er_EM_1.coeffs[1] = constant_term(tmp3449) + constant_term(tmp3452) - I_er_EM_1.coeffs[2:order + 1] .= zero(I_er_EM_1.coeffs[1]) - tmp3454.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) - tmp3454.coeffs[2:order + 1] .= zero(tmp3454.coeffs[1]) - tmp3455.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) - tmp3455.coeffs[2:order + 1] .= zero(tmp3455.coeffs[1]) - tmp3456.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) - tmp3456.coeffs[2:order + 1] .= zero(tmp3456.coeffs[1]) - tmp3457.coeffs[1] = constant_term(tmp3455) + constant_term(tmp3456) - tmp3457.coeffs[2:order + 1] .= zero(tmp3457.coeffs[1]) - I_er_EM_2.coeffs[1] = constant_term(tmp3454) + constant_term(tmp3457) - I_er_EM_2.coeffs[2:order + 1] .= zero(I_er_EM_2.coeffs[1]) - tmp3459.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) - tmp3459.coeffs[2:order + 1] .= zero(tmp3459.coeffs[1]) - tmp3460.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) - tmp3460.coeffs[2:order + 1] .= zero(tmp3460.coeffs[1]) - tmp3461.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) - tmp3461.coeffs[2:order + 1] .= zero(tmp3461.coeffs[1]) - tmp3462.coeffs[1] = constant_term(tmp3460) + constant_term(tmp3461) - tmp3462.coeffs[2:order + 1] .= zero(tmp3462.coeffs[1]) - I_er_EM_3.coeffs[1] = constant_term(tmp3459) + constant_term(tmp3462) - I_er_EM_3.coeffs[2:order + 1] .= zero(I_er_EM_3.coeffs[1]) - tmp3464.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) - tmp3464.coeffs[2:order + 1] .= zero(tmp3464.coeffs[1]) - tmp3465.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) - tmp3465.coeffs[2:order + 1] .= zero(tmp3465.coeffs[1]) - tmp3466.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) - tmp3466.coeffs[2:order + 1] .= zero(tmp3466.coeffs[1]) - tmp3467.coeffs[1] = constant_term(tmp3465) + constant_term(tmp3466) - tmp3467.coeffs[2:order + 1] .= zero(tmp3467.coeffs[1]) - I_p_E_1.coeffs[1] = constant_term(tmp3464) + constant_term(tmp3467) - I_p_E_1.coeffs[2:order + 1] .= zero(I_p_E_1.coeffs[1]) - tmp3469.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) - tmp3469.coeffs[2:order + 1] .= zero(tmp3469.coeffs[1]) - tmp3470.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) - tmp3470.coeffs[2:order + 1] .= zero(tmp3470.coeffs[1]) - tmp3471.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) - tmp3471.coeffs[2:order + 1] .= zero(tmp3471.coeffs[1]) - tmp3472.coeffs[1] = constant_term(tmp3470) + constant_term(tmp3471) - tmp3472.coeffs[2:order + 1] .= zero(tmp3472.coeffs[1]) - I_p_E_2.coeffs[1] = constant_term(tmp3469) + constant_term(tmp3472) - I_p_E_2.coeffs[2:order + 1] .= zero(I_p_E_2.coeffs[1]) - tmp3474.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) - tmp3474.coeffs[2:order + 1] .= zero(tmp3474.coeffs[1]) - tmp3475.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) - tmp3475.coeffs[2:order + 1] .= zero(tmp3475.coeffs[1]) - tmp3476.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) - tmp3476.coeffs[2:order + 1] .= zero(tmp3476.coeffs[1]) - tmp3477.coeffs[1] = constant_term(tmp3475) + constant_term(tmp3476) - tmp3477.coeffs[2:order + 1] .= zero(tmp3477.coeffs[1]) - I_p_E_3.coeffs[1] = constant_term(tmp3474) + constant_term(tmp3477) - I_p_E_3.coeffs[2:order + 1] .= zero(I_p_E_3.coeffs[1]) - tmp3479.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) - tmp3479.coeffs[2:order + 1] .= zero(tmp3479.coeffs[1]) - tmp3480.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) - tmp3480.coeffs[2:order + 1] .= zero(tmp3480.coeffs[1]) - er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3479) - constant_term(tmp3480) - er_EM_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_1.coeffs[1]) - tmp3482.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) - tmp3482.coeffs[2:order + 1] .= zero(tmp3482.coeffs[1]) - tmp3483.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) - tmp3483.coeffs[2:order + 1] .= zero(tmp3483.coeffs[1]) - er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3482) - constant_term(tmp3483) - er_EM_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_2.coeffs[1]) - tmp3485.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) - tmp3485.coeffs[2:order + 1] .= zero(tmp3485.coeffs[1]) - tmp3486.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) - tmp3486.coeffs[2:order + 1] .= zero(tmp3486.coeffs[1]) - er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3485) - constant_term(tmp3486) - er_EM_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_3.coeffs[1]) - tmp3488.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) - tmp3488.coeffs[2:order + 1] .= zero(tmp3488.coeffs[1]) - tmp3489.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) - tmp3489.coeffs[2:order + 1] .= zero(tmp3489.coeffs[1]) - er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp3488) - constant_term(tmp3489) - er_EM_cross_I_p_E_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_1.coeffs[1]) - tmp3491.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) - tmp3491.coeffs[2:order + 1] .= zero(tmp3491.coeffs[1]) - tmp3492.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) - tmp3492.coeffs[2:order + 1] .= zero(tmp3492.coeffs[1]) - er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp3491) - constant_term(tmp3492) - er_EM_cross_I_p_E_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_2.coeffs[1]) - tmp3494.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) - tmp3494.coeffs[2:order + 1] .= zero(tmp3494.coeffs[1]) - tmp3495.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) - tmp3495.coeffs[2:order + 1] .= zero(tmp3495.coeffs[1]) - er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp3494) - constant_term(tmp3495) - er_EM_cross_I_p_E_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_3.coeffs[1]) - tmp3497.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) - tmp3497.coeffs[2:order + 1] .= zero(tmp3497.coeffs[1]) - tmp3498.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) - tmp3498.coeffs[2:order + 1] .= zero(tmp3498.coeffs[1]) - p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3497) - constant_term(tmp3498) - p_E_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_1.coeffs[1]) - tmp3500.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) - tmp3500.coeffs[2:order + 1] .= zero(tmp3500.coeffs[1]) - tmp3501.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) - tmp3501.coeffs[2:order + 1] .= zero(tmp3501.coeffs[1]) - p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3500) - constant_term(tmp3501) - p_E_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_2.coeffs[1]) - tmp3503.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) - tmp3503.coeffs[2:order + 1] .= zero(tmp3503.coeffs[1]) - tmp3504.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) - tmp3504.coeffs[2:order + 1] .= zero(tmp3504.coeffs[1]) - p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3503) - constant_term(tmp3504) - p_E_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_3.coeffs[1]) - tmp3506.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) - tmp3506.coeffs[2:order + 1] .= zero(tmp3506.coeffs[1]) - tmp3507.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) - tmp3507.coeffs[2:order + 1] .= zero(tmp3507.coeffs[1]) - p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp3506) - constant_term(tmp3507) - p_E_cross_I_p_E_1.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_1.coeffs[1]) - tmp3509.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) - tmp3509.coeffs[2:order + 1] .= zero(tmp3509.coeffs[1]) - tmp3510.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) - tmp3510.coeffs[2:order + 1] .= zero(tmp3510.coeffs[1]) - p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp3509) - constant_term(tmp3510) - p_E_cross_I_p_E_2.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_2.coeffs[1]) - tmp3512.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) - tmp3512.coeffs[2:order + 1] .= zero(tmp3512.coeffs[1]) - tmp3513.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) - tmp3513.coeffs[2:order + 1] .= zero(tmp3513.coeffs[1]) - p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp3512) - constant_term(tmp3513) - p_E_cross_I_p_E_3.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_3.coeffs[1]) - tmp3517.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) - tmp3517.coeffs[2:order + 1] .= zero(tmp3517.coeffs[1]) - tmp3518.coeffs[1] = constant_term(7) * constant_term(tmp3517) - tmp3518.coeffs[2:order + 1] .= zero(tmp3518.coeffs[1]) - one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp3518) - one_minus_7sin2ϕEM.coeffs[2:order + 1] .= zero(one_minus_7sin2ϕEM.coeffs[1]) + TaylorSeries.zero!(tmp1641) + tmp1641.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) + TaylorSeries.zero!(tmp1642) + tmp1642.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) + TaylorSeries.zero!(tmp1643) + tmp1643.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) + TaylorSeries.zero!(tmp1644) + tmp1644.coeffs[1] = constant_term(tmp1642) + constant_term(tmp1643) + TaylorSeries.zero!(er_EM_1) + er_EM_1.coeffs[1] = constant_term(tmp1641) + constant_term(tmp1644) + TaylorSeries.zero!(tmp1646) + tmp1646.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) + TaylorSeries.zero!(tmp1647) + tmp1647.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) + TaylorSeries.zero!(tmp1648) + tmp1648.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) + TaylorSeries.zero!(tmp1649) + tmp1649.coeffs[1] = constant_term(tmp1647) + constant_term(tmp1648) + TaylorSeries.zero!(er_EM_2) + er_EM_2.coeffs[1] = constant_term(tmp1646) + constant_term(tmp1649) + TaylorSeries.zero!(tmp1651) + tmp1651.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) + TaylorSeries.zero!(tmp1652) + tmp1652.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) + TaylorSeries.zero!(tmp1653) + tmp1653.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) + TaylorSeries.zero!(tmp1654) + tmp1654.coeffs[1] = constant_term(tmp1652) + constant_term(tmp1653) + TaylorSeries.zero!(er_EM_3) + er_EM_3.coeffs[1] = constant_term(tmp1651) + constant_term(tmp1654) + TaylorSeries.zero!(tmp1656) + tmp1656.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) + TaylorSeries.zero!(tmp1657) + tmp1657.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) + TaylorSeries.zero!(tmp1658) + tmp1658.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) + TaylorSeries.zero!(tmp1659) + tmp1659.coeffs[1] = constant_term(tmp1657) + constant_term(tmp1658) + TaylorSeries.zero!(p_E_1) + p_E_1.coeffs[1] = constant_term(tmp1656) + constant_term(tmp1659) + TaylorSeries.zero!(tmp1661) + tmp1661.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) + TaylorSeries.zero!(tmp1662) + tmp1662.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) + TaylorSeries.zero!(tmp1663) + tmp1663.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) + TaylorSeries.zero!(tmp1664) + tmp1664.coeffs[1] = constant_term(tmp1662) + constant_term(tmp1663) + TaylorSeries.zero!(p_E_2) + p_E_2.coeffs[1] = constant_term(tmp1661) + constant_term(tmp1664) + TaylorSeries.zero!(tmp1666) + tmp1666.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) + TaylorSeries.zero!(tmp1667) + tmp1667.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) + TaylorSeries.zero!(tmp1668) + tmp1668.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) + TaylorSeries.zero!(tmp1669) + tmp1669.coeffs[1] = constant_term(tmp1667) + constant_term(tmp1668) + TaylorSeries.zero!(p_E_3) + p_E_3.coeffs[1] = constant_term(tmp1666) + constant_term(tmp1669) + TaylorSeries.zero!(tmp1671) + tmp1671.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) + TaylorSeries.zero!(tmp1672) + tmp1672.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) + TaylorSeries.zero!(tmp1673) + tmp1673.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) + TaylorSeries.zero!(tmp1674) + tmp1674.coeffs[1] = constant_term(tmp1672) + constant_term(tmp1673) + TaylorSeries.zero!(I_er_EM_1) + I_er_EM_1.coeffs[1] = constant_term(tmp1671) + constant_term(tmp1674) + TaylorSeries.zero!(tmp1676) + tmp1676.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) + TaylorSeries.zero!(tmp1677) + tmp1677.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) + TaylorSeries.zero!(tmp1678) + tmp1678.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) + TaylorSeries.zero!(tmp1679) + tmp1679.coeffs[1] = constant_term(tmp1677) + constant_term(tmp1678) + TaylorSeries.zero!(I_er_EM_2) + I_er_EM_2.coeffs[1] = constant_term(tmp1676) + constant_term(tmp1679) + TaylorSeries.zero!(tmp1681) + tmp1681.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) + TaylorSeries.zero!(tmp1682) + tmp1682.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) + TaylorSeries.zero!(tmp1683) + tmp1683.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) + TaylorSeries.zero!(tmp1684) + tmp1684.coeffs[1] = constant_term(tmp1682) + constant_term(tmp1683) + TaylorSeries.zero!(I_er_EM_3) + I_er_EM_3.coeffs[1] = constant_term(tmp1681) + constant_term(tmp1684) + TaylorSeries.zero!(tmp1686) + tmp1686.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) + TaylorSeries.zero!(tmp1687) + tmp1687.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) + TaylorSeries.zero!(tmp1688) + tmp1688.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) + TaylorSeries.zero!(tmp1689) + tmp1689.coeffs[1] = constant_term(tmp1687) + constant_term(tmp1688) + TaylorSeries.zero!(I_p_E_1) + I_p_E_1.coeffs[1] = constant_term(tmp1686) + constant_term(tmp1689) + TaylorSeries.zero!(tmp1691) + tmp1691.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) + TaylorSeries.zero!(tmp1692) + tmp1692.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) + TaylorSeries.zero!(tmp1693) + tmp1693.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) + TaylorSeries.zero!(tmp1694) + tmp1694.coeffs[1] = constant_term(tmp1692) + constant_term(tmp1693) + TaylorSeries.zero!(I_p_E_2) + I_p_E_2.coeffs[1] = constant_term(tmp1691) + constant_term(tmp1694) + TaylorSeries.zero!(tmp1696) + tmp1696.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) + TaylorSeries.zero!(tmp1697) + tmp1697.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) + TaylorSeries.zero!(tmp1698) + tmp1698.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) + TaylorSeries.zero!(tmp1699) + tmp1699.coeffs[1] = constant_term(tmp1697) + constant_term(tmp1698) + TaylorSeries.zero!(I_p_E_3) + I_p_E_3.coeffs[1] = constant_term(tmp1696) + constant_term(tmp1699) + TaylorSeries.zero!(tmp1701) + tmp1701.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) + TaylorSeries.zero!(tmp1702) + tmp1702.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) + TaylorSeries.zero!(er_EM_cross_I_er_EM_1) + er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1701) - constant_term(tmp1702) + TaylorSeries.zero!(tmp1704) + tmp1704.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) + TaylorSeries.zero!(tmp1705) + tmp1705.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) + TaylorSeries.zero!(er_EM_cross_I_er_EM_2) + er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1704) - constant_term(tmp1705) + TaylorSeries.zero!(tmp1707) + tmp1707.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) + TaylorSeries.zero!(tmp1708) + tmp1708.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) + TaylorSeries.zero!(er_EM_cross_I_er_EM_3) + er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1707) - constant_term(tmp1708) + TaylorSeries.zero!(tmp1710) + tmp1710.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) + TaylorSeries.zero!(tmp1711) + tmp1711.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) + TaylorSeries.zero!(er_EM_cross_I_p_E_1) + er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp1710) - constant_term(tmp1711) + TaylorSeries.zero!(tmp1713) + tmp1713.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) + TaylorSeries.zero!(tmp1714) + tmp1714.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) + TaylorSeries.zero!(er_EM_cross_I_p_E_2) + er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp1713) - constant_term(tmp1714) + TaylorSeries.zero!(tmp1716) + tmp1716.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) + TaylorSeries.zero!(tmp1717) + tmp1717.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) + TaylorSeries.zero!(er_EM_cross_I_p_E_3) + er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp1716) - constant_term(tmp1717) + TaylorSeries.zero!(tmp1719) + tmp1719.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) + TaylorSeries.zero!(tmp1720) + tmp1720.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) + TaylorSeries.zero!(p_E_cross_I_er_EM_1) + p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1719) - constant_term(tmp1720) + TaylorSeries.zero!(tmp1722) + tmp1722.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) + TaylorSeries.zero!(tmp1723) + tmp1723.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) + TaylorSeries.zero!(p_E_cross_I_er_EM_2) + p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1722) - constant_term(tmp1723) + TaylorSeries.zero!(tmp1725) + tmp1725.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) + TaylorSeries.zero!(tmp1726) + tmp1726.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) + TaylorSeries.zero!(p_E_cross_I_er_EM_3) + p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1725) - constant_term(tmp1726) + TaylorSeries.zero!(tmp1728) + tmp1728.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) + TaylorSeries.zero!(tmp1729) + tmp1729.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) + TaylorSeries.zero!(p_E_cross_I_p_E_1) + p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp1728) - constant_term(tmp1729) + TaylorSeries.zero!(tmp1731) + tmp1731.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) + TaylorSeries.zero!(tmp1732) + tmp1732.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) + TaylorSeries.zero!(p_E_cross_I_p_E_2) + p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp1731) - constant_term(tmp1732) + TaylorSeries.zero!(tmp1734) + tmp1734.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) + TaylorSeries.zero!(tmp1735) + tmp1735.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) + TaylorSeries.zero!(p_E_cross_I_p_E_3) + p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp1734) - constant_term(tmp1735) + TaylorSeries.zero!(tmp1739) + tmp1739.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp1740) + tmp1740.coeffs[1] = constant_term(7) * constant_term(tmp1739) + TaylorSeries.zero!(one_minus_7sin2ϕEM) + one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp1740) + TaylorSeries.zero!(two_sinϕEM) two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) - two_sinϕEM.coeffs[2:order + 1] .= zero(two_sinϕEM.coeffs[1]) - tmp3523.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) - tmp3523.coeffs[2:order + 1] .= zero(tmp3523.coeffs[1]) - N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp3523) - N_MfigM_figE_factor_div_rEMp5.coeffs[2:order + 1] .= zero(N_MfigM_figE_factor_div_rEMp5.coeffs[1]) - tmp3525.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) - tmp3525.coeffs[2:order + 1] .= zero(tmp3525.coeffs[1]) - tmp3526.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) - tmp3526.coeffs[2:order + 1] .= zero(tmp3526.coeffs[1]) - tmp3527.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3526) - tmp3527.coeffs[2:order + 1] .= zero(tmp3527.coeffs[1]) - tmp3528.coeffs[1] = constant_term(tmp3525) + constant_term(tmp3527) - tmp3528.coeffs[2:order + 1] .= zero(tmp3528.coeffs[1]) - tmp3530.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) - tmp3530.coeffs[2:order + 1] .= zero(tmp3530.coeffs[1]) - tmp3531.coeffs[1] = constant_term(tmp3528) - constant_term(tmp3530) - tmp3531.coeffs[2:order + 1] .= zero(tmp3531.coeffs[1]) - N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3531) - N_MfigM_figE_1.coeffs[2:order + 1] .= zero(N_MfigM_figE_1.coeffs[1]) - tmp3533.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) - tmp3533.coeffs[2:order + 1] .= zero(tmp3533.coeffs[1]) - tmp3534.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) - tmp3534.coeffs[2:order + 1] .= zero(tmp3534.coeffs[1]) - tmp3535.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3534) - tmp3535.coeffs[2:order + 1] .= zero(tmp3535.coeffs[1]) - tmp3536.coeffs[1] = constant_term(tmp3533) + constant_term(tmp3535) - tmp3536.coeffs[2:order + 1] .= zero(tmp3536.coeffs[1]) - tmp3538.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) - tmp3538.coeffs[2:order + 1] .= zero(tmp3538.coeffs[1]) - tmp3539.coeffs[1] = constant_term(tmp3536) - constant_term(tmp3538) - tmp3539.coeffs[2:order + 1] .= zero(tmp3539.coeffs[1]) - N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3539) - N_MfigM_figE_2.coeffs[2:order + 1] .= zero(N_MfigM_figE_2.coeffs[1]) - tmp3541.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) - tmp3541.coeffs[2:order + 1] .= zero(tmp3541.coeffs[1]) - tmp3542.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) - tmp3542.coeffs[2:order + 1] .= zero(tmp3542.coeffs[1]) - tmp3543.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3542) - tmp3543.coeffs[2:order + 1] .= zero(tmp3543.coeffs[1]) - tmp3544.coeffs[1] = constant_term(tmp3541) + constant_term(tmp3543) - tmp3544.coeffs[2:order + 1] .= zero(tmp3544.coeffs[1]) - tmp3546.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) - tmp3546.coeffs[2:order + 1] .= zero(tmp3546.coeffs[1]) - tmp3547.coeffs[1] = constant_term(tmp3544) - constant_term(tmp3546) - tmp3547.coeffs[2:order + 1] .= zero(tmp3547.coeffs[1]) - N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3547) - N_MfigM_figE_3.coeffs[2:order + 1] .= zero(N_MfigM_figE_3.coeffs[1]) - tmp3549.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) - tmp3549.coeffs[2:order + 1] .= zero(tmp3549.coeffs[1]) - tmp3550.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) - tmp3550.coeffs[2:order + 1] .= zero(tmp3550.coeffs[1]) - tmp3551.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) - tmp3551.coeffs[2:order + 1] .= zero(tmp3551.coeffs[1]) - tmp3552.coeffs[1] = constant_term(tmp3550) + constant_term(tmp3551) - tmp3552.coeffs[2:order + 1] .= zero(tmp3552.coeffs[1]) - N_1_LMF.coeffs[1] = constant_term(tmp3549) + constant_term(tmp3552) - N_1_LMF.coeffs[2:order + 1] .= zero(N_1_LMF.coeffs[1]) - tmp3554.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) - tmp3554.coeffs[2:order + 1] .= zero(tmp3554.coeffs[1]) - tmp3555.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) - tmp3555.coeffs[2:order + 1] .= zero(tmp3555.coeffs[1]) - tmp3556.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) - tmp3556.coeffs[2:order + 1] .= zero(tmp3556.coeffs[1]) - tmp3557.coeffs[1] = constant_term(tmp3555) + constant_term(tmp3556) - tmp3557.coeffs[2:order + 1] .= zero(tmp3557.coeffs[1]) - N_2_LMF.coeffs[1] = constant_term(tmp3554) + constant_term(tmp3557) - N_2_LMF.coeffs[2:order + 1] .= zero(N_2_LMF.coeffs[1]) - tmp3559.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) - tmp3559.coeffs[2:order + 1] .= zero(tmp3559.coeffs[1]) - tmp3560.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) - tmp3560.coeffs[2:order + 1] .= zero(tmp3560.coeffs[1]) - tmp3561.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) - tmp3561.coeffs[2:order + 1] .= zero(tmp3561.coeffs[1]) - tmp3562.coeffs[1] = constant_term(tmp3560) + constant_term(tmp3561) - tmp3562.coeffs[2:order + 1] .= zero(tmp3562.coeffs[1]) - N_3_LMF.coeffs[1] = constant_term(tmp3559) + constant_term(tmp3562) - N_3_LMF.coeffs[2:order + 1] .= zero(N_3_LMF.coeffs[1]) - tmp3564.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) - tmp3564.coeffs[2:order + 1] .= zero(tmp3564.coeffs[1]) - tmp3565.coeffs[1] = constant_term(k_ν) * constant_term(tmp3564) - tmp3565.coeffs[2:order + 1] .= zero(tmp3565.coeffs[1]) - tmp3566.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - tmp3566.coeffs[2:order + 1] .= zero(tmp3566.coeffs[1]) - tmp3567.coeffs[1] = constant_term(tmp3566) * constant_term(q[6N + 11]) - tmp3567.coeffs[2:order + 1] .= zero(tmp3567.coeffs[1]) - N_cmb_1.coeffs[1] = constant_term(tmp3565) - constant_term(tmp3567) - N_cmb_1.coeffs[2:order + 1] .= zero(N_cmb_1.coeffs[1]) - tmp3569.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) - tmp3569.coeffs[2:order + 1] .= zero(tmp3569.coeffs[1]) - tmp3570.coeffs[1] = constant_term(k_ν) * constant_term(tmp3569) - tmp3570.coeffs[2:order + 1] .= zero(tmp3570.coeffs[1]) - tmp3571.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - tmp3571.coeffs[2:order + 1] .= zero(tmp3571.coeffs[1]) - tmp3572.coeffs[1] = constant_term(tmp3571) * constant_term(q[6N + 10]) - tmp3572.coeffs[2:order + 1] .= zero(tmp3572.coeffs[1]) - N_cmb_2.coeffs[1] = constant_term(tmp3570) + constant_term(tmp3572) - N_cmb_2.coeffs[2:order + 1] .= zero(N_cmb_2.coeffs[1]) - tmp3574.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) - tmp3574.coeffs[2:order + 1] .= zero(tmp3574.coeffs[1]) - N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp3574) - N_cmb_3.coeffs[2:order + 1] .= zero(N_cmb_3.coeffs[1]) - tmp3576.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) - tmp3576.coeffs[2:order + 1] .= zero(tmp3576.coeffs[1]) - tmp3577.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp3576) - tmp3577.coeffs[2:order + 1] .= zero(tmp3577.coeffs[1]) - tmp3578.coeffs[1] = constant_term(tmp3577) + constant_term(N_cmb_1) - tmp3578.coeffs[2:order + 1] .= zero(tmp3578.coeffs[1]) - tmp3579.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) - tmp3579.coeffs[2:order + 1] .= zero(tmp3579.coeffs[1]) - I_dω_1.coeffs[1] = constant_term(tmp3578) - constant_term(tmp3579) - I_dω_1.coeffs[2:order + 1] .= zero(I_dω_1.coeffs[1]) - tmp3581.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) - tmp3581.coeffs[2:order + 1] .= zero(tmp3581.coeffs[1]) - tmp3582.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp3581) - tmp3582.coeffs[2:order + 1] .= zero(tmp3582.coeffs[1]) - tmp3583.coeffs[1] = constant_term(tmp3582) + constant_term(N_cmb_2) - tmp3583.coeffs[2:order + 1] .= zero(tmp3583.coeffs[1]) - tmp3584.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) - tmp3584.coeffs[2:order + 1] .= zero(tmp3584.coeffs[1]) - I_dω_2.coeffs[1] = constant_term(tmp3583) - constant_term(tmp3584) - I_dω_2.coeffs[2:order + 1] .= zero(I_dω_2.coeffs[1]) - tmp3586.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) - tmp3586.coeffs[2:order + 1] .= zero(tmp3586.coeffs[1]) - tmp3587.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp3586) - tmp3587.coeffs[2:order + 1] .= zero(tmp3587.coeffs[1]) - tmp3588.coeffs[1] = constant_term(tmp3587) + constant_term(N_cmb_3) - tmp3588.coeffs[2:order + 1] .= zero(tmp3588.coeffs[1]) - tmp3589.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) - tmp3589.coeffs[2:order + 1] .= zero(tmp3589.coeffs[1]) - I_dω_3.coeffs[1] = constant_term(tmp3588) - constant_term(tmp3589) - I_dω_3.coeffs[2:order + 1] .= zero(I_dω_3.coeffs[1]) + TaylorSeries.zero!(tmp1745) + tmp1745.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) + TaylorSeries.zero!(N_MfigM_figE_factor_div_rEMp5) + N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp1745) + TaylorSeries.zero!(tmp1747) + tmp1747.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) + TaylorSeries.zero!(tmp1748) + tmp1748.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) + TaylorSeries.zero!(tmp1749) + tmp1749.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1748) + TaylorSeries.zero!(tmp1750) + tmp1750.coeffs[1] = constant_term(tmp1747) + constant_term(tmp1749) + TaylorSeries.zero!(tmp1752) + tmp1752.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) + TaylorSeries.zero!(tmp1753) + tmp1753.coeffs[1] = constant_term(tmp1750) - constant_term(tmp1752) + TaylorSeries.zero!(N_MfigM_figE_1) + N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1753) + TaylorSeries.zero!(tmp1755) + tmp1755.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) + TaylorSeries.zero!(tmp1756) + tmp1756.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) + TaylorSeries.zero!(tmp1757) + tmp1757.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1756) + TaylorSeries.zero!(tmp1758) + tmp1758.coeffs[1] = constant_term(tmp1755) + constant_term(tmp1757) + TaylorSeries.zero!(tmp1760) + tmp1760.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) + TaylorSeries.zero!(tmp1761) + tmp1761.coeffs[1] = constant_term(tmp1758) - constant_term(tmp1760) + TaylorSeries.zero!(N_MfigM_figE_2) + N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1761) + TaylorSeries.zero!(tmp1763) + tmp1763.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) + TaylorSeries.zero!(tmp1764) + tmp1764.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) + TaylorSeries.zero!(tmp1765) + tmp1765.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1764) + TaylorSeries.zero!(tmp1766) + tmp1766.coeffs[1] = constant_term(tmp1763) + constant_term(tmp1765) + TaylorSeries.zero!(tmp1768) + tmp1768.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) + TaylorSeries.zero!(tmp1769) + tmp1769.coeffs[1] = constant_term(tmp1766) - constant_term(tmp1768) + TaylorSeries.zero!(N_MfigM_figE_3) + N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1769) + TaylorSeries.zero!(tmp1771) + tmp1771.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) + TaylorSeries.zero!(tmp1772) + tmp1772.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) + TaylorSeries.zero!(tmp1773) + tmp1773.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) + TaylorSeries.zero!(tmp1774) + tmp1774.coeffs[1] = constant_term(tmp1772) + constant_term(tmp1773) + TaylorSeries.zero!(N_1_LMF) + N_1_LMF.coeffs[1] = constant_term(tmp1771) + constant_term(tmp1774) + TaylorSeries.zero!(tmp1776) + tmp1776.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) + TaylorSeries.zero!(tmp1777) + tmp1777.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) + TaylorSeries.zero!(tmp1778) + tmp1778.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) + TaylorSeries.zero!(tmp1779) + tmp1779.coeffs[1] = constant_term(tmp1777) + constant_term(tmp1778) + TaylorSeries.zero!(N_2_LMF) + N_2_LMF.coeffs[1] = constant_term(tmp1776) + constant_term(tmp1779) + TaylorSeries.zero!(tmp1781) + tmp1781.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) + TaylorSeries.zero!(tmp1782) + tmp1782.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) + TaylorSeries.zero!(tmp1783) + tmp1783.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) + TaylorSeries.zero!(tmp1784) + tmp1784.coeffs[1] = constant_term(tmp1782) + constant_term(tmp1783) + TaylorSeries.zero!(N_3_LMF) + N_3_LMF.coeffs[1] = constant_term(tmp1781) + constant_term(tmp1784) + TaylorSeries.zero!(tmp1786) + tmp1786.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp1787) + tmp1787.coeffs[1] = constant_term(k_ν) * constant_term(tmp1786) + TaylorSeries.zero!(tmp1788) + tmp1788.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp1789) + tmp1789.coeffs[1] = constant_term(tmp1788) * constant_term(q[6N + 11]) + TaylorSeries.zero!(N_cmb_1) + N_cmb_1.coeffs[1] = constant_term(tmp1787) - constant_term(tmp1789) + TaylorSeries.zero!(tmp1791) + tmp1791.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp1792) + tmp1792.coeffs[1] = constant_term(k_ν) * constant_term(tmp1791) + TaylorSeries.zero!(tmp1793) + tmp1793.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp1794) + tmp1794.coeffs[1] = constant_term(tmp1793) * constant_term(q[6N + 10]) + TaylorSeries.zero!(N_cmb_2) + N_cmb_2.coeffs[1] = constant_term(tmp1792) + constant_term(tmp1794) + TaylorSeries.zero!(tmp1796) + tmp1796.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) + TaylorSeries.zero!(N_cmb_3) + N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp1796) + TaylorSeries.zero!(tmp1798) + tmp1798.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) + TaylorSeries.zero!(tmp1799) + tmp1799.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp1798) + TaylorSeries.zero!(tmp1800) + tmp1800.coeffs[1] = constant_term(tmp1799) + constant_term(N_cmb_1) + TaylorSeries.zero!(tmp1801) + tmp1801.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) + TaylorSeries.zero!(I_dω_1) + I_dω_1.coeffs[1] = constant_term(tmp1800) - constant_term(tmp1801) + TaylorSeries.zero!(tmp1803) + tmp1803.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) + TaylorSeries.zero!(tmp1804) + tmp1804.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp1803) + TaylorSeries.zero!(tmp1805) + tmp1805.coeffs[1] = constant_term(tmp1804) + constant_term(N_cmb_2) + TaylorSeries.zero!(tmp1806) + tmp1806.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) + TaylorSeries.zero!(I_dω_2) + I_dω_2.coeffs[1] = constant_term(tmp1805) - constant_term(tmp1806) + TaylorSeries.zero!(tmp1808) + tmp1808.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) + TaylorSeries.zero!(tmp1809) + tmp1809.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp1808) + TaylorSeries.zero!(tmp1810) + tmp1810.coeffs[1] = constant_term(tmp1809) + constant_term(N_cmb_3) + TaylorSeries.zero!(tmp1811) + tmp1811.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) + TaylorSeries.zero!(I_dω_3) + I_dω_3.coeffs[1] = constant_term(tmp1810) - constant_term(tmp1811) + TaylorSeries.zero!(Ic_ωc_1) Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) - Ic_ωc_1.coeffs[2:order + 1] .= zero(Ic_ωc_1.coeffs[1]) + TaylorSeries.zero!(Ic_ωc_2) Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) - Ic_ωc_2.coeffs[2:order + 1] .= zero(Ic_ωc_2.coeffs[1]) + TaylorSeries.zero!(Ic_ωc_3) Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) - Ic_ωc_3.coeffs[2:order + 1] .= zero(Ic_ωc_3.coeffs[1]) - tmp3594.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) - tmp3594.coeffs[2:order + 1] .= zero(tmp3594.coeffs[1]) - tmp3595.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) - tmp3595.coeffs[2:order + 1] .= zero(tmp3595.coeffs[1]) - m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp3594) - constant_term(tmp3595) - m_ωm_x_Icωc_1.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_1.coeffs[1]) - tmp3597.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) - tmp3597.coeffs[2:order + 1] .= zero(tmp3597.coeffs[1]) - tmp3598.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) - tmp3598.coeffs[2:order + 1] .= zero(tmp3598.coeffs[1]) - m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp3597) - constant_term(tmp3598) - m_ωm_x_Icωc_2.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_2.coeffs[1]) - tmp3600.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) - tmp3600.coeffs[2:order + 1] .= zero(tmp3600.coeffs[1]) - tmp3601.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) - tmp3601.coeffs[2:order + 1] .= zero(tmp3601.coeffs[1]) - m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp3600) - constant_term(tmp3601) - m_ωm_x_Icωc_3.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_3.coeffs[1]) + TaylorSeries.zero!(tmp1816) + tmp1816.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) + TaylorSeries.zero!(tmp1817) + tmp1817.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) + TaylorSeries.zero!(m_ωm_x_Icωc_1) + m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp1816) - constant_term(tmp1817) + TaylorSeries.zero!(tmp1819) + tmp1819.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) + TaylorSeries.zero!(tmp1820) + tmp1820.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) + TaylorSeries.zero!(m_ωm_x_Icωc_2) + m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp1819) - constant_term(tmp1820) + TaylorSeries.zero!(tmp1822) + tmp1822.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) + TaylorSeries.zero!(tmp1823) + tmp1823.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) + TaylorSeries.zero!(m_ωm_x_Icωc_3) + m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp1822) - constant_term(tmp1823) + TaylorSeries.zero!(Ic_dωc_1) Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) - Ic_dωc_1.coeffs[2:order + 1] .= zero(Ic_dωc_1.coeffs[1]) + TaylorSeries.zero!(Ic_dωc_2) Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) - Ic_dωc_2.coeffs[2:order + 1] .= zero(Ic_dωc_2.coeffs[1]) + TaylorSeries.zero!(Ic_dωc_3) Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) - Ic_dωc_3.coeffs[2:order + 1] .= zero(Ic_dωc_3.coeffs[1]) - tmp3606.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp3606.coeffs[2:order + 1] .= zero(tmp3606.coeffs[1]) - tmp3686.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp3686.coeffs[2:order + 1] .= zero(tmp3686.coeffs[1]) - tmp3607.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3606) - tmp3607.coeffs[2:order + 1] .= zero(tmp3607.coeffs[1]) - tmp3608.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp3608.coeffs[2:order + 1] .= zero(tmp3608.coeffs[1]) - tmp3687.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp3687.coeffs[2:order + 1] .= zero(tmp3687.coeffs[1]) - tmp3609.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3608) - tmp3609.coeffs[2:order + 1] .= zero(tmp3609.coeffs[1]) - tmp3610.coeffs[1] = constant_term(tmp3607) + constant_term(tmp3609) - tmp3610.coeffs[2:order + 1] .= zero(tmp3610.coeffs[1]) - tmp3611.coeffs[1] = sin(constant_term(q[6N + 2])) - tmp3611.coeffs[2:order + 1] .= zero(tmp3611.coeffs[1]) - tmp3688.coeffs[1] = cos(constant_term(q[6N + 2])) - tmp3688.coeffs[2:order + 1] .= zero(tmp3688.coeffs[1]) - (dq[6N + 1]).coeffs[1] = constant_term(tmp3610) / constant_term(tmp3611) - (dq[6N + 1]).coeffs[2:order + 1] .= zero((dq[6N + 1]).coeffs[1]) - tmp3613.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp3613.coeffs[2:order + 1] .= zero(tmp3613.coeffs[1]) - tmp3689.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp3689.coeffs[2:order + 1] .= zero(tmp3689.coeffs[1]) - tmp3614.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3613) - tmp3614.coeffs[2:order + 1] .= zero(tmp3614.coeffs[1]) - tmp3615.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp3615.coeffs[2:order + 1] .= zero(tmp3615.coeffs[1]) - tmp3690.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp3690.coeffs[2:order + 1] .= zero(tmp3690.coeffs[1]) - tmp3616.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3615) - tmp3616.coeffs[2:order + 1] .= zero(tmp3616.coeffs[1]) - (dq[6N + 2]).coeffs[1] = constant_term(tmp3614) - constant_term(tmp3616) - (dq[6N + 2]).coeffs[2:order + 1] .= zero((dq[6N + 2]).coeffs[1]) - tmp3618.coeffs[1] = cos(constant_term(q[6N + 2])) - tmp3618.coeffs[2:order + 1] .= zero(tmp3618.coeffs[1]) - tmp3691.coeffs[1] = sin(constant_term(q[6N + 2])) - tmp3691.coeffs[2:order + 1] .= zero(tmp3691.coeffs[1]) - tmp3619.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp3618) - tmp3619.coeffs[2:order + 1] .= zero(tmp3619.coeffs[1]) - (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp3619) - (dq[6N + 3]).coeffs[2:order + 1] .= zero((dq[6N + 3]).coeffs[1]) - tmp3621.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) - tmp3621.coeffs[2:order + 1] .= zero(tmp3621.coeffs[1]) - tmp3622.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) - tmp3622.coeffs[2:order + 1] .= zero(tmp3622.coeffs[1]) - tmp3623.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) - tmp3623.coeffs[2:order + 1] .= zero(tmp3623.coeffs[1]) - tmp3624.coeffs[1] = constant_term(tmp3622) + constant_term(tmp3623) - tmp3624.coeffs[2:order + 1] .= zero(tmp3624.coeffs[1]) - (dq[6N + 4]).coeffs[1] = constant_term(tmp3621) + constant_term(tmp3624) - (dq[6N + 4]).coeffs[2:order + 1] .= zero((dq[6N + 4]).coeffs[1]) - tmp3626.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) - tmp3626.coeffs[2:order + 1] .= zero(tmp3626.coeffs[1]) - tmp3627.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) - tmp3627.coeffs[2:order + 1] .= zero(tmp3627.coeffs[1]) - tmp3628.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) - tmp3628.coeffs[2:order + 1] .= zero(tmp3628.coeffs[1]) - tmp3629.coeffs[1] = constant_term(tmp3627) + constant_term(tmp3628) - tmp3629.coeffs[2:order + 1] .= zero(tmp3629.coeffs[1]) - (dq[6N + 5]).coeffs[1] = constant_term(tmp3626) + constant_term(tmp3629) - (dq[6N + 5]).coeffs[2:order + 1] .= zero((dq[6N + 5]).coeffs[1]) - tmp3631.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) - tmp3631.coeffs[2:order + 1] .= zero(tmp3631.coeffs[1]) - tmp3632.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) - tmp3632.coeffs[2:order + 1] .= zero(tmp3632.coeffs[1]) - tmp3633.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) - tmp3633.coeffs[2:order + 1] .= zero(tmp3633.coeffs[1]) - tmp3634.coeffs[1] = constant_term(tmp3632) + constant_term(tmp3633) - tmp3634.coeffs[2:order + 1] .= zero(tmp3634.coeffs[1]) - (dq[6N + 6]).coeffs[1] = constant_term(tmp3631) + constant_term(tmp3634) - (dq[6N + 6]).coeffs[2:order + 1] .= zero((dq[6N + 6]).coeffs[1]) - tmp3636.coeffs[1] = sin(constant_term(q[6N + 8])) - tmp3636.coeffs[2:order + 1] .= zero(tmp3636.coeffs[1]) - tmp3692.coeffs[1] = cos(constant_term(q[6N + 8])) - tmp3692.coeffs[2:order + 1] .= zero(tmp3692.coeffs[1]) - tmp3637.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp3636) - tmp3637.coeffs[2:order + 1] .= zero(tmp3637.coeffs[1]) - (dq[6N + 9]).coeffs[1] = -(constant_term(tmp3637)) - (dq[6N + 9]).coeffs[2:order + 1] .= zero((dq[6N + 9]).coeffs[1]) - tmp3639.coeffs[1] = cos(constant_term(q[6N + 8])) - tmp3639.coeffs[2:order + 1] .= zero(tmp3639.coeffs[1]) - tmp3693.coeffs[1] = sin(constant_term(q[6N + 8])) - tmp3693.coeffs[2:order + 1] .= zero(tmp3693.coeffs[1]) - tmp3640.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp3639) - tmp3640.coeffs[2:order + 1] .= zero(tmp3640.coeffs[1]) - (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp3640) - (dq[6N + 7]).coeffs[2:order + 1] .= zero((dq[6N + 7]).coeffs[1]) + TaylorSeries.zero!(tmp1828) + tmp1828.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1908) + tmp1908.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1829) + tmp1829.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1828) + TaylorSeries.zero!(tmp1830) + tmp1830.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1909) + tmp1909.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1831) + tmp1831.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1830) + TaylorSeries.zero!(tmp1832) + tmp1832.coeffs[1] = constant_term(tmp1829) + constant_term(tmp1831) + TaylorSeries.zero!(tmp1833) + tmp1833.coeffs[1] = sin(constant_term(q[6N + 2])) + TaylorSeries.zero!(tmp1910) + tmp1910.coeffs[1] = cos(constant_term(q[6N + 2])) + TaylorSeries.zero!(dq[6N + 1]) + (dq[6N + 1]).coeffs[1] = constant_term(tmp1832) / constant_term(tmp1833) + TaylorSeries.zero!(tmp1835) + tmp1835.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1911) + tmp1911.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1836) + tmp1836.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1835) + TaylorSeries.zero!(tmp1837) + tmp1837.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1912) + tmp1912.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp1838) + tmp1838.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1837) + TaylorSeries.zero!(dq[6N + 2]) + (dq[6N + 2]).coeffs[1] = constant_term(tmp1836) - constant_term(tmp1838) + TaylorSeries.zero!(tmp1840) + tmp1840.coeffs[1] = cos(constant_term(q[6N + 2])) + TaylorSeries.zero!(tmp1913) + tmp1913.coeffs[1] = sin(constant_term(q[6N + 2])) + TaylorSeries.zero!(tmp1841) + tmp1841.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp1840) + TaylorSeries.zero!(dq[6N + 3]) + (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp1841) + TaylorSeries.zero!(tmp1843) + tmp1843.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) + TaylorSeries.zero!(tmp1844) + tmp1844.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) + TaylorSeries.zero!(tmp1845) + tmp1845.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) + TaylorSeries.zero!(tmp1846) + tmp1846.coeffs[1] = constant_term(tmp1844) + constant_term(tmp1845) + TaylorSeries.zero!(dq[6N + 4]) + (dq[6N + 4]).coeffs[1] = constant_term(tmp1843) + constant_term(tmp1846) + TaylorSeries.zero!(tmp1848) + tmp1848.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) + TaylorSeries.zero!(tmp1849) + tmp1849.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) + TaylorSeries.zero!(tmp1850) + tmp1850.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) + TaylorSeries.zero!(tmp1851) + tmp1851.coeffs[1] = constant_term(tmp1849) + constant_term(tmp1850) + TaylorSeries.zero!(dq[6N + 5]) + (dq[6N + 5]).coeffs[1] = constant_term(tmp1848) + constant_term(tmp1851) + TaylorSeries.zero!(tmp1853) + tmp1853.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) + TaylorSeries.zero!(tmp1854) + tmp1854.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) + TaylorSeries.zero!(tmp1855) + tmp1855.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) + TaylorSeries.zero!(tmp1856) + tmp1856.coeffs[1] = constant_term(tmp1854) + constant_term(tmp1855) + TaylorSeries.zero!(dq[6N + 6]) + (dq[6N + 6]).coeffs[1] = constant_term(tmp1853) + constant_term(tmp1856) + TaylorSeries.zero!(tmp1858) + tmp1858.coeffs[1] = sin(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp1914) + tmp1914.coeffs[1] = cos(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp1859) + tmp1859.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp1858) + TaylorSeries.zero!(dq[6N + 9]) + (dq[6N + 9]).coeffs[1] = -(constant_term(tmp1859)) + TaylorSeries.zero!(tmp1861) + tmp1861.coeffs[1] = cos(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp1915) + tmp1915.coeffs[1] = sin(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp1862) + tmp1862.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp1861) + TaylorSeries.zero!(dq[6N + 7]) + (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp1862) + TaylorSeries.zero!(dq[6N + 8]) (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) - (dq[6N + 8]).coeffs[2:order + 1] .= zero((dq[6N + 8]).coeffs[1]) + TaylorSeries.zero!(dq[6N + 10]) (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) - (dq[6N + 10]).coeffs[2:order + 1] .= zero((dq[6N + 10]).coeffs[1]) + TaylorSeries.zero!(dq[6N + 11]) (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) - (dq[6N + 11]).coeffs[2:order + 1] .= zero((dq[6N + 11]).coeffs[1]) + TaylorSeries.zero!(dq[6N + 12]) (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) - (dq[6N + 12]).coeffs[2:order + 1] .= zero((dq[6N + 12]).coeffs[1]) + TaylorSeries.zero!(dq[6N + 13]) (dq[6N + 13]).coeffs[1] = identity(constant_term(zero_q_1)) - (dq[6N + 13]).coeffs[2:order + 1] .= zero((dq[6N + 13]).coeffs[1]) for __idx = eachindex(q) (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] end @@ -3931,112 +4323,112 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(ϕ_m, q[6N + 1], ord) TaylorSeries.identity!(θ_m, q[6N + 2], ord) TaylorSeries.identity!(ψ_m, q[6N + 3], ord) - TaylorSeries.sincos!(tmp3645, tmp2911, ϕ_m, ord) - TaylorSeries.sincos!(tmp3646, tmp2912, ψ_m, ord) - TaylorSeries.mul!(tmp2913, tmp2911, tmp2912, ord) - TaylorSeries.sincos!(tmp3647, tmp2914, θ_m, ord) - TaylorSeries.sincos!(tmp2915, tmp3648, ϕ_m, ord) - TaylorSeries.mul!(tmp2916, tmp2914, tmp2915, ord) - TaylorSeries.sincos!(tmp2917, tmp3649, ψ_m, ord) - TaylorSeries.mul!(tmp2918, tmp2916, tmp2917, ord) - TaylorSeries.subst!(RotM[1, 1, mo], tmp2913, tmp2918, ord) - TaylorSeries.sincos!(tmp3650, tmp2920, θ_m, ord) - TaylorSeries.subst!(tmp2921, tmp2920, ord) - TaylorSeries.sincos!(tmp3651, tmp2922, ψ_m, ord) - TaylorSeries.mul!(tmp2923, tmp2921, tmp2922, ord) - TaylorSeries.sincos!(tmp2924, tmp3652, ϕ_m, ord) - TaylorSeries.mul!(tmp2925, tmp2923, tmp2924, ord) - TaylorSeries.sincos!(tmp3653, tmp2926, ϕ_m, ord) - TaylorSeries.sincos!(tmp2927, tmp3654, ψ_m, ord) - TaylorSeries.mul!(tmp2928, tmp2926, tmp2927, ord) - TaylorSeries.subst!(RotM[2, 1, mo], tmp2925, tmp2928, ord) - TaylorSeries.sincos!(tmp2930, tmp3655, θ_m, ord) - TaylorSeries.sincos!(tmp2931, tmp3656, ϕ_m, ord) - TaylorSeries.mul!(RotM[3, 1, mo], tmp2930, tmp2931, ord) - TaylorSeries.sincos!(tmp3657, tmp2933, ψ_m, ord) - TaylorSeries.sincos!(tmp2934, tmp3658, ϕ_m, ord) - TaylorSeries.mul!(tmp2935, tmp2933, tmp2934, ord) - TaylorSeries.sincos!(tmp3659, tmp2936, θ_m, ord) - TaylorSeries.sincos!(tmp3660, tmp2937, ϕ_m, ord) - TaylorSeries.mul!(tmp2938, tmp2936, tmp2937, ord) - TaylorSeries.sincos!(tmp2939, tmp3661, ψ_m, ord) - TaylorSeries.mul!(tmp2940, tmp2938, tmp2939, ord) - TaylorSeries.add!(RotM[1, 2, mo], tmp2935, tmp2940, ord) - TaylorSeries.sincos!(tmp3662, tmp2942, θ_m, ord) - TaylorSeries.sincos!(tmp3663, tmp2943, ϕ_m, ord) - TaylorSeries.mul!(tmp2944, tmp2942, tmp2943, ord) - TaylorSeries.sincos!(tmp3664, tmp2945, ψ_m, ord) - TaylorSeries.mul!(tmp2946, tmp2944, tmp2945, ord) - TaylorSeries.sincos!(tmp2947, tmp3665, ϕ_m, ord) - TaylorSeries.sincos!(tmp2948, tmp3666, ψ_m, ord) - TaylorSeries.mul!(tmp2949, tmp2947, tmp2948, ord) - TaylorSeries.subst!(RotM[2, 2, mo], tmp2946, tmp2949, ord) - TaylorSeries.sincos!(tmp3667, tmp2951, ϕ_m, ord) - TaylorSeries.subst!(tmp2952, tmp2951, ord) - TaylorSeries.sincos!(tmp2953, tmp3668, θ_m, ord) - TaylorSeries.mul!(RotM[3, 2, mo], tmp2952, tmp2953, ord) - TaylorSeries.sincos!(tmp2955, tmp3669, θ_m, ord) - TaylorSeries.sincos!(tmp2956, tmp3670, ψ_m, ord) - TaylorSeries.mul!(RotM[1, 3, mo], tmp2955, tmp2956, ord) - TaylorSeries.sincos!(tmp3671, tmp2958, ψ_m, ord) - TaylorSeries.sincos!(tmp2959, tmp3672, θ_m, ord) - TaylorSeries.mul!(RotM[2, 3, mo], tmp2958, tmp2959, ord) - TaylorSeries.sincos!(tmp3673, RotM[3, 3, mo], θ_m, ord) + TaylorSeries.sincos!(tmp1867, tmp1133, ϕ_m, ord) + TaylorSeries.sincos!(tmp1868, tmp1134, ψ_m, ord) + TaylorSeries.mul!(tmp1135, tmp1133, tmp1134, ord) + TaylorSeries.sincos!(tmp1869, tmp1136, θ_m, ord) + TaylorSeries.sincos!(tmp1137, tmp1870, ϕ_m, ord) + TaylorSeries.mul!(tmp1138, tmp1136, tmp1137, ord) + TaylorSeries.sincos!(tmp1139, tmp1871, ψ_m, ord) + TaylorSeries.mul!(tmp1140, tmp1138, tmp1139, ord) + TaylorSeries.subst!(RotM[1, 1, mo], tmp1135, tmp1140, ord) + TaylorSeries.sincos!(tmp1872, tmp1142, θ_m, ord) + TaylorSeries.subst!(tmp1143, tmp1142, ord) + TaylorSeries.sincos!(tmp1873, tmp1144, ψ_m, ord) + TaylorSeries.mul!(tmp1145, tmp1143, tmp1144, ord) + TaylorSeries.sincos!(tmp1146, tmp1874, ϕ_m, ord) + TaylorSeries.mul!(tmp1147, tmp1145, tmp1146, ord) + TaylorSeries.sincos!(tmp1875, tmp1148, ϕ_m, ord) + TaylorSeries.sincos!(tmp1149, tmp1876, ψ_m, ord) + TaylorSeries.mul!(tmp1150, tmp1148, tmp1149, ord) + TaylorSeries.subst!(RotM[2, 1, mo], tmp1147, tmp1150, ord) + TaylorSeries.sincos!(tmp1152, tmp1877, θ_m, ord) + TaylorSeries.sincos!(tmp1153, tmp1878, ϕ_m, ord) + TaylorSeries.mul!(RotM[3, 1, mo], tmp1152, tmp1153, ord) + TaylorSeries.sincos!(tmp1879, tmp1155, ψ_m, ord) + TaylorSeries.sincos!(tmp1156, tmp1880, ϕ_m, ord) + TaylorSeries.mul!(tmp1157, tmp1155, tmp1156, ord) + TaylorSeries.sincos!(tmp1881, tmp1158, θ_m, ord) + TaylorSeries.sincos!(tmp1882, tmp1159, ϕ_m, ord) + TaylorSeries.mul!(tmp1160, tmp1158, tmp1159, ord) + TaylorSeries.sincos!(tmp1161, tmp1883, ψ_m, ord) + TaylorSeries.mul!(tmp1162, tmp1160, tmp1161, ord) + TaylorSeries.add!(RotM[1, 2, mo], tmp1157, tmp1162, ord) + TaylorSeries.sincos!(tmp1884, tmp1164, θ_m, ord) + TaylorSeries.sincos!(tmp1885, tmp1165, ϕ_m, ord) + TaylorSeries.mul!(tmp1166, tmp1164, tmp1165, ord) + TaylorSeries.sincos!(tmp1886, tmp1167, ψ_m, ord) + TaylorSeries.mul!(tmp1168, tmp1166, tmp1167, ord) + TaylorSeries.sincos!(tmp1169, tmp1887, ϕ_m, ord) + TaylorSeries.sincos!(tmp1170, tmp1888, ψ_m, ord) + TaylorSeries.mul!(tmp1171, tmp1169, tmp1170, ord) + TaylorSeries.subst!(RotM[2, 2, mo], tmp1168, tmp1171, ord) + TaylorSeries.sincos!(tmp1889, tmp1173, ϕ_m, ord) + TaylorSeries.subst!(tmp1174, tmp1173, ord) + TaylorSeries.sincos!(tmp1175, tmp1890, θ_m, ord) + TaylorSeries.mul!(RotM[3, 2, mo], tmp1174, tmp1175, ord) + TaylorSeries.sincos!(tmp1177, tmp1891, θ_m, ord) + TaylorSeries.sincos!(tmp1178, tmp1892, ψ_m, ord) + TaylorSeries.mul!(RotM[1, 3, mo], tmp1177, tmp1178, ord) + TaylorSeries.sincos!(tmp1893, tmp1180, ψ_m, ord) + TaylorSeries.sincos!(tmp1181, tmp1894, θ_m, ord) + TaylorSeries.mul!(RotM[2, 3, mo], tmp1180, tmp1181, ord) + TaylorSeries.sincos!(tmp1895, RotM[3, 3, mo], θ_m, ord) TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) - TaylorSeries.sincos!(tmp3674, tmp2962, ϕ_c, ord) - TaylorSeries.mul!(tmp2963, RotM[1, 1, mo], tmp2962, ord) - TaylorSeries.sincos!(tmp2964, tmp3675, ϕ_c, ord) - TaylorSeries.mul!(tmp2965, RotM[1, 2, mo], tmp2964, ord) - TaylorSeries.add!(mantlef2coref[1, 1], tmp2963, tmp2965, ord) - TaylorSeries.subst!(tmp2967, RotM[1, 1, mo], ord) - TaylorSeries.sincos!(tmp2968, tmp3676, ϕ_c, ord) - TaylorSeries.mul!(tmp2969, tmp2967, tmp2968, ord) - TaylorSeries.sincos!(tmp3677, tmp2970, ϕ_c, ord) - TaylorSeries.mul!(tmp2971, RotM[1, 2, mo], tmp2970, ord) - TaylorSeries.add!(mantlef2coref[2, 1], tmp2969, tmp2971, ord) + TaylorSeries.sincos!(tmp1896, tmp1184, ϕ_c, ord) + TaylorSeries.mul!(tmp1185, RotM[1, 1, mo], tmp1184, ord) + TaylorSeries.sincos!(tmp1186, tmp1897, ϕ_c, ord) + TaylorSeries.mul!(tmp1187, RotM[1, 2, mo], tmp1186, ord) + TaylorSeries.add!(mantlef2coref[1, 1], tmp1185, tmp1187, ord) + TaylorSeries.subst!(tmp1189, RotM[1, 1, mo], ord) + TaylorSeries.sincos!(tmp1190, tmp1898, ϕ_c, ord) + TaylorSeries.mul!(tmp1191, tmp1189, tmp1190, ord) + TaylorSeries.sincos!(tmp1899, tmp1192, ϕ_c, ord) + TaylorSeries.mul!(tmp1193, RotM[1, 2, mo], tmp1192, ord) + TaylorSeries.add!(mantlef2coref[2, 1], tmp1191, tmp1193, ord) TaylorSeries.identity!(mantlef2coref[3, 1], RotM[1, 3, mo], ord) - TaylorSeries.sincos!(tmp3678, tmp2973, ϕ_c, ord) - TaylorSeries.mul!(tmp2974, RotM[2, 1, mo], tmp2973, ord) - TaylorSeries.sincos!(tmp2975, tmp3679, ϕ_c, ord) - TaylorSeries.mul!(tmp2976, RotM[2, 2, mo], tmp2975, ord) - TaylorSeries.add!(mantlef2coref[1, 2], tmp2974, tmp2976, ord) - TaylorSeries.subst!(tmp2978, RotM[2, 1, mo], ord) - TaylorSeries.sincos!(tmp2979, tmp3680, ϕ_c, ord) - TaylorSeries.mul!(tmp2980, tmp2978, tmp2979, ord) - TaylorSeries.sincos!(tmp3681, tmp2981, ϕ_c, ord) - TaylorSeries.mul!(tmp2982, RotM[2, 2, mo], tmp2981, ord) - TaylorSeries.add!(mantlef2coref[2, 2], tmp2980, tmp2982, ord) + TaylorSeries.sincos!(tmp1900, tmp1195, ϕ_c, ord) + TaylorSeries.mul!(tmp1196, RotM[2, 1, mo], tmp1195, ord) + TaylorSeries.sincos!(tmp1197, tmp1901, ϕ_c, ord) + TaylorSeries.mul!(tmp1198, RotM[2, 2, mo], tmp1197, ord) + TaylorSeries.add!(mantlef2coref[1, 2], tmp1196, tmp1198, ord) + TaylorSeries.subst!(tmp1200, RotM[2, 1, mo], ord) + TaylorSeries.sincos!(tmp1201, tmp1902, ϕ_c, ord) + TaylorSeries.mul!(tmp1202, tmp1200, tmp1201, ord) + TaylorSeries.sincos!(tmp1903, tmp1203, ϕ_c, ord) + TaylorSeries.mul!(tmp1204, RotM[2, 2, mo], tmp1203, ord) + TaylorSeries.add!(mantlef2coref[2, 2], tmp1202, tmp1204, ord) TaylorSeries.identity!(mantlef2coref[3, 2], RotM[2, 3, mo], ord) - TaylorSeries.sincos!(tmp3682, tmp2984, ϕ_c, ord) - TaylorSeries.mul!(tmp2985, RotM[3, 1, mo], tmp2984, ord) - TaylorSeries.sincos!(tmp2986, tmp3683, ϕ_c, ord) - TaylorSeries.mul!(tmp2987, RotM[3, 2, mo], tmp2986, ord) - TaylorSeries.add!(mantlef2coref[1, 3], tmp2985, tmp2987, ord) - TaylorSeries.subst!(tmp2989, RotM[3, 1, mo], ord) - TaylorSeries.sincos!(tmp2990, tmp3684, ϕ_c, ord) - TaylorSeries.mul!(tmp2991, tmp2989, tmp2990, ord) - TaylorSeries.sincos!(tmp3685, tmp2992, ϕ_c, ord) - TaylorSeries.mul!(tmp2993, RotM[3, 2, mo], tmp2992, ord) - TaylorSeries.add!(mantlef2coref[2, 3], tmp2991, tmp2993, ord) + TaylorSeries.sincos!(tmp1904, tmp1206, ϕ_c, ord) + TaylorSeries.mul!(tmp1207, RotM[3, 1, mo], tmp1206, ord) + TaylorSeries.sincos!(tmp1208, tmp1905, ϕ_c, ord) + TaylorSeries.mul!(tmp1209, RotM[3, 2, mo], tmp1208, ord) + TaylorSeries.add!(mantlef2coref[1, 3], tmp1207, tmp1209, ord) + TaylorSeries.subst!(tmp1211, RotM[3, 1, mo], ord) + TaylorSeries.sincos!(tmp1212, tmp1906, ϕ_c, ord) + TaylorSeries.mul!(tmp1213, tmp1211, tmp1212, ord) + TaylorSeries.sincos!(tmp1907, tmp1214, ϕ_c, ord) + TaylorSeries.mul!(tmp1215, RotM[3, 2, mo], tmp1214, ord) + TaylorSeries.add!(mantlef2coref[2, 3], tmp1213, tmp1215, ord) TaylorSeries.identity!(mantlef2coref[3, 3], RotM[3, 3, mo], ord) - TaylorSeries.mul!(tmp2995, mantlef2coref[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp2996, mantlef2coref[1, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp2997, mantlef2coref[1, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp2998, tmp2996, tmp2997, ord) - TaylorSeries.add!(ω_c_CE_1, tmp2995, tmp2998, ord) - TaylorSeries.mul!(tmp3000, mantlef2coref[2, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3001, mantlef2coref[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3002, mantlef2coref[2, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3003, tmp3001, tmp3002, ord) - TaylorSeries.add!(ω_c_CE_2, tmp3000, tmp3003, ord) - TaylorSeries.mul!(tmp3005, mantlef2coref[3, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3006, mantlef2coref[3, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3007, mantlef2coref[3, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3008, tmp3006, tmp3007, ord) - TaylorSeries.add!(ω_c_CE_3, tmp3005, tmp3008, ord) + TaylorSeries.mul!(tmp1217, mantlef2coref[1, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp1218, mantlef2coref[1, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp1219, mantlef2coref[1, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp1220, tmp1218, tmp1219, ord) + TaylorSeries.add!(ω_c_CE_1, tmp1217, tmp1220, ord) + TaylorSeries.mul!(tmp1222, mantlef2coref[2, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp1223, mantlef2coref[2, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp1224, mantlef2coref[2, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp1225, tmp1223, tmp1224, ord) + TaylorSeries.add!(ω_c_CE_2, tmp1222, tmp1225, ord) + TaylorSeries.mul!(tmp1227, mantlef2coref[3, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp1228, mantlef2coref[3, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp1229, mantlef2coref[3, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp1230, tmp1228, tmp1229, ord) + TaylorSeries.add!(ω_c_CE_3, tmp1227, tmp1230, ord) TaylorSeries.identity!(J2_t[su], J2S_t, ord) TaylorSeries.identity!(J2_t[ea], J2E_t, ord) - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:307 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:309 =# Threads.@threads for j = 1:N TaylorSeries.identity!(newtonX[j], zero_q_1, ord) TaylorSeries.identity!(newtonY[j], zero_q_1, ord) TaylorSeries.identity!(newtonZ[j], zero_q_1, ord) @@ -4045,12 +4437,12 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(dq[3j - 1], q[3 * (N + j) - 1], ord) TaylorSeries.identity!(dq[3j], q[3 * (N + j)], ord) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:319 =# Threads.@threads for j = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:321 =# Threads.@threads for j = 1:N_ext TaylorSeries.identity!(accX[j], zero_q_1, ord) TaylorSeries.identity!(accY[j], zero_q_1, ord) TaylorSeries.identity!(accZ[j], zero_q_1, ord) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:325 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:327 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -4061,35 +4453,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.subst!(U[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.subst!(V[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.subst!(W[i, j], dq[3i], dq[3j], ord) - TaylorSeries.mul!(tmp3017[3j - 2], 4, dq[3j - 2], ord) - TaylorSeries.mul!(tmp3019[3i - 2], 3, dq[3i - 2], ord) - TaylorSeries.subst!(_4U_m_3X[i, j], tmp3017[3j - 2], tmp3019[3i - 2], ord) - TaylorSeries.mul!(tmp3022[3j - 1], 4, dq[3j - 1], ord) - TaylorSeries.mul!(tmp3024[3i - 1], 3, dq[3i - 1], ord) - TaylorSeries.subst!(_4V_m_3Y[i, j], tmp3022[3j - 1], tmp3024[3i - 1], ord) - TaylorSeries.mul!(tmp3027[3j], 4, dq[3j], ord) - TaylorSeries.mul!(tmp3029[3i], 3, dq[3i], ord) - TaylorSeries.subst!(_4W_m_3Z[i, j], tmp3027[3j], tmp3029[3i], ord) + TaylorSeries.mul!(tmp1239[3j - 2], 4, dq[3j - 2], ord) + TaylorSeries.mul!(tmp1241[3i - 2], 3, dq[3i - 2], ord) + TaylorSeries.subst!(_4U_m_3X[i, j], tmp1239[3j - 2], tmp1241[3i - 2], ord) + TaylorSeries.mul!(tmp1244[3j - 1], 4, dq[3j - 1], ord) + TaylorSeries.mul!(tmp1246[3i - 1], 3, dq[3i - 1], ord) + TaylorSeries.subst!(_4V_m_3Y[i, j], tmp1244[3j - 1], tmp1246[3i - 1], ord) + TaylorSeries.mul!(tmp1249[3j], 4, dq[3j], ord) + TaylorSeries.mul!(tmp1251[3i], 3, dq[3i], ord) + TaylorSeries.subst!(_4W_m_3Z[i, j], tmp1249[3j], tmp1251[3i], ord) TaylorSeries.mul!(pn2x[i, j], X[i, j], _4U_m_3X[i, j], ord) TaylorSeries.mul!(pn2y[i, j], Y[i, j], _4V_m_3Y[i, j], ord) TaylorSeries.mul!(pn2z[i, j], Z[i, j], _4W_m_3Z[i, j], ord) TaylorSeries.mul!(UU[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.mul!(VV[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) - TaylorSeries.add!(tmp3037[i, j], UU[i, j], VV[i, j], ord) - TaylorSeries.add!(vi_dot_vj[i, j], tmp3037[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp3040[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp3042[i, j], Y[i, j], 2, ord) - TaylorSeries.add!(tmp3043[i, j], tmp3040[i, j], tmp3042[i, j], ord) - TaylorSeries.pow!(tmp3045[i, j], Z[i, j], 2, ord) - TaylorSeries.add!(r_p2[i, j], tmp3043[i, j], tmp3045[i, j], ord) + TaylorSeries.add!(tmp1259[i, j], UU[i, j], VV[i, j], ord) + TaylorSeries.add!(vi_dot_vj[i, j], tmp1259[i, j], WW[i, j], ord) + TaylorSeries.pow!(tmp1262[i, j], X[i, j], 2, ord) + TaylorSeries.pow!(tmp1264[i, j], Y[i, j], 2, ord) + TaylorSeries.add!(tmp1265[i, j], tmp1262[i, j], tmp1264[i, j], ord) + TaylorSeries.pow!(tmp1267[i, j], Z[i, j], 2, ord) + TaylorSeries.add!(r_p2[i, j], tmp1265[i, j], tmp1267[i, j], ord) TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) - TaylorSeries.add!(tmp3053[i, j], pn2x[i, j], pn2y[i, j], ord) - TaylorSeries.add!(tmp3054[i, j], tmp3053[i, j], pn2z[i, j], ord) - TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp3054[i, j], ord) + TaylorSeries.add!(tmp1275[i, j], pn2x[i, j], pn2y[i, j], ord) + TaylorSeries.add!(tmp1276[i, j], tmp1275[i, j], pn2z[i, j], ord) + TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp1276[i, j], ord) TaylorSeries.mul!(newton_acc_X[i, j], X[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Y[i, j], Y[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Z[i, j], Z[i, j], newtonianCoeff[i, j], ord) @@ -4098,41 +4490,41 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(U_t_pn2[i, j], pn2[i, j], U[i, j], ord) TaylorSeries.mul!(V_t_pn2[i, j], pn2[i, j], V[i, j], ord) TaylorSeries.mul!(W_t_pn2[i, j], pn2[i, j], W[i, j], ord) - TaylorSeries.mul!(tmp3065[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp3065[i, j], ord) + TaylorSeries.mul!(tmp1287[i, j], X[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp1287[i, j], ord) TaylorSeries.identity!(newtonX[j], temp_001[i, j], ord) - TaylorSeries.mul!(tmp3067[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp3067[i, j], ord) + TaylorSeries.mul!(tmp1289[i, j], Y[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp1289[i, j], ord) TaylorSeries.identity!(newtonY[j], temp_002[i, j], ord) - TaylorSeries.mul!(tmp3069[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp3069[i, j], ord) + TaylorSeries.mul!(tmp1291[i, j], Z[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp1291[i, j], ord) TaylorSeries.identity!(newtonZ[j], temp_003[i, j], ord) TaylorSeries.add!(temp_004[i, j], newtonianNb_Potential[j], newtonian1b_Potential[i, j], ord) TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) end end - TaylorSeries.pow!(tmp3073[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp3075[3j - 1], dq[3j - 1], 2, ord) - TaylorSeries.add!(tmp3076[3j - 2], tmp3073[3j - 2], tmp3075[3j - 1], ord) - TaylorSeries.pow!(tmp3078[3j], dq[3j], 2, ord) - TaylorSeries.add!(v2[j], tmp3076[3j - 2], tmp3078[3j], ord) + TaylorSeries.pow!(tmp1295[3j - 2], dq[3j - 2], 2, ord) + TaylorSeries.pow!(tmp1297[3j - 1], dq[3j - 1], 2, ord) + TaylorSeries.add!(tmp1298[3j - 2], tmp1295[3j - 2], tmp1297[3j - 1], ord) + TaylorSeries.pow!(tmp1300[3j], dq[3j], 2, ord) + TaylorSeries.add!(v2[j], tmp1298[3j - 2], tmp1300[3j], ord) end - TaylorSeries.add!(tmp3080, I_M_t[1, 1], I_M_t[2, 2], ord) - TaylorSeries.div!(tmp3082, tmp3080, 2, ord) - TaylorSeries.subst!(tmp3083, I_M_t[3, 3], tmp3082, ord) - TaylorSeries.div!(J2M_t, tmp3083, μ[mo], ord) - TaylorSeries.subst!(tmp3085, I_M_t[2, 2], I_M_t[1, 1], ord) - TaylorSeries.div!(tmp3086, tmp3085, μ[mo], ord) - TaylorSeries.div!(C22M_t, tmp3086, 4, ord) - TaylorSeries.subst!(tmp3089, I_M_t[1, 3], ord) - TaylorSeries.div!(C21M_t, tmp3089, μ[mo], ord) - TaylorSeries.subst!(tmp3091, I_M_t[3, 2], ord) - TaylorSeries.div!(S21M_t, tmp3091, μ[mo], ord) - TaylorSeries.subst!(tmp3093, I_M_t[2, 1], ord) - TaylorSeries.div!(tmp3094, tmp3093, μ[mo], ord) - TaylorSeries.div!(S22M_t, tmp3094, 2, ord) + TaylorSeries.add!(tmp1302, I_M_t[1, 1], I_M_t[2, 2], ord) + TaylorSeries.div!(tmp1304, tmp1302, 2, ord) + TaylorSeries.subst!(tmp1305, I_M_t[3, 3], tmp1304, ord) + TaylorSeries.div!(J2M_t, tmp1305, μ[mo], ord) + TaylorSeries.subst!(tmp1307, I_M_t[2, 2], I_M_t[1, 1], ord) + TaylorSeries.div!(tmp1308, tmp1307, μ[mo], ord) + TaylorSeries.div!(C22M_t, tmp1308, 4, ord) + TaylorSeries.subst!(tmp1311, I_M_t[1, 3], ord) + TaylorSeries.div!(C21M_t, tmp1311, μ[mo], ord) + TaylorSeries.subst!(tmp1313, I_M_t[3, 2], ord) + TaylorSeries.div!(S21M_t, tmp1313, μ[mo], ord) + TaylorSeries.subst!(tmp1315, I_M_t[2, 1], ord) + TaylorSeries.div!(tmp1316, tmp1315, μ[mo], ord) + TaylorSeries.div!(S22M_t, tmp1316, 2, ord) TaylorSeries.identity!(J2_t[mo], J2M_t, ord) - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:416 =# Threads.@threads for j = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:418 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -4147,17 +4539,17 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(Z_bf_1[i, j], X[i, j], RotM[3, 1, j], ord) TaylorSeries.mul!(Z_bf_2[i, j], Y[i, j], RotM[3, 2, j], ord) TaylorSeries.mul!(Z_bf_3[i, j], Z[i, j], RotM[3, 3, j], ord) - TaylorSeries.add!(tmp3106[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) - TaylorSeries.add!(X_bf[i, j], tmp3106[i, j], X_bf_3[i, j], ord) - TaylorSeries.add!(tmp3108[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) - TaylorSeries.add!(Y_bf[i, j], tmp3108[i, j], Y_bf_3[i, j], ord) - TaylorSeries.add!(tmp3110[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) - TaylorSeries.add!(Z_bf[i, j], tmp3110[i, j], Z_bf_3[i, j], ord) + TaylorSeries.add!(tmp1328[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) + TaylorSeries.add!(X_bf[i, j], tmp1328[i, j], X_bf_3[i, j], ord) + TaylorSeries.add!(tmp1330[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) + TaylorSeries.add!(Y_bf[i, j], tmp1330[i, j], Y_bf_3[i, j], ord) + TaylorSeries.add!(tmp1332[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) + TaylorSeries.add!(Z_bf[i, j], tmp1332[i, j], Z_bf_3[i, j], ord) TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp3114[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp3116[i, j], Y_bf[i, j], 2, ord) - TaylorSeries.add!(tmp3117[i, j], tmp3114[i, j], tmp3116[i, j], ord) - TaylorSeries.sqrt!(r_xy[i, j], tmp3117[i, j], ord) + TaylorSeries.pow!(tmp1336[i, j], X_bf[i, j], 2, ord) + TaylorSeries.pow!(tmp1338[i, j], Y_bf[i, j], 2, ord) + TaylorSeries.add!(tmp1339[i, j], tmp1336[i, j], tmp1338[i, j], ord) + TaylorSeries.sqrt!(r_xy[i, j], tmp1339[i, j], ord) TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) TaylorSeries.div!(sin_λ[i, j], Y_bf[i, j], r_xy[i, j], ord) TaylorSeries.div!(cos_λ[i, j], X_bf[i, j], r_xy[i, j], ord) @@ -4166,35 +4558,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(dP_n[i, j, 1], zero_q_1, ord) TaylorSeries.identity!(dP_n[i, j, 2], one_t, ord) for n = 2:n1SEM[j] - TaylorSeries.mul!(tmp3122[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3123[i, j, n], tmp3122[i, j, n], fact1_jsem[n], ord) - TaylorSeries.mul!(tmp3124[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) - TaylorSeries.subst!(P_n[i, j, n + 1], tmp3123[i, j, n], tmp3124[i, j, n - 1], ord) - TaylorSeries.mul!(tmp3126[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3127[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) - TaylorSeries.add!(dP_n[i, j, n + 1], tmp3126[i, j, n], tmp3127[i, j, n], ord) + TaylorSeries.mul!(tmp1344[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1345[i, j, n], tmp1344[i, j, n], fact1_jsem[n], ord) + TaylorSeries.mul!(tmp1346[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) + TaylorSeries.subst!(P_n[i, j, n + 1], tmp1345[i, j, n], tmp1346[i, j, n - 1], ord) + TaylorSeries.mul!(tmp1348[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1349[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) + TaylorSeries.add!(dP_n[i, j, n + 1], tmp1348[i, j, n], tmp1349[i, j, n], ord) TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) end TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) - TaylorSeries.mul!(tmp3132[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) - TaylorSeries.mul!(tmp3133[i, j, 3], tmp3132[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ξ[i, j], tmp3133[i, j, 3], r_p4[i, j], ord) - TaylorSeries.subst!(tmp3135[i, j, 3], dP_n[i, j, 3], ord) - TaylorSeries.mul!(tmp3136[i, j, 3], tmp3135[i, j, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3137[i, j, 3], tmp3136[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ζ[i, j], tmp3137[i, j, 3], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1354[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) + TaylorSeries.mul!(tmp1355[i, j, 3], tmp1354[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ξ[i, j], tmp1355[i, j, 3], r_p4[i, j], ord) + TaylorSeries.subst!(tmp1357[i, j, 3], dP_n[i, j, 3], ord) + TaylorSeries.mul!(tmp1358[i, j, 3], tmp1357[i, j, 3], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1359[i, j, 3], tmp1358[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ζ[i, j], tmp1359[i, j, 3], r_p4[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_J_ζ_36[i, j], zero_q_1, ord) for n = 3:n1SEM[j] - TaylorSeries.mul!(tmp3139[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) - TaylorSeries.mul!(tmp3140[i, j, n + 1], tmp3139[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3141[i, j, n + 1], tmp3140[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjξ[i, j, n], tmp3141[i, j, n + 1], F_J_ξ_36[i, j], ord) - TaylorSeries.subst!(tmp3143[i, j, n + 1], dP_n[i, j, n + 1], ord) - TaylorSeries.mul!(tmp3144[i, j, n + 1], tmp3143[i, j, n + 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3145[i, j, n + 1], tmp3144[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3146[i, j, n + 1], tmp3145[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjζ[i, j, n], tmp3146[i, j, n + 1], F_J_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp1361[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) + TaylorSeries.mul!(tmp1362[i, j, n + 1], tmp1361[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp1363[i, j, n + 1], tmp1362[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjξ[i, j, n], tmp1363[i, j, n + 1], F_J_ξ_36[i, j], ord) + TaylorSeries.subst!(tmp1365[i, j, n + 1], dP_n[i, j, n + 1], ord) + TaylorSeries.mul!(tmp1366[i, j, n + 1], tmp1365[i, j, n + 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1367[i, j, n + 1], tmp1366[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp1368[i, j, n + 1], tmp1367[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjζ[i, j, n], tmp1368[i, j, n + 1], F_J_ζ_36[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], temp_fjξ[i, j, n], ord) TaylorSeries.identity!(F_J_ζ_36[i, j], temp_fjζ[i, j, n], ord) end @@ -4207,69 +4599,69 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(P_nm[i, j, 1, 1], cos_ϕ[i, j], ord) TaylorSeries.mul!(cosϕ_dP_nm[i, j, 1, 1], sin_ϕ[i, j], lnm3[1], ord) else - TaylorSeries.mul!(tmp3149[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3150[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.add!(sin_mλ[i, j, m], tmp3149[i, j, m - 1], tmp3150[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3152[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3153[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(cos_mλ[i, j, m], tmp3152[i, j, m - 1], tmp3153[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3155[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp3155[i, j, m - 1, m - 1], lnm5[m], ord) + TaylorSeries.mul!(tmp1371[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1372[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.add!(sin_mλ[i, j, m], tmp1371[i, j, m - 1], tmp1372[i, j, m - 1], ord) + TaylorSeries.mul!(tmp1374[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1375[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(cos_mλ[i, j, m], tmp1374[i, j, m - 1], tmp1375[i, j, m - 1], ord) + TaylorSeries.mul!(tmp1377[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp1377[i, j, m - 1, m - 1], lnm5[m], ord) TaylorSeries.mul!(P_nm[i, j, m, m], secϕ_P_nm[i, j, m, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3158[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp3158[i, j, m, m], lnm3[m], ord) + TaylorSeries.mul!(tmp1380[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp1380[i, j, m, m], lnm3[m], ord) end for n = m + 1:n1SEM[mo] if n == m + 1 - TaylorSeries.mul!(tmp3160[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp3160[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp1382[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp1382[i, j, n - 1, m], lnm1[n, m], ord) else - TaylorSeries.mul!(tmp3162[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3163[i, j, n - 1, m], tmp3162[i, j, n - 1, m], lnm1[n, m], ord) - TaylorSeries.mul!(tmp3164[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) - TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp3163[i, j, n - 1, m], tmp3164[i, j, n - 2, m], ord) + TaylorSeries.mul!(tmp1384[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1385[i, j, n - 1, m], tmp1384[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp1386[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) + TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp1385[i, j, n - 1, m], tmp1386[i, j, n - 2, m], ord) end TaylorSeries.mul!(P_nm[i, j, n, m], secϕ_P_nm[i, j, n, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3167[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3168[i, j, n, m], tmp3167[i, j, n, m], lnm3[n], ord) - TaylorSeries.mul!(tmp3169[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) - TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp3168[i, j, n, m], tmp3169[i, j, n - 1, m], ord) + TaylorSeries.mul!(tmp1389[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1390[i, j, n, m], tmp1389[i, j, n, m], lnm3[n], ord) + TaylorSeries.mul!(tmp1391[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) + TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp1390[i, j, n, m], tmp1391[i, j, n - 1, m], ord) end end - TaylorSeries.mul!(tmp3171[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) - TaylorSeries.mul!(tmp3172[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3173[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3174[i, j, 1], tmp3172[i, j, 1], tmp3173[i, j, 1], ord) - TaylorSeries.mul!(tmp3175[i, j, 2, 1], tmp3171[i, j, 2, 1], tmp3174[i, j, 1], ord) - TaylorSeries.mul!(tmp3176[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) - TaylorSeries.mul!(tmp3177[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3178[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3179[i, j, 2], tmp3177[i, j, 2], tmp3178[i, j, 2], ord) - TaylorSeries.mul!(tmp3180[i, j, 2, 2], tmp3176[i, j, 2, 2], tmp3179[i, j, 2], ord) - TaylorSeries.add!(tmp3181[i, j, 2, 1], tmp3175[i, j, 2, 1], tmp3180[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ξ[i, j], tmp3181[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3183[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) - TaylorSeries.mul!(tmp3184[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3185[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(tmp3186[i, j, 1], tmp3184[i, j, 1], tmp3185[i, j, 1], ord) - TaylorSeries.mul!(tmp3187[i, j, 2, 1], tmp3183[i, j, 2, 1], tmp3186[i, j, 1], ord) - TaylorSeries.mul!(tmp3188[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) - TaylorSeries.mul!(tmp3189[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3190[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.subst!(tmp3191[i, j, 2], tmp3189[i, j, 2], tmp3190[i, j, 2], ord) - TaylorSeries.mul!(tmp3192[i, j, 2, 2], tmp3188[i, j, 2, 2], tmp3191[i, j, 2], ord) - TaylorSeries.add!(tmp3193[i, j, 2, 1], tmp3187[i, j, 2, 1], tmp3192[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_η[i, j], tmp3193[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3195[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3196[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3197[i, j, 1], tmp3195[i, j, 1], tmp3196[i, j, 1], ord) - TaylorSeries.mul!(tmp3198[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp3197[i, j, 1], ord) - TaylorSeries.mul!(tmp3199[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3200[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3201[i, j, 2], tmp3199[i, j, 2], tmp3200[i, j, 2], ord) - TaylorSeries.mul!(tmp3202[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp3201[i, j, 2], ord) - TaylorSeries.add!(tmp3203[i, j, 2, 1], tmp3198[i, j, 2, 1], tmp3202[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ζ[i, j], tmp3203[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1393[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) + TaylorSeries.mul!(tmp1394[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1395[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp1396[i, j, 1], tmp1394[i, j, 1], tmp1395[i, j, 1], ord) + TaylorSeries.mul!(tmp1397[i, j, 2, 1], tmp1393[i, j, 2, 1], tmp1396[i, j, 1], ord) + TaylorSeries.mul!(tmp1398[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) + TaylorSeries.mul!(tmp1399[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp1400[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp1401[i, j, 2], tmp1399[i, j, 2], tmp1400[i, j, 2], ord) + TaylorSeries.mul!(tmp1402[i, j, 2, 2], tmp1398[i, j, 2, 2], tmp1401[i, j, 2], ord) + TaylorSeries.add!(tmp1403[i, j, 2, 1], tmp1397[i, j, 2, 1], tmp1402[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ξ[i, j], tmp1403[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1405[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) + TaylorSeries.mul!(tmp1406[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1407[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(tmp1408[i, j, 1], tmp1406[i, j, 1], tmp1407[i, j, 1], ord) + TaylorSeries.mul!(tmp1409[i, j, 2, 1], tmp1405[i, j, 2, 1], tmp1408[i, j, 1], ord) + TaylorSeries.mul!(tmp1410[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) + TaylorSeries.mul!(tmp1411[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp1412[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.subst!(tmp1413[i, j, 2], tmp1411[i, j, 2], tmp1412[i, j, 2], ord) + TaylorSeries.mul!(tmp1414[i, j, 2, 2], tmp1410[i, j, 2, 2], tmp1413[i, j, 2], ord) + TaylorSeries.add!(tmp1415[i, j, 2, 1], tmp1409[i, j, 2, 1], tmp1414[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_η[i, j], tmp1415[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1417[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1418[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp1419[i, j, 1], tmp1417[i, j, 1], tmp1418[i, j, 1], ord) + TaylorSeries.mul!(tmp1420[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp1419[i, j, 1], ord) + TaylorSeries.mul!(tmp1421[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp1422[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp1423[i, j, 2], tmp1421[i, j, 2], tmp1422[i, j, 2], ord) + TaylorSeries.mul!(tmp1424[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp1423[i, j, 2], ord) + TaylorSeries.add!(tmp1425[i, j, 2, 1], tmp1420[i, j, 2, 1], tmp1424[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ζ[i, j], tmp1425[i, j, 2, 1], r_p4[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_η_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], zero_q_1, ord) @@ -4279,32 +4671,32 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(Cnm_sinmλ[i, j, n, m], CM[n, m], sin_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_cosmλ[i, j, n, m], SM[n, m], cos_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_sinmλ[i, j, n, m], SM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(tmp3209[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) - TaylorSeries.add!(tmp3210[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3211[i, j, n, m], tmp3209[i, j, n, m], tmp3210[i, j, n, m], ord) - TaylorSeries.div!(tmp3212[i, j, n, m], tmp3211[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp3212[i, j, n, m], F_CS_ξ_36[i, j], ord) - TaylorSeries.mul!(tmp3214[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) - TaylorSeries.subst!(tmp3215[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3216[i, j, n, m], tmp3214[i, j, n, m], tmp3215[i, j, n, m], ord) - TaylorSeries.div!(tmp3217[i, j, n, m], tmp3216[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp3217[i, j, n, m], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3219[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3220[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp3219[i, j, n, m], ord) - TaylorSeries.div!(tmp3221[i, j, n, m], tmp3220[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp3221[i, j, n, m], F_CS_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp1431[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) + TaylorSeries.add!(tmp1432[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp1433[i, j, n, m], tmp1431[i, j, n, m], tmp1432[i, j, n, m], ord) + TaylorSeries.div!(tmp1434[i, j, n, m], tmp1433[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp1434[i, j, n, m], F_CS_ξ_36[i, j], ord) + TaylorSeries.mul!(tmp1436[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) + TaylorSeries.subst!(tmp1437[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp1438[i, j, n, m], tmp1436[i, j, n, m], tmp1437[i, j, n, m], ord) + TaylorSeries.div!(tmp1439[i, j, n, m], tmp1438[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp1439[i, j, n, m], F_CS_η_36[i, j], ord) + TaylorSeries.add!(tmp1441[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp1442[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp1441[i, j, n, m], ord) + TaylorSeries.div!(tmp1443[i, j, n, m], tmp1442[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp1443[i, j, n, m], F_CS_ζ_36[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], temp_CS_ξ[i, j, n, m], ord) TaylorSeries.identity!(F_CS_η_36[i, j], temp_CS_η[i, j, n, m], ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], temp_CS_ζ[i, j, n, m], ord) end end - TaylorSeries.add!(tmp3223[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.add!(tmp3224[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ξ[i, j], tmp3223[i, j], tmp3224[i, j], ord) + TaylorSeries.add!(tmp1445[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) + TaylorSeries.add!(tmp1446[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ξ[i, j], tmp1445[i, j], tmp1446[i, j], ord) TaylorSeries.add!(F_JCS_η[i, j], F_CS_η[i, j], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3227[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - TaylorSeries.add!(tmp3228[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ζ[i, j], tmp3227[i, j], tmp3228[i, j], ord) + TaylorSeries.add!(tmp1449[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) + TaylorSeries.add!(tmp1450[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ζ[i, j], tmp1449[i, j], tmp1450[i, j], ord) else TaylorSeries.add!(F_JCS_ξ[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) TaylorSeries.identity!(F_JCS_η[i, j], zero_q_1, ord) @@ -4312,75 +4704,75 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: end TaylorSeries.mul!(Rb2p[i, j, 1, 1], cos_ϕ[i, j], cos_λ[i, j], ord) TaylorSeries.subst!(Rb2p[i, j, 2, 1], sin_λ[i, j], ord) - TaylorSeries.subst!(tmp3234[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp3234[i, j], cos_λ[i, j], ord) + TaylorSeries.subst!(tmp1456[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp1456[i, j], cos_λ[i, j], ord) TaylorSeries.mul!(Rb2p[i, j, 1, 2], cos_ϕ[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 2], cos_λ[i, j], ord) - TaylorSeries.subst!(tmp3237[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp3237[i, j], sin_λ[i, j], ord) + TaylorSeries.subst!(tmp1459[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp1459[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 1, 3], sin_ϕ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 3], zero_q_1, ord) TaylorSeries.identity!(Rb2p[i, j, 3, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3239[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3240[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3241[i, j, 1, 1], tmp3239[i, j, 1, 1], tmp3240[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3242[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp3241[i, j, 1, 1], tmp3242[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3244[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3245[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3246[i, j, 2, 1], tmp3244[i, j, 2, 1], tmp3245[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3247[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp3246[i, j, 2, 1], tmp3247[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3249[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3250[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3251[i, j, 3, 1], tmp3249[i, j, 3, 1], tmp3250[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3252[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp3251[i, j, 3, 1], tmp3252[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3254[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3255[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3256[i, j, 1, 1], tmp3254[i, j, 1, 1], tmp3255[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3257[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp3256[i, j, 1, 1], tmp3257[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3259[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3260[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3261[i, j, 2, 1], tmp3259[i, j, 2, 1], tmp3260[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3262[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp3261[i, j, 2, 1], tmp3262[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3264[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3265[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3266[i, j, 3, 1], tmp3264[i, j, 3, 1], tmp3265[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3267[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp3266[i, j, 3, 1], tmp3267[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3269[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3270[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3271[i, j, 1, 1], tmp3269[i, j, 1, 1], tmp3270[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3272[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp3271[i, j, 1, 1], tmp3272[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3274[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3275[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3276[i, j, 2, 1], tmp3274[i, j, 2, 1], tmp3275[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3277[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp3276[i, j, 2, 1], tmp3277[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3279[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3280[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3281[i, j, 3, 1], tmp3279[i, j, 3, 1], tmp3280[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3282[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp3281[i, j, 3, 1], tmp3282[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3284[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) - TaylorSeries.mul!(tmp3285[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) - TaylorSeries.add!(tmp3286[i, j, 1, 1], tmp3284[i, j, 1, 1], tmp3285[i, j, 2, 1], ord) - TaylorSeries.mul!(tmp3287[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) - TaylorSeries.add!(F_JCS_x[i, j], tmp3286[i, j, 1, 1], tmp3287[i, j, 3, 1], ord) - TaylorSeries.mul!(tmp3289[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3290[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) - TaylorSeries.add!(tmp3291[i, j, 1, 2], tmp3289[i, j, 1, 2], tmp3290[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3292[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) - TaylorSeries.add!(F_JCS_y[i, j], tmp3291[i, j, 1, 2], tmp3292[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3294[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3295[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) - TaylorSeries.add!(tmp3296[i, j, 1, 3], tmp3294[i, j, 1, 3], tmp3295[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3297[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) - TaylorSeries.add!(F_JCS_z[i, j], tmp3296[i, j, 1, 3], tmp3297[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1461[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp1462[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp1463[i, j, 1, 1], tmp1461[i, j, 1, 1], tmp1462[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1464[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp1463[i, j, 1, 1], tmp1464[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1466[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp1467[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp1468[i, j, 2, 1], tmp1466[i, j, 2, 1], tmp1467[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1469[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp1468[i, j, 2, 1], tmp1469[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1471[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp1472[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp1473[i, j, 3, 1], tmp1471[i, j, 3, 1], tmp1472[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1474[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp1473[i, j, 3, 1], tmp1474[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1476[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp1477[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp1478[i, j, 1, 1], tmp1476[i, j, 1, 1], tmp1477[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1479[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp1478[i, j, 1, 1], tmp1479[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1481[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp1482[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp1483[i, j, 2, 1], tmp1481[i, j, 2, 1], tmp1482[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1484[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp1483[i, j, 2, 1], tmp1484[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1486[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp1487[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp1488[i, j, 3, 1], tmp1486[i, j, 3, 1], tmp1487[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1489[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp1488[i, j, 3, 1], tmp1489[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1491[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp1492[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp1493[i, j, 1, 1], tmp1491[i, j, 1, 1], tmp1492[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1494[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp1493[i, j, 1, 1], tmp1494[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1496[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp1497[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp1498[i, j, 2, 1], tmp1496[i, j, 2, 1], tmp1497[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1499[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp1498[i, j, 2, 1], tmp1499[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1501[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp1502[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp1503[i, j, 3, 1], tmp1501[i, j, 3, 1], tmp1502[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1504[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp1503[i, j, 3, 1], tmp1504[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1506[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) + TaylorSeries.mul!(tmp1507[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) + TaylorSeries.add!(tmp1508[i, j, 1, 1], tmp1506[i, j, 1, 1], tmp1507[i, j, 2, 1], ord) + TaylorSeries.mul!(tmp1509[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) + TaylorSeries.add!(F_JCS_x[i, j], tmp1508[i, j, 1, 1], tmp1509[i, j, 3, 1], ord) + TaylorSeries.mul!(tmp1511[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1512[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) + TaylorSeries.add!(tmp1513[i, j, 1, 2], tmp1511[i, j, 1, 2], tmp1512[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1514[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) + TaylorSeries.add!(F_JCS_y[i, j], tmp1513[i, j, 1, 2], tmp1514[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1516[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1517[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) + TaylorSeries.add!(tmp1518[i, j, 1, 3], tmp1516[i, j, 1, 3], tmp1517[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1519[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) + TaylorSeries.add!(F_JCS_z[i, j], tmp1518[i, j, 1, 3], tmp1519[i, j, 3, 3], ord) end end end @@ -4391,37 +4783,37 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: continue else if UJ_interaction[i, j] - TaylorSeries.mul!(tmp3299[i, j], μ[i], F_JCS_x[i, j], ord) - TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp3299[i, j], ord) + TaylorSeries.mul!(tmp1521[i, j], μ[i], F_JCS_x[i, j], ord) + TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp1521[i, j], ord) TaylorSeries.identity!(accX[j], temp_accX_j[i, j], ord) - TaylorSeries.mul!(tmp3301[i, j], μ[i], F_JCS_y[i, j], ord) - TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp3301[i, j], ord) + TaylorSeries.mul!(tmp1523[i, j], μ[i], F_JCS_y[i, j], ord) + TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp1523[i, j], ord) TaylorSeries.identity!(accY[j], temp_accY_j[i, j], ord) - TaylorSeries.mul!(tmp3303[i, j], μ[i], F_JCS_z[i, j], ord) - TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp3303[i, j], ord) + TaylorSeries.mul!(tmp1525[i, j], μ[i], F_JCS_z[i, j], ord) + TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp1525[i, j], ord) TaylorSeries.identity!(accZ[j], temp_accZ_j[i, j], ord) - TaylorSeries.mul!(tmp3305[i, j], μ[j], F_JCS_x[i, j], ord) - TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp3305[i, j], ord) + TaylorSeries.mul!(tmp1527[i, j], μ[j], F_JCS_x[i, j], ord) + TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp1527[i, j], ord) TaylorSeries.identity!(accX[i], temp_accX_i[i, j], ord) - TaylorSeries.mul!(tmp3307[i, j], μ[j], F_JCS_y[i, j], ord) - TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp3307[i, j], ord) + TaylorSeries.mul!(tmp1529[i, j], μ[j], F_JCS_y[i, j], ord) + TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp1529[i, j], ord) TaylorSeries.identity!(accY[i], temp_accY_i[i, j], ord) - TaylorSeries.mul!(tmp3309[i, j], μ[j], F_JCS_z[i, j], ord) - TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp3309[i, j], ord) + TaylorSeries.mul!(tmp1531[i, j], μ[j], F_JCS_z[i, j], ord) + TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp1531[i, j], ord) TaylorSeries.identity!(accZ[i], temp_accZ_i[i, j], ord) if j == mo - TaylorSeries.mul!(tmp3311[i, j], Y[i, j], F_JCS_z[i, j], ord) - TaylorSeries.mul!(tmp3312[i, j], Z[i, j], F_JCS_y[i, j], ord) - TaylorSeries.subst!(tmp3313[i, j], tmp3311[i, j], tmp3312[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp3313[i, j], ord) - TaylorSeries.mul!(tmp3315[i, j], Z[i, j], F_JCS_x[i, j], ord) - TaylorSeries.mul!(tmp3316[i, j], X[i, j], F_JCS_z[i, j], ord) - TaylorSeries.subst!(tmp3317[i, j], tmp3315[i, j], tmp3316[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp3317[i, j], ord) - TaylorSeries.mul!(tmp3319[i, j], X[i, j], F_JCS_y[i, j], ord) - TaylorSeries.mul!(tmp3320[i, j], Y[i, j], F_JCS_x[i, j], ord) - TaylorSeries.subst!(tmp3321[i, j], tmp3319[i, j], tmp3320[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp3321[i, j], ord) + TaylorSeries.mul!(tmp1533[i, j], Y[i, j], F_JCS_z[i, j], ord) + TaylorSeries.mul!(tmp1534[i, j], Z[i, j], F_JCS_y[i, j], ord) + TaylorSeries.subst!(tmp1535[i, j], tmp1533[i, j], tmp1534[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp1535[i, j], ord) + TaylorSeries.mul!(tmp1537[i, j], Z[i, j], F_JCS_x[i, j], ord) + TaylorSeries.mul!(tmp1538[i, j], X[i, j], F_JCS_z[i, j], ord) + TaylorSeries.subst!(tmp1539[i, j], tmp1537[i, j], tmp1538[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp1539[i, j], ord) + TaylorSeries.mul!(tmp1541[i, j], X[i, j], F_JCS_y[i, j], ord) + TaylorSeries.mul!(tmp1542[i, j], Y[i, j], F_JCS_x[i, j], ord) + TaylorSeries.subst!(tmp1543[i, j], tmp1541[i, j], tmp1542[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp1543[i, j], ord) TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], N_MfigM_pmA_x[i], ord) TaylorSeries.identity!(N_MfigM[1], temp_N_M_x[i], ord) TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], N_MfigM_pmA_y[i], ord) @@ -4433,7 +4825,7 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: end end end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:656 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:658 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -4442,18 +4834,18 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.add!(ϕi_plus_4ϕj[i, j], newtonianNb_Potential[i], _4ϕj[i, j], ord) TaylorSeries.mul!(_2v2[i, j], 2, v2[i], ord) TaylorSeries.add!(sj2_plus_2si2[i, j], v2[j], _2v2[i, j], ord) - TaylorSeries.mul!(tmp3333[i, j], 4, vi_dot_vj[i, j], ord) - TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp3333[i, j], ord) + TaylorSeries.mul!(tmp1555[i, j], 4, vi_dot_vj[i, j], ord) + TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp1555[i, j], ord) TaylorSeries.subst!(ϕs_and_vs[i, j], sj2_plus_2si2_minus_4vivj[i, j], ϕi_plus_4ϕj[i, j], ord) TaylorSeries.mul!(Xij_t_Ui[i, j], X[i, j], dq[3i - 2], ord) TaylorSeries.mul!(Yij_t_Vi[i, j], Y[i, j], dq[3i - 1], ord) TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) - TaylorSeries.add!(tmp3339[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) - TaylorSeries.add!(Rij_dot_Vi[i, j], tmp3339[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp3342[i, j], Rij_dot_Vi[i, j], 2, ord) - TaylorSeries.div!(pn1t7[i, j], tmp3342[i, j], r_p2[i, j], ord) - TaylorSeries.mul!(tmp3345[i, j], 1.5, pn1t7[i, j], ord) - TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp3345[i, j], ord) + TaylorSeries.add!(tmp1561[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) + TaylorSeries.add!(Rij_dot_Vi[i, j], tmp1561[i, j], Zij_t_Wi[i, j], ord) + TaylorSeries.pow!(tmp1564[i, j], Rij_dot_Vi[i, j], 2, ord) + TaylorSeries.div!(pn1t7[i, j], tmp1564[i, j], r_p2[i, j], ord) + TaylorSeries.mul!(tmp1567[i, j], 1.5, pn1t7[i, j], ord) + TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp1567[i, j], ord) TaylorSeries.add!(pn1t1_7[i, j], c_p2, pn1t2_7[i, j], ord) end end @@ -4461,7 +4853,7 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(pntempY[j], zero_q_1, ord) TaylorSeries.identity!(pntempZ[j], zero_q_1, ord) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:695 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:697 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -4469,26 +4861,26 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(pNX_t_X[i, j], newtonX[i], X[i, j], ord) TaylorSeries.mul!(pNY_t_Y[i, j], newtonY[i], Y[i, j], ord) TaylorSeries.mul!(pNZ_t_Z[i, j], newtonZ[i], Z[i, j], ord) - TaylorSeries.add!(tmp3352[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) - TaylorSeries.add!(tmp3353[i, j], tmp3352[i, j], pNZ_t_Z[i, j], ord) - TaylorSeries.mul!(tmp3354[i, j], 0.5, tmp3353[i, j], ord) - TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp3354[i, j], ord) + TaylorSeries.add!(tmp1574[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) + TaylorSeries.add!(tmp1575[i, j], tmp1574[i, j], pNZ_t_Z[i, j], ord) + TaylorSeries.mul!(tmp1576[i, j], 0.5, tmp1575[i, j], ord) + TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp1576[i, j], ord) TaylorSeries.mul!(X_t_pn1[i, j], newton_acc_X[i, j], pn1[i, j], ord) TaylorSeries.mul!(Y_t_pn1[i, j], newton_acc_Y[i, j], pn1[i, j], ord) TaylorSeries.mul!(Z_t_pn1[i, j], newton_acc_Z[i, j], pn1[i, j], ord) TaylorSeries.mul!(pNX_t_pn3[i, j], newtonX[i], pn3[i, j], ord) TaylorSeries.mul!(pNY_t_pn3[i, j], newtonY[i], pn3[i, j], ord) TaylorSeries.mul!(pNZ_t_pn3[i, j], newtonZ[i], pn3[i, j], ord) - TaylorSeries.add!(tmp3362[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) - TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp3362[i, j], ord) + TaylorSeries.add!(tmp1584[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) + TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp1584[i, j], ord) TaylorSeries.add!(sumpnx[i, j], pntempX[j], termpnx[i, j], ord) TaylorSeries.identity!(pntempX[j], sumpnx[i, j], ord) - TaylorSeries.add!(tmp3365[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) - TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp3365[i, j], ord) + TaylorSeries.add!(tmp1587[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) + TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp1587[i, j], ord) TaylorSeries.add!(sumpny[i, j], pntempY[j], termpny[i, j], ord) TaylorSeries.identity!(pntempY[j], sumpny[i, j], ord) - TaylorSeries.add!(tmp3368[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) - TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp3368[i, j], ord) + TaylorSeries.add!(tmp1590[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) + TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp1590[i, j], ord) TaylorSeries.add!(sumpnz[i, j], pntempZ[j], termpnz[i, j], ord) TaylorSeries.identity!(pntempZ[j], sumpnz[i, j], ord) end @@ -4497,277 +4889,277 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(postNewtonY[j], pntempY[j], c_m2, ord) TaylorSeries.mul!(postNewtonZ[j], pntempZ[j], c_m2, ord) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:741 =# Threads.@threads for i = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:743 =# Threads.@threads for i = 1:N_ext TaylorSeries.add!(dq[3 * (N + i) - 2], postNewtonX[i], accX[i], ord) TaylorSeries.add!(dq[3 * (N + i) - 1], postNewtonY[i], accY[i], ord) TaylorSeries.add!(dq[3 * (N + i)], postNewtonZ[i], accZ[i], ord) end - #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:746 =# Threads.@threads for i = N_ext + 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:748 =# Threads.@threads for i = N_ext + 1:N TaylorSeries.identity!(dq[3 * (N + i) - 2], postNewtonX[i], ord) TaylorSeries.identity!(dq[3 * (N + i) - 1], postNewtonY[i], ord) TaylorSeries.identity!(dq[3 * (N + i)], postNewtonZ[i], ord) end - TaylorSeries.mul!(tmp3377, I_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3378, I_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3379, I_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3380, tmp3378, tmp3379, ord) - TaylorSeries.add!(Iω_x, tmp3377, tmp3380, ord) - TaylorSeries.mul!(tmp3382, I_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3383, I_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3384, I_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3385, tmp3383, tmp3384, ord) - TaylorSeries.add!(Iω_y, tmp3382, tmp3385, ord) - TaylorSeries.mul!(tmp3387, I_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3388, I_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3389, I_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3390, tmp3388, tmp3389, ord) - TaylorSeries.add!(Iω_z, tmp3387, tmp3390, ord) - TaylorSeries.mul!(tmp3392, q[6N + 5], Iω_z, ord) - TaylorSeries.mul!(tmp3393, q[6N + 6], Iω_y, ord) - TaylorSeries.subst!(ωxIω_x, tmp3392, tmp3393, ord) - TaylorSeries.mul!(tmp3395, q[6N + 6], Iω_x, ord) - TaylorSeries.mul!(tmp3396, q[6N + 4], Iω_z, ord) - TaylorSeries.subst!(ωxIω_y, tmp3395, tmp3396, ord) - TaylorSeries.mul!(tmp3398, q[6N + 4], Iω_y, ord) - TaylorSeries.mul!(tmp3399, q[6N + 5], Iω_x, ord) - TaylorSeries.subst!(ωxIω_z, tmp3398, tmp3399, ord) - TaylorSeries.mul!(tmp3401, dI_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3402, dI_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3403, dI_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3404, tmp3402, tmp3403, ord) - TaylorSeries.add!(dIω_x, tmp3401, tmp3404, ord) - TaylorSeries.mul!(tmp3406, dI_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3407, dI_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3408, dI_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3409, tmp3407, tmp3408, ord) - TaylorSeries.add!(dIω_y, tmp3406, tmp3409, ord) - TaylorSeries.mul!(tmp3411, dI_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3412, dI_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3413, dI_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3414, tmp3412, tmp3413, ord) - TaylorSeries.add!(dIω_z, tmp3411, tmp3414, ord) + TaylorSeries.mul!(tmp1599, I_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1600, I_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1601, I_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1602, tmp1600, tmp1601, ord) + TaylorSeries.add!(Iω_x, tmp1599, tmp1602, ord) + TaylorSeries.mul!(tmp1604, I_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1605, I_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1606, I_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1607, tmp1605, tmp1606, ord) + TaylorSeries.add!(Iω_y, tmp1604, tmp1607, ord) + TaylorSeries.mul!(tmp1609, I_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1610, I_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1611, I_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1612, tmp1610, tmp1611, ord) + TaylorSeries.add!(Iω_z, tmp1609, tmp1612, ord) + TaylorSeries.mul!(tmp1614, q[6N + 5], Iω_z, ord) + TaylorSeries.mul!(tmp1615, q[6N + 6], Iω_y, ord) + TaylorSeries.subst!(ωxIω_x, tmp1614, tmp1615, ord) + TaylorSeries.mul!(tmp1617, q[6N + 6], Iω_x, ord) + TaylorSeries.mul!(tmp1618, q[6N + 4], Iω_z, ord) + TaylorSeries.subst!(ωxIω_y, tmp1617, tmp1618, ord) + TaylorSeries.mul!(tmp1620, q[6N + 4], Iω_y, ord) + TaylorSeries.mul!(tmp1621, q[6N + 5], Iω_x, ord) + TaylorSeries.subst!(ωxIω_z, tmp1620, tmp1621, ord) + TaylorSeries.mul!(tmp1623, dI_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1624, dI_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1625, dI_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1626, tmp1624, tmp1625, ord) + TaylorSeries.add!(dIω_x, tmp1623, tmp1626, ord) + TaylorSeries.mul!(tmp1628, dI_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1629, dI_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1630, dI_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1631, tmp1629, tmp1630, ord) + TaylorSeries.add!(dIω_y, tmp1628, tmp1631, ord) + TaylorSeries.mul!(tmp1633, dI_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1634, dI_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1635, dI_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1636, tmp1634, tmp1635, ord) + TaylorSeries.add!(dIω_z, tmp1633, tmp1636, ord) TaylorSeries.div!(er_EM_I_1, X[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_2, Y[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_3, Z[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.identity!(p_E_I_1, RotM[3, 1, ea], ord) TaylorSeries.identity!(p_E_I_2, RotM[3, 2, ea], ord) TaylorSeries.identity!(p_E_I_3, RotM[3, 3, ea], ord) - TaylorSeries.mul!(tmp3419, RotM[1, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3420, RotM[1, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3421, RotM[1, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3422, tmp3420, tmp3421, ord) - TaylorSeries.add!(er_EM_1, tmp3419, tmp3422, ord) - TaylorSeries.mul!(tmp3424, RotM[2, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3425, RotM[2, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3426, RotM[2, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3427, tmp3425, tmp3426, ord) - TaylorSeries.add!(er_EM_2, tmp3424, tmp3427, ord) - TaylorSeries.mul!(tmp3429, RotM[3, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3430, RotM[3, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3431, RotM[3, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3432, tmp3430, tmp3431, ord) - TaylorSeries.add!(er_EM_3, tmp3429, tmp3432, ord) - TaylorSeries.mul!(tmp3434, RotM[1, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3435, RotM[1, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3436, RotM[1, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp3437, tmp3435, tmp3436, ord) - TaylorSeries.add!(p_E_1, tmp3434, tmp3437, ord) - TaylorSeries.mul!(tmp3439, RotM[2, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3440, RotM[2, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3441, RotM[2, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp3442, tmp3440, tmp3441, ord) - TaylorSeries.add!(p_E_2, tmp3439, tmp3442, ord) - TaylorSeries.mul!(tmp3444, RotM[3, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3445, RotM[3, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3446, RotM[3, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp3447, tmp3445, tmp3446, ord) - TaylorSeries.add!(p_E_3, tmp3444, tmp3447, ord) - TaylorSeries.mul!(tmp3449, I_m_t[1, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3450, I_m_t[1, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3451, I_m_t[1, 3], er_EM_3, ord) - TaylorSeries.add!(tmp3452, tmp3450, tmp3451, ord) - TaylorSeries.add!(I_er_EM_1, tmp3449, tmp3452, ord) - TaylorSeries.mul!(tmp3454, I_m_t[2, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3455, I_m_t[2, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3456, I_m_t[2, 3], er_EM_3, ord) - TaylorSeries.add!(tmp3457, tmp3455, tmp3456, ord) - TaylorSeries.add!(I_er_EM_2, tmp3454, tmp3457, ord) - TaylorSeries.mul!(tmp3459, I_m_t[3, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3460, I_m_t[3, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3461, I_m_t[3, 3], er_EM_3, ord) - TaylorSeries.add!(tmp3462, tmp3460, tmp3461, ord) - TaylorSeries.add!(I_er_EM_3, tmp3459, tmp3462, ord) - TaylorSeries.mul!(tmp3464, I_m_t[1, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3465, I_m_t[1, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3466, I_m_t[1, 3], p_E_3, ord) - TaylorSeries.add!(tmp3467, tmp3465, tmp3466, ord) - TaylorSeries.add!(I_p_E_1, tmp3464, tmp3467, ord) - TaylorSeries.mul!(tmp3469, I_m_t[2, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3470, I_m_t[2, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3471, I_m_t[2, 3], p_E_3, ord) - TaylorSeries.add!(tmp3472, tmp3470, tmp3471, ord) - TaylorSeries.add!(I_p_E_2, tmp3469, tmp3472, ord) - TaylorSeries.mul!(tmp3474, I_m_t[3, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3475, I_m_t[3, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3476, I_m_t[3, 3], p_E_3, ord) - TaylorSeries.add!(tmp3477, tmp3475, tmp3476, ord) - TaylorSeries.add!(I_p_E_3, tmp3474, tmp3477, ord) - TaylorSeries.mul!(tmp3479, er_EM_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp3480, er_EM_3, I_er_EM_2, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp3479, tmp3480, ord) - TaylorSeries.mul!(tmp3482, er_EM_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp3483, er_EM_1, I_er_EM_3, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp3482, tmp3483, ord) - TaylorSeries.mul!(tmp3485, er_EM_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp3486, er_EM_2, I_er_EM_1, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp3485, tmp3486, ord) - TaylorSeries.mul!(tmp3488, er_EM_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp3489, er_EM_3, I_p_E_2, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp3488, tmp3489, ord) - TaylorSeries.mul!(tmp3491, er_EM_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp3492, er_EM_1, I_p_E_3, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp3491, tmp3492, ord) - TaylorSeries.mul!(tmp3494, er_EM_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp3495, er_EM_2, I_p_E_1, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp3494, tmp3495, ord) - TaylorSeries.mul!(tmp3497, p_E_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp3498, p_E_3, I_er_EM_2, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp3497, tmp3498, ord) - TaylorSeries.mul!(tmp3500, p_E_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp3501, p_E_1, I_er_EM_3, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp3500, tmp3501, ord) - TaylorSeries.mul!(tmp3503, p_E_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp3504, p_E_2, I_er_EM_1, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp3503, tmp3504, ord) - TaylorSeries.mul!(tmp3506, p_E_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp3507, p_E_3, I_p_E_2, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp3506, tmp3507, ord) - TaylorSeries.mul!(tmp3509, p_E_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp3510, p_E_1, I_p_E_3, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp3509, tmp3510, ord) - TaylorSeries.mul!(tmp3512, p_E_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp3513, p_E_2, I_p_E_1, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp3512, tmp3513, ord) - TaylorSeries.pow!(tmp3517, sin_ϕ[ea, mo], 2, ord) - TaylorSeries.mul!(tmp3518, 7, tmp3517, ord) - TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp3518, ord) + TaylorSeries.mul!(tmp1641, RotM[1, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp1642, RotM[1, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp1643, RotM[1, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp1644, tmp1642, tmp1643, ord) + TaylorSeries.add!(er_EM_1, tmp1641, tmp1644, ord) + TaylorSeries.mul!(tmp1646, RotM[2, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp1647, RotM[2, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp1648, RotM[2, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp1649, tmp1647, tmp1648, ord) + TaylorSeries.add!(er_EM_2, tmp1646, tmp1649, ord) + TaylorSeries.mul!(tmp1651, RotM[3, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp1652, RotM[3, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp1653, RotM[3, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp1654, tmp1652, tmp1653, ord) + TaylorSeries.add!(er_EM_3, tmp1651, tmp1654, ord) + TaylorSeries.mul!(tmp1656, RotM[1, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp1657, RotM[1, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp1658, RotM[1, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp1659, tmp1657, tmp1658, ord) + TaylorSeries.add!(p_E_1, tmp1656, tmp1659, ord) + TaylorSeries.mul!(tmp1661, RotM[2, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp1662, RotM[2, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp1663, RotM[2, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp1664, tmp1662, tmp1663, ord) + TaylorSeries.add!(p_E_2, tmp1661, tmp1664, ord) + TaylorSeries.mul!(tmp1666, RotM[3, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp1667, RotM[3, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp1668, RotM[3, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp1669, tmp1667, tmp1668, ord) + TaylorSeries.add!(p_E_3, tmp1666, tmp1669, ord) + TaylorSeries.mul!(tmp1671, I_m_t[1, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp1672, I_m_t[1, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp1673, I_m_t[1, 3], er_EM_3, ord) + TaylorSeries.add!(tmp1674, tmp1672, tmp1673, ord) + TaylorSeries.add!(I_er_EM_1, tmp1671, tmp1674, ord) + TaylorSeries.mul!(tmp1676, I_m_t[2, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp1677, I_m_t[2, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp1678, I_m_t[2, 3], er_EM_3, ord) + TaylorSeries.add!(tmp1679, tmp1677, tmp1678, ord) + TaylorSeries.add!(I_er_EM_2, tmp1676, tmp1679, ord) + TaylorSeries.mul!(tmp1681, I_m_t[3, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp1682, I_m_t[3, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp1683, I_m_t[3, 3], er_EM_3, ord) + TaylorSeries.add!(tmp1684, tmp1682, tmp1683, ord) + TaylorSeries.add!(I_er_EM_3, tmp1681, tmp1684, ord) + TaylorSeries.mul!(tmp1686, I_m_t[1, 1], p_E_1, ord) + TaylorSeries.mul!(tmp1687, I_m_t[1, 2], p_E_2, ord) + TaylorSeries.mul!(tmp1688, I_m_t[1, 3], p_E_3, ord) + TaylorSeries.add!(tmp1689, tmp1687, tmp1688, ord) + TaylorSeries.add!(I_p_E_1, tmp1686, tmp1689, ord) + TaylorSeries.mul!(tmp1691, I_m_t[2, 1], p_E_1, ord) + TaylorSeries.mul!(tmp1692, I_m_t[2, 2], p_E_2, ord) + TaylorSeries.mul!(tmp1693, I_m_t[2, 3], p_E_3, ord) + TaylorSeries.add!(tmp1694, tmp1692, tmp1693, ord) + TaylorSeries.add!(I_p_E_2, tmp1691, tmp1694, ord) + TaylorSeries.mul!(tmp1696, I_m_t[3, 1], p_E_1, ord) + TaylorSeries.mul!(tmp1697, I_m_t[3, 2], p_E_2, ord) + TaylorSeries.mul!(tmp1698, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.add!(tmp1699, tmp1697, tmp1698, ord) + TaylorSeries.add!(I_p_E_3, tmp1696, tmp1699, ord) + TaylorSeries.mul!(tmp1701, er_EM_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp1702, er_EM_3, I_er_EM_2, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp1701, tmp1702, ord) + TaylorSeries.mul!(tmp1704, er_EM_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp1705, er_EM_1, I_er_EM_3, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp1704, tmp1705, ord) + TaylorSeries.mul!(tmp1707, er_EM_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp1708, er_EM_2, I_er_EM_1, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp1707, tmp1708, ord) + TaylorSeries.mul!(tmp1710, er_EM_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp1711, er_EM_3, I_p_E_2, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp1710, tmp1711, ord) + TaylorSeries.mul!(tmp1713, er_EM_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp1714, er_EM_1, I_p_E_3, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp1713, tmp1714, ord) + TaylorSeries.mul!(tmp1716, er_EM_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp1717, er_EM_2, I_p_E_1, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp1716, tmp1717, ord) + TaylorSeries.mul!(tmp1719, p_E_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp1720, p_E_3, I_er_EM_2, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp1719, tmp1720, ord) + TaylorSeries.mul!(tmp1722, p_E_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp1723, p_E_1, I_er_EM_3, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp1722, tmp1723, ord) + TaylorSeries.mul!(tmp1725, p_E_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp1726, p_E_2, I_er_EM_1, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp1725, tmp1726, ord) + TaylorSeries.mul!(tmp1728, p_E_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp1729, p_E_3, I_p_E_2, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp1728, tmp1729, ord) + TaylorSeries.mul!(tmp1731, p_E_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp1732, p_E_1, I_p_E_3, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp1731, tmp1732, ord) + TaylorSeries.mul!(tmp1734, p_E_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp1735, p_E_2, I_p_E_1, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp1734, tmp1735, ord) + TaylorSeries.pow!(tmp1739, sin_ϕ[ea, mo], 2, ord) + TaylorSeries.mul!(tmp1740, 7, tmp1739, ord) + TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp1740, ord) TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp3523, r_p1d2[mo, ea], 5, ord) - TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp3523, ord) - TaylorSeries.mul!(tmp3525, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) - TaylorSeries.add!(tmp3526, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) - TaylorSeries.mul!(tmp3527, two_sinϕEM, tmp3526, ord) - TaylorSeries.add!(tmp3528, tmp3525, tmp3527, ord) - TaylorSeries.mul!(tmp3530, 0.4, p_E_cross_I_p_E_1, ord) - TaylorSeries.subst!(tmp3531, tmp3528, tmp3530, ord) - TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp3531, ord) - TaylorSeries.mul!(tmp3533, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) - TaylorSeries.add!(tmp3534, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) - TaylorSeries.mul!(tmp3535, two_sinϕEM, tmp3534, ord) - TaylorSeries.add!(tmp3536, tmp3533, tmp3535, ord) - TaylorSeries.mul!(tmp3538, 0.4, p_E_cross_I_p_E_2, ord) - TaylorSeries.subst!(tmp3539, tmp3536, tmp3538, ord) - TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp3539, ord) - TaylorSeries.mul!(tmp3541, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) - TaylorSeries.add!(tmp3542, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) - TaylorSeries.mul!(tmp3543, two_sinϕEM, tmp3542, ord) - TaylorSeries.add!(tmp3544, tmp3541, tmp3543, ord) - TaylorSeries.mul!(tmp3546, 0.4, p_E_cross_I_p_E_3, ord) - TaylorSeries.subst!(tmp3547, tmp3544, tmp3546, ord) - TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp3547, ord) - TaylorSeries.mul!(tmp3549, RotM[1, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3550, RotM[1, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3551, RotM[1, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3552, tmp3550, tmp3551, ord) - TaylorSeries.add!(N_1_LMF, tmp3549, tmp3552, ord) - TaylorSeries.mul!(tmp3554, RotM[2, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3555, RotM[2, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3556, RotM[2, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3557, tmp3555, tmp3556, ord) - TaylorSeries.add!(N_2_LMF, tmp3554, tmp3557, ord) - TaylorSeries.mul!(tmp3559, RotM[3, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3560, RotM[3, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3561, RotM[3, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3562, tmp3560, tmp3561, ord) - TaylorSeries.add!(N_3_LMF, tmp3559, tmp3562, ord) - TaylorSeries.subst!(tmp3564, q[6N + 10], q[6N + 4], ord) - TaylorSeries.mul!(tmp3565, k_ν, tmp3564, ord) - TaylorSeries.mul!(tmp3566, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp3567, tmp3566, q[6N + 11], ord) - TaylorSeries.subst!(N_cmb_1, tmp3565, tmp3567, ord) - TaylorSeries.subst!(tmp3569, q[6N + 11], q[6N + 5], ord) - TaylorSeries.mul!(tmp3570, k_ν, tmp3569, ord) - TaylorSeries.mul!(tmp3571, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp3572, tmp3571, q[6N + 10], ord) - TaylorSeries.add!(N_cmb_2, tmp3570, tmp3572, ord) - TaylorSeries.subst!(tmp3574, q[6N + 12], q[6N + 6], ord) - TaylorSeries.mul!(N_cmb_3, k_ν, tmp3574, ord) - TaylorSeries.mul!(tmp3576, μ[mo], N_1_LMF, ord) - TaylorSeries.add!(tmp3577, N_MfigM_figE_1, tmp3576, ord) - TaylorSeries.add!(tmp3578, tmp3577, N_cmb_1, ord) - TaylorSeries.add!(tmp3579, dIω_x, ωxIω_x, ord) - TaylorSeries.subst!(I_dω_1, tmp3578, tmp3579, ord) - TaylorSeries.mul!(tmp3581, μ[mo], N_2_LMF, ord) - TaylorSeries.add!(tmp3582, N_MfigM_figE_2, tmp3581, ord) - TaylorSeries.add!(tmp3583, tmp3582, N_cmb_2, ord) - TaylorSeries.add!(tmp3584, dIω_y, ωxIω_y, ord) - TaylorSeries.subst!(I_dω_2, tmp3583, tmp3584, ord) - TaylorSeries.mul!(tmp3586, μ[mo], N_3_LMF, ord) - TaylorSeries.add!(tmp3587, N_MfigM_figE_3, tmp3586, ord) - TaylorSeries.add!(tmp3588, tmp3587, N_cmb_3, ord) - TaylorSeries.add!(tmp3589, dIω_z, ωxIω_z, ord) - TaylorSeries.subst!(I_dω_3, tmp3588, tmp3589, ord) + TaylorSeries.pow!(tmp1745, r_p1d2[mo, ea], 5, ord) + TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp1745, ord) + TaylorSeries.mul!(tmp1747, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) + TaylorSeries.add!(tmp1748, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) + TaylorSeries.mul!(tmp1749, two_sinϕEM, tmp1748, ord) + TaylorSeries.add!(tmp1750, tmp1747, tmp1749, ord) + TaylorSeries.mul!(tmp1752, 0.4, p_E_cross_I_p_E_1, ord) + TaylorSeries.subst!(tmp1753, tmp1750, tmp1752, ord) + TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp1753, ord) + TaylorSeries.mul!(tmp1755, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) + TaylorSeries.add!(tmp1756, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) + TaylorSeries.mul!(tmp1757, two_sinϕEM, tmp1756, ord) + TaylorSeries.add!(tmp1758, tmp1755, tmp1757, ord) + TaylorSeries.mul!(tmp1760, 0.4, p_E_cross_I_p_E_2, ord) + TaylorSeries.subst!(tmp1761, tmp1758, tmp1760, ord) + TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp1761, ord) + TaylorSeries.mul!(tmp1763, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) + TaylorSeries.add!(tmp1764, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) + TaylorSeries.mul!(tmp1765, two_sinϕEM, tmp1764, ord) + TaylorSeries.add!(tmp1766, tmp1763, tmp1765, ord) + TaylorSeries.mul!(tmp1768, 0.4, p_E_cross_I_p_E_3, ord) + TaylorSeries.subst!(tmp1769, tmp1766, tmp1768, ord) + TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp1769, ord) + TaylorSeries.mul!(tmp1771, RotM[1, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp1772, RotM[1, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp1773, RotM[1, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp1774, tmp1772, tmp1773, ord) + TaylorSeries.add!(N_1_LMF, tmp1771, tmp1774, ord) + TaylorSeries.mul!(tmp1776, RotM[2, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp1777, RotM[2, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp1778, RotM[2, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp1779, tmp1777, tmp1778, ord) + TaylorSeries.add!(N_2_LMF, tmp1776, tmp1779, ord) + TaylorSeries.mul!(tmp1781, RotM[3, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp1782, RotM[3, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp1783, RotM[3, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp1784, tmp1782, tmp1783, ord) + TaylorSeries.add!(N_3_LMF, tmp1781, tmp1784, ord) + TaylorSeries.subst!(tmp1786, q[6N + 10], q[6N + 4], ord) + TaylorSeries.mul!(tmp1787, k_ν, tmp1786, ord) + TaylorSeries.mul!(tmp1788, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp1789, tmp1788, q[6N + 11], ord) + TaylorSeries.subst!(N_cmb_1, tmp1787, tmp1789, ord) + TaylorSeries.subst!(tmp1791, q[6N + 11], q[6N + 5], ord) + TaylorSeries.mul!(tmp1792, k_ν, tmp1791, ord) + TaylorSeries.mul!(tmp1793, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp1794, tmp1793, q[6N + 10], ord) + TaylorSeries.add!(N_cmb_2, tmp1792, tmp1794, ord) + TaylorSeries.subst!(tmp1796, q[6N + 12], q[6N + 6], ord) + TaylorSeries.mul!(N_cmb_3, k_ν, tmp1796, ord) + TaylorSeries.mul!(tmp1798, μ[mo], N_1_LMF, ord) + TaylorSeries.add!(tmp1799, N_MfigM_figE_1, tmp1798, ord) + TaylorSeries.add!(tmp1800, tmp1799, N_cmb_1, ord) + TaylorSeries.add!(tmp1801, dIω_x, ωxIω_x, ord) + TaylorSeries.subst!(I_dω_1, tmp1800, tmp1801, ord) + TaylorSeries.mul!(tmp1803, μ[mo], N_2_LMF, ord) + TaylorSeries.add!(tmp1804, N_MfigM_figE_2, tmp1803, ord) + TaylorSeries.add!(tmp1805, tmp1804, N_cmb_2, ord) + TaylorSeries.add!(tmp1806, dIω_y, ωxIω_y, ord) + TaylorSeries.subst!(I_dω_2, tmp1805, tmp1806, ord) + TaylorSeries.mul!(tmp1808, μ[mo], N_3_LMF, ord) + TaylorSeries.add!(tmp1809, N_MfigM_figE_3, tmp1808, ord) + TaylorSeries.add!(tmp1810, tmp1809, N_cmb_3, ord) + TaylorSeries.add!(tmp1811, dIω_z, ωxIω_z, ord) + TaylorSeries.subst!(I_dω_3, tmp1810, tmp1811, ord) TaylorSeries.mul!(Ic_ωc_1, I_c_t[1, 1], q[6N + 10], ord) TaylorSeries.mul!(Ic_ωc_2, I_c_t[2, 2], q[6N + 11], ord) TaylorSeries.mul!(Ic_ωc_3, I_c_t[3, 3], q[6N + 12], ord) - TaylorSeries.mul!(tmp3594, q[6N + 6], Ic_ωc_2, ord) - TaylorSeries.mul!(tmp3595, q[6N + 5], Ic_ωc_3, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp3594, tmp3595, ord) - TaylorSeries.mul!(tmp3597, q[6N + 4], Ic_ωc_3, ord) - TaylorSeries.mul!(tmp3598, q[6N + 6], Ic_ωc_1, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp3597, tmp3598, ord) - TaylorSeries.mul!(tmp3600, q[6N + 5], Ic_ωc_1, ord) - TaylorSeries.mul!(tmp3601, q[6N + 4], Ic_ωc_2, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp3600, tmp3601, ord) + TaylorSeries.mul!(tmp1816, q[6N + 6], Ic_ωc_2, ord) + TaylorSeries.mul!(tmp1817, q[6N + 5], Ic_ωc_3, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp1816, tmp1817, ord) + TaylorSeries.mul!(tmp1819, q[6N + 4], Ic_ωc_3, ord) + TaylorSeries.mul!(tmp1820, q[6N + 6], Ic_ωc_1, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp1819, tmp1820, ord) + TaylorSeries.mul!(tmp1822, q[6N + 5], Ic_ωc_1, ord) + TaylorSeries.mul!(tmp1823, q[6N + 4], Ic_ωc_2, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp1822, tmp1823, ord) TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp3606, tmp3686, q[6N + 3], ord) - TaylorSeries.mul!(tmp3607, q[6N + 4], tmp3606, ord) - TaylorSeries.sincos!(tmp3687, tmp3608, q[6N + 3], ord) - TaylorSeries.mul!(tmp3609, q[6N + 5], tmp3608, ord) - TaylorSeries.add!(tmp3610, tmp3607, tmp3609, ord) - TaylorSeries.sincos!(tmp3611, tmp3688, q[6N + 2], ord) - TaylorSeries.div!(dq[6N + 1], tmp3610, tmp3611, ord) - TaylorSeries.sincos!(tmp3689, tmp3613, q[6N + 3], ord) - TaylorSeries.mul!(tmp3614, q[6N + 4], tmp3613, ord) - TaylorSeries.sincos!(tmp3615, tmp3690, q[6N + 3], ord) - TaylorSeries.mul!(tmp3616, q[6N + 5], tmp3615, ord) - TaylorSeries.subst!(dq[6N + 2], tmp3614, tmp3616, ord) - TaylorSeries.sincos!(tmp3691, tmp3618, q[6N + 2], ord) - TaylorSeries.mul!(tmp3619, dq[6N + 1], tmp3618, ord) - TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp3619, ord) - TaylorSeries.mul!(tmp3621, inv_I_m_t[1, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3622, inv_I_m_t[1, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3623, inv_I_m_t[1, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3624, tmp3622, tmp3623, ord) - TaylorSeries.add!(dq[6N + 4], tmp3621, tmp3624, ord) - TaylorSeries.mul!(tmp3626, inv_I_m_t[2, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3627, inv_I_m_t[2, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3628, inv_I_m_t[2, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3629, tmp3627, tmp3628, ord) - TaylorSeries.add!(dq[6N + 5], tmp3626, tmp3629, ord) - TaylorSeries.mul!(tmp3631, inv_I_m_t[3, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3632, inv_I_m_t[3, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3633, inv_I_m_t[3, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3634, tmp3632, tmp3633, ord) - TaylorSeries.add!(dq[6N + 6], tmp3631, tmp3634, ord) - TaylorSeries.sincos!(tmp3636, tmp3692, q[6N + 8], ord) - TaylorSeries.div!(tmp3637, ω_c_CE_2, tmp3636, ord) - TaylorSeries.subst!(dq[6N + 9], tmp3637, ord) - TaylorSeries.sincos!(tmp3693, tmp3639, q[6N + 8], ord) - TaylorSeries.mul!(tmp3640, dq[6N + 9], tmp3639, ord) - TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp3640, ord) + TaylorSeries.sincos!(tmp1828, tmp1908, q[6N + 3], ord) + TaylorSeries.mul!(tmp1829, q[6N + 4], tmp1828, ord) + TaylorSeries.sincos!(tmp1909, tmp1830, q[6N + 3], ord) + TaylorSeries.mul!(tmp1831, q[6N + 5], tmp1830, ord) + TaylorSeries.add!(tmp1832, tmp1829, tmp1831, ord) + TaylorSeries.sincos!(tmp1833, tmp1910, q[6N + 2], ord) + TaylorSeries.div!(dq[6N + 1], tmp1832, tmp1833, ord) + TaylorSeries.sincos!(tmp1911, tmp1835, q[6N + 3], ord) + TaylorSeries.mul!(tmp1836, q[6N + 4], tmp1835, ord) + TaylorSeries.sincos!(tmp1837, tmp1912, q[6N + 3], ord) + TaylorSeries.mul!(tmp1838, q[6N + 5], tmp1837, ord) + TaylorSeries.subst!(dq[6N + 2], tmp1836, tmp1838, ord) + TaylorSeries.sincos!(tmp1913, tmp1840, q[6N + 2], ord) + TaylorSeries.mul!(tmp1841, dq[6N + 1], tmp1840, ord) + TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp1841, ord) + TaylorSeries.mul!(tmp1843, inv_I_m_t[1, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp1844, inv_I_m_t[1, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp1845, inv_I_m_t[1, 3], I_dω_3, ord) + TaylorSeries.add!(tmp1846, tmp1844, tmp1845, ord) + TaylorSeries.add!(dq[6N + 4], tmp1843, tmp1846, ord) + TaylorSeries.mul!(tmp1848, inv_I_m_t[2, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp1849, inv_I_m_t[2, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp1850, inv_I_m_t[2, 3], I_dω_3, ord) + TaylorSeries.add!(tmp1851, tmp1849, tmp1850, ord) + TaylorSeries.add!(dq[6N + 5], tmp1848, tmp1851, ord) + TaylorSeries.mul!(tmp1853, inv_I_m_t[3, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp1854, inv_I_m_t[3, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp1855, inv_I_m_t[3, 3], I_dω_3, ord) + TaylorSeries.add!(tmp1856, tmp1854, tmp1855, ord) + TaylorSeries.add!(dq[6N + 6], tmp1853, tmp1856, ord) + TaylorSeries.sincos!(tmp1858, tmp1914, q[6N + 8], ord) + TaylorSeries.div!(tmp1859, ω_c_CE_2, tmp1858, ord) + TaylorSeries.subst!(dq[6N + 9], tmp1859, ord) + TaylorSeries.sincos!(tmp1915, tmp1861, q[6N + 8], ord) + TaylorSeries.mul!(tmp1862, dq[6N + 9], tmp1861, ord) + TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp1862, ord) TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) TaylorSeries.mul!(dq[6N + 10], inv_I_c_t[1, 1], Ic_dωc_1, ord) TaylorSeries.mul!(dq[6N + 11], inv_I_c_t[2, 2], Ic_dωc_2, ord) @@ -4943,151 +5335,151 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q ϕ_m = Taylor1(identity(constant_term(q[6N + 1])), order) θ_m = Taylor1(identity(constant_term(q[6N + 2])), order) ψ_m = Taylor1(identity(constant_term(q[6N + 3])), order) - tmp3501 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4571 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3502 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4572 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3503 = Taylor1(constant_term(tmp3501) * constant_term(tmp3502), order) - tmp3504 = Taylor1(cos(constant_term(θ_m)), order) - tmp4573 = Taylor1(sin(constant_term(θ_m)), order) - tmp3505 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4574 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3506 = Taylor1(constant_term(tmp3504) * constant_term(tmp3505), order) - tmp3507 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4575 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3508 = Taylor1(constant_term(tmp3506) * constant_term(tmp3507), order) - RotM[1, 1, mo] = Taylor1(constant_term(tmp3503) - constant_term(tmp3508), order) - tmp3510 = Taylor1(cos(constant_term(θ_m)), order) - tmp4576 = Taylor1(sin(constant_term(θ_m)), order) - tmp3511 = Taylor1(-(constant_term(tmp3510)), order) - tmp3512 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4577 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3513 = Taylor1(constant_term(tmp3511) * constant_term(tmp3512), order) - tmp3514 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4578 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3515 = Taylor1(constant_term(tmp3513) * constant_term(tmp3514), order) - tmp3516 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4579 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3517 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4580 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3518 = Taylor1(constant_term(tmp3516) * constant_term(tmp3517), order) - RotM[2, 1, mo] = Taylor1(constant_term(tmp3515) - constant_term(tmp3518), order) - tmp3520 = Taylor1(sin(constant_term(θ_m)), order) - tmp4581 = Taylor1(cos(constant_term(θ_m)), order) - tmp3521 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4582 = Taylor1(cos(constant_term(ϕ_m)), order) - RotM[3, 1, mo] = Taylor1(constant_term(tmp3520) * constant_term(tmp3521), order) - tmp3523 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4583 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3524 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4584 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3525 = Taylor1(constant_term(tmp3523) * constant_term(tmp3524), order) - tmp3526 = Taylor1(cos(constant_term(θ_m)), order) - tmp4585 = Taylor1(sin(constant_term(θ_m)), order) - tmp3527 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4586 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3528 = Taylor1(constant_term(tmp3526) * constant_term(tmp3527), order) - tmp3529 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4587 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3530 = Taylor1(constant_term(tmp3528) * constant_term(tmp3529), order) - RotM[1, 2, mo] = Taylor1(constant_term(tmp3525) + constant_term(tmp3530), order) - tmp3532 = Taylor1(cos(constant_term(θ_m)), order) - tmp4588 = Taylor1(sin(constant_term(θ_m)), order) - tmp3533 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4589 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3534 = Taylor1(constant_term(tmp3532) * constant_term(tmp3533), order) - tmp3535 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4590 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3536 = Taylor1(constant_term(tmp3534) * constant_term(tmp3535), order) - tmp3537 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4591 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3538 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4592 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3539 = Taylor1(constant_term(tmp3537) * constant_term(tmp3538), order) - RotM[2, 2, mo] = Taylor1(constant_term(tmp3536) - constant_term(tmp3539), order) - tmp3541 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4593 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3542 = Taylor1(-(constant_term(tmp3541)), order) - tmp3543 = Taylor1(sin(constant_term(θ_m)), order) - tmp4594 = Taylor1(cos(constant_term(θ_m)), order) - RotM[3, 2, mo] = Taylor1(constant_term(tmp3542) * constant_term(tmp3543), order) - tmp3545 = Taylor1(sin(constant_term(θ_m)), order) - tmp4595 = Taylor1(cos(constant_term(θ_m)), order) - tmp3546 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4596 = Taylor1(cos(constant_term(ψ_m)), order) - RotM[1, 3, mo] = Taylor1(constant_term(tmp3545) * constant_term(tmp3546), order) - tmp3548 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4597 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3549 = Taylor1(sin(constant_term(θ_m)), order) - tmp4598 = Taylor1(cos(constant_term(θ_m)), order) - RotM[2, 3, mo] = Taylor1(constant_term(tmp3548) * constant_term(tmp3549), order) + tmp2961 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4031 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2962 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4032 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2963 = Taylor1(constant_term(tmp2961) * constant_term(tmp2962), order) + tmp2964 = Taylor1(cos(constant_term(θ_m)), order) + tmp4033 = Taylor1(sin(constant_term(θ_m)), order) + tmp2965 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4034 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2966 = Taylor1(constant_term(tmp2964) * constant_term(tmp2965), order) + tmp2967 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4035 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2968 = Taylor1(constant_term(tmp2966) * constant_term(tmp2967), order) + RotM[1, 1, mo] = Taylor1(constant_term(tmp2963) - constant_term(tmp2968), order) + tmp2970 = Taylor1(cos(constant_term(θ_m)), order) + tmp4036 = Taylor1(sin(constant_term(θ_m)), order) + tmp2971 = Taylor1(-(constant_term(tmp2970)), order) + tmp2972 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4037 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2973 = Taylor1(constant_term(tmp2971) * constant_term(tmp2972), order) + tmp2974 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4038 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2975 = Taylor1(constant_term(tmp2973) * constant_term(tmp2974), order) + tmp2976 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4039 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2977 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4040 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2978 = Taylor1(constant_term(tmp2976) * constant_term(tmp2977), order) + RotM[2, 1, mo] = Taylor1(constant_term(tmp2975) - constant_term(tmp2978), order) + tmp2980 = Taylor1(sin(constant_term(θ_m)), order) + tmp4041 = Taylor1(cos(constant_term(θ_m)), order) + tmp2981 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4042 = Taylor1(cos(constant_term(ϕ_m)), order) + RotM[3, 1, mo] = Taylor1(constant_term(tmp2980) * constant_term(tmp2981), order) + tmp2983 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4043 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2984 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4044 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2985 = Taylor1(constant_term(tmp2983) * constant_term(tmp2984), order) + tmp2986 = Taylor1(cos(constant_term(θ_m)), order) + tmp4045 = Taylor1(sin(constant_term(θ_m)), order) + tmp2987 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4046 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2988 = Taylor1(constant_term(tmp2986) * constant_term(tmp2987), order) + tmp2989 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4047 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2990 = Taylor1(constant_term(tmp2988) * constant_term(tmp2989), order) + RotM[1, 2, mo] = Taylor1(constant_term(tmp2985) + constant_term(tmp2990), order) + tmp2992 = Taylor1(cos(constant_term(θ_m)), order) + tmp4048 = Taylor1(sin(constant_term(θ_m)), order) + tmp2993 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4049 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2994 = Taylor1(constant_term(tmp2992) * constant_term(tmp2993), order) + tmp2995 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4050 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2996 = Taylor1(constant_term(tmp2994) * constant_term(tmp2995), order) + tmp2997 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4051 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2998 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4052 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2999 = Taylor1(constant_term(tmp2997) * constant_term(tmp2998), order) + RotM[2, 2, mo] = Taylor1(constant_term(tmp2996) - constant_term(tmp2999), order) + tmp3001 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4053 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3002 = Taylor1(-(constant_term(tmp3001)), order) + tmp3003 = Taylor1(sin(constant_term(θ_m)), order) + tmp4054 = Taylor1(cos(constant_term(θ_m)), order) + RotM[3, 2, mo] = Taylor1(constant_term(tmp3002) * constant_term(tmp3003), order) + tmp3005 = Taylor1(sin(constant_term(θ_m)), order) + tmp4055 = Taylor1(cos(constant_term(θ_m)), order) + tmp3006 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4056 = Taylor1(cos(constant_term(ψ_m)), order) + RotM[1, 3, mo] = Taylor1(constant_term(tmp3005) * constant_term(tmp3006), order) + tmp3008 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4057 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3009 = Taylor1(sin(constant_term(θ_m)), order) + tmp4058 = Taylor1(cos(constant_term(θ_m)), order) + RotM[2, 3, mo] = Taylor1(constant_term(tmp3008) * constant_term(tmp3009), order) RotM[3, 3, mo] = Taylor1(cos(constant_term(θ_m)), order) - tmp4599 = Taylor1(sin(constant_term(θ_m)), order) + tmp4059 = Taylor1(sin(constant_term(θ_m)), order) mantlef2coref = Array{S}(undef, 3, 3) ϕ_c = Taylor1(identity(constant_term(q[6N + 7])), order) - tmp3552 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4600 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3553 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp3552), order) - tmp3554 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4601 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3555 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3554), order) - mantlef2coref[1, 1] = Taylor1(constant_term(tmp3553) + constant_term(tmp3555), order) - tmp3557 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) - tmp3558 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4602 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3559 = Taylor1(constant_term(tmp3557) * constant_term(tmp3558), order) - tmp3560 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4603 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3561 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3560), order) - mantlef2coref[2, 1] = Taylor1(constant_term(tmp3559) + constant_term(tmp3561), order) + tmp3012 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4060 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3013 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp3012), order) + tmp3014 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4061 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3015 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3014), order) + mantlef2coref[1, 1] = Taylor1(constant_term(tmp3013) + constant_term(tmp3015), order) + tmp3017 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) + tmp3018 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4062 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3019 = Taylor1(constant_term(tmp3017) * constant_term(tmp3018), order) + tmp3020 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4063 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3021 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3020), order) + mantlef2coref[2, 1] = Taylor1(constant_term(tmp3019) + constant_term(tmp3021), order) mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) - tmp3563 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4604 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3564 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp3563), order) - tmp3565 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4605 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3566 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3565), order) - mantlef2coref[1, 2] = Taylor1(constant_term(tmp3564) + constant_term(tmp3566), order) - tmp3568 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) - tmp3569 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4606 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3570 = Taylor1(constant_term(tmp3568) * constant_term(tmp3569), order) - tmp3571 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4607 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3572 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3571), order) - mantlef2coref[2, 2] = Taylor1(constant_term(tmp3570) + constant_term(tmp3572), order) + tmp3023 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4064 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3024 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp3023), order) + tmp3025 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4065 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3026 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3025), order) + mantlef2coref[1, 2] = Taylor1(constant_term(tmp3024) + constant_term(tmp3026), order) + tmp3028 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) + tmp3029 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4066 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3030 = Taylor1(constant_term(tmp3028) * constant_term(tmp3029), order) + tmp3031 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4067 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3032 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3031), order) + mantlef2coref[2, 2] = Taylor1(constant_term(tmp3030) + constant_term(tmp3032), order) mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) - tmp3574 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4608 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3575 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp3574), order) - tmp3576 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4609 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3577 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3576), order) - mantlef2coref[1, 3] = Taylor1(constant_term(tmp3575) + constant_term(tmp3577), order) - tmp3579 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) - tmp3580 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4610 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3581 = Taylor1(constant_term(tmp3579) * constant_term(tmp3580), order) - tmp3582 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4611 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3583 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3582), order) - mantlef2coref[2, 3] = Taylor1(constant_term(tmp3581) + constant_term(tmp3583), order) + tmp3034 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4068 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3035 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp3034), order) + tmp3036 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4069 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3037 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3036), order) + mantlef2coref[1, 3] = Taylor1(constant_term(tmp3035) + constant_term(tmp3037), order) + tmp3039 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) + tmp3040 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4070 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3041 = Taylor1(constant_term(tmp3039) * constant_term(tmp3040), order) + tmp3042 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4071 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3043 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3042), order) + mantlef2coref[2, 3] = Taylor1(constant_term(tmp3041) + constant_term(tmp3043), order) mantlef2coref[3, 3] = Taylor1(identity(constant_term(RotM[3, 3, mo])), order) - tmp3585 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) - tmp3586 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) - tmp3587 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) - tmp3588 = Taylor1(constant_term(tmp3586) + constant_term(tmp3587), order) - ω_c_CE_1 = Taylor1(constant_term(tmp3585) + constant_term(tmp3588), order) - tmp3590 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) - tmp3591 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) - tmp3592 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) - tmp3593 = Taylor1(constant_term(tmp3591) + constant_term(tmp3592), order) - ω_c_CE_2 = Taylor1(constant_term(tmp3590) + constant_term(tmp3593), order) - tmp3595 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) - tmp3596 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) - tmp3597 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) - tmp3598 = Taylor1(constant_term(tmp3596) + constant_term(tmp3597), order) - ω_c_CE_3 = Taylor1(constant_term(tmp3595) + constant_term(tmp3598), order) + tmp3045 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) + tmp3046 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) + tmp3047 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) + tmp3048 = Taylor1(constant_term(tmp3046) + constant_term(tmp3047), order) + ω_c_CE_1 = Taylor1(constant_term(tmp3045) + constant_term(tmp3048), order) + tmp3050 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) + tmp3051 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) + tmp3052 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) + tmp3053 = Taylor1(constant_term(tmp3051) + constant_term(tmp3052), order) + ω_c_CE_2 = Taylor1(constant_term(tmp3050) + constant_term(tmp3053), order) + tmp3055 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) + tmp3056 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) + tmp3057 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) + tmp3058 = Taylor1(constant_term(tmp3056) + constant_term(tmp3057), order) + ω_c_CE_3 = Taylor1(constant_term(tmp3055) + constant_term(tmp3058), order) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t J2_t = Array{S}(undef, 5) @@ -5123,61 +5515,115 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q accY[j] = Taylor1(identity(constant_term(zero_q_1)), order) accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp3663 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3663 .= Taylor1(zero(_S), order) - tmp3665 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3665 .= Taylor1(zero(_S), order) - tmp3666 = Array{Taylor1{_S}}(undef, size(tmp3663)) - tmp3666 .= Taylor1(zero(_S), order) - tmp3668 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3668 .= Taylor1(zero(_S), order) - tmp3607 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3607 .= Taylor1(zero(_S), order) - tmp3609 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3609 .= Taylor1(zero(_S), order) - tmp3612 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3612 .= Taylor1(zero(_S), order) - tmp3614 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3614 .= Taylor1(zero(_S), order) - tmp3617 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3617 .= Taylor1(zero(_S), order) - tmp3619 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3619 .= Taylor1(zero(_S), order) + tmp3123 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3123) + tmp3123[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3125 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3125) + tmp3125[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3126 = Array{Taylor1{_S}}(undef, size(tmp3123)) + for i = CartesianIndices(tmp3126) + tmp3126[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3128 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3128) + tmp3128[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3067 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3067) + tmp3067[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3069 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3069) + tmp3069[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3072 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3072) + tmp3072[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3074 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3074) + tmp3074[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3077 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3077) + tmp3077[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3079 = Array{Taylor1{_S}}(undef, size(dq)) + for i = CartesianIndices(tmp3079) + tmp3079[i] = Taylor1(zero(constant_term(q[1])), order) + end pn2x = Array{Taylor1{_S}}(undef, size(X)) - pn2x .= Taylor1(zero(_S), order) + for i = CartesianIndices(pn2x) + pn2x[i] = Taylor1(zero(constant_term(q[1])), order) + end pn2y = Array{Taylor1{_S}}(undef, size(Y)) - pn2y .= Taylor1(zero(_S), order) + for i = CartesianIndices(pn2y) + pn2y[i] = Taylor1(zero(constant_term(q[1])), order) + end pn2z = Array{Taylor1{_S}}(undef, size(Z)) - pn2z .= Taylor1(zero(_S), order) - tmp3627 = Array{Taylor1{_S}}(undef, size(UU)) - tmp3627 .= Taylor1(zero(_S), order) - tmp3630 = Array{Taylor1{_S}}(undef, size(X)) - tmp3630 .= Taylor1(zero(_S), order) - tmp3632 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3632 .= Taylor1(zero(_S), order) - tmp3633 = Array{Taylor1{_S}}(undef, size(tmp3630)) - tmp3633 .= Taylor1(zero(_S), order) - tmp3635 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3635 .= Taylor1(zero(_S), order) - tmp3643 = Array{Taylor1{_S}}(undef, size(pn2x)) - tmp3643 .= Taylor1(zero(_S), order) - tmp3644 = Array{Taylor1{_S}}(undef, size(tmp3643)) - tmp3644 .= Taylor1(zero(_S), order) - tmp3655 = Array{Taylor1{_S}}(undef, size(X)) - tmp3655 .= Taylor1(zero(_S), order) - temp_001 = Array{Taylor1{_S}}(undef, size(tmp3655)) - temp_001 .= Taylor1(zero(_S), order) - tmp3657 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3657 .= Taylor1(zero(_S), order) - temp_002 = Array{Taylor1{_S}}(undef, size(tmp3657)) - temp_002 .= Taylor1(zero(_S), order) - tmp3659 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3659 .= Taylor1(zero(_S), order) - temp_003 = Array{Taylor1{_S}}(undef, size(tmp3659)) - temp_003 .= Taylor1(zero(_S), order) + for i = CartesianIndices(pn2z) + pn2z[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3087 = Array{Taylor1{_S}}(undef, size(UU)) + for i = CartesianIndices(tmp3087) + tmp3087[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3090 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp3090) + tmp3090[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3092 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp3092) + tmp3092[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3093 = Array{Taylor1{_S}}(undef, size(tmp3090)) + for i = CartesianIndices(tmp3093) + tmp3093[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3095 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp3095) + tmp3095[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3103 = Array{Taylor1{_S}}(undef, size(pn2x)) + for i = CartesianIndices(tmp3103) + tmp3103[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3104 = Array{Taylor1{_S}}(undef, size(tmp3103)) + for i = CartesianIndices(tmp3104) + tmp3104[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3115 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp3115) + tmp3115[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_001 = Array{Taylor1{_S}}(undef, size(tmp3115)) + for i = CartesianIndices(temp_001) + temp_001[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3117 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp3117) + tmp3117[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_002 = Array{Taylor1{_S}}(undef, size(tmp3117)) + for i = CartesianIndices(temp_002) + temp_002[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3119 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp3119) + tmp3119[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_003 = Array{Taylor1{_S}}(undef, size(tmp3119)) + for i = CartesianIndices(temp_003) + temp_003[i] = Taylor1(zero(constant_term(q[1])), order) + end temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) - temp_004 .= Taylor1(zero(_S), order) - #= In[6]:380 =# Threads.@threads for j = 1:N + for i = CartesianIndices(temp_004) + temp_004[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1286 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -5188,35 +5634,35 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q U[i, j] = Taylor1(constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]), order) V[i, j] = Taylor1(constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]), order) W[i, j] = Taylor1(constant_term(dq[3i]) - constant_term(dq[3j]), order) - tmp3607[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) - tmp3609[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) - _4U_m_3X[i, j] = Taylor1(constant_term(tmp3607[3j - 2]) - constant_term(tmp3609[3i - 2]), order) - tmp3612[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) - tmp3614[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) - _4V_m_3Y[i, j] = Taylor1(constant_term(tmp3612[3j - 1]) - constant_term(tmp3614[3i - 1]), order) - tmp3617[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) - tmp3619[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) - _4W_m_3Z[i, j] = Taylor1(constant_term(tmp3617[3j]) - constant_term(tmp3619[3i]), order) + tmp3067[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) + tmp3069[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) + _4U_m_3X[i, j] = Taylor1(constant_term(tmp3067[3j - 2]) - constant_term(tmp3069[3i - 2]), order) + tmp3072[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) + tmp3074[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) + _4V_m_3Y[i, j] = Taylor1(constant_term(tmp3072[3j - 1]) - constant_term(tmp3074[3i - 1]), order) + tmp3077[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) + tmp3079[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) + _4W_m_3Z[i, j] = Taylor1(constant_term(tmp3077[3j]) - constant_term(tmp3079[3i]), order) pn2x[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]), order) pn2y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]), order) pn2z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]), order) UU[i, j] = Taylor1(constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]), order) VV[i, j] = Taylor1(constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]), order) WW[i, j] = Taylor1(constant_term(dq[3i]) * constant_term(dq[3j]), order) - tmp3627[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) - vi_dot_vj[i, j] = Taylor1(constant_term(tmp3627[i, j]) + constant_term(WW[i, j]), order) - tmp3630[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) - tmp3632[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) - tmp3633[i, j] = Taylor1(constant_term(tmp3630[i, j]) + constant_term(tmp3632[i, j]), order) - tmp3635[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) - r_p2[i, j] = Taylor1(constant_term(tmp3633[i, j]) + constant_term(tmp3635[i, j]), order) + tmp3087[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) + vi_dot_vj[i, j] = Taylor1(constant_term(tmp3087[i, j]) + constant_term(WW[i, j]), order) + tmp3090[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) + tmp3092[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) + tmp3093[i, j] = Taylor1(constant_term(tmp3090[i, j]) + constant_term(tmp3092[i, j]), order) + tmp3095[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) + r_p2[i, j] = Taylor1(constant_term(tmp3093[i, j]) + constant_term(tmp3095[i, j]), order) r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) - tmp3643[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) - tmp3644[i, j] = Taylor1(constant_term(tmp3643[i, j]) + constant_term(pn2z[i, j]), order) - pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp3644[i, j]), order) + tmp3103[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) + tmp3104[i, j] = Taylor1(constant_term(tmp3103[i, j]) + constant_term(pn2z[i, j]), order) + pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp3104[i, j]), order) newton_acc_X[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) @@ -5225,305 +5671,569 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q U_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(U[i, j]), order) V_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(V[i, j]), order) W_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(W[i, j]), order) - tmp3655[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp3655[i, j]), order) + tmp3115[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp3115[i, j]), order) newtonX[j] = Taylor1(identity(constant_term(temp_001[i, j])), order) - tmp3657[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp3657[i, j]), order) + tmp3117[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp3117[i, j]), order) newtonY[j] = Taylor1(identity(constant_term(temp_002[i, j])), order) - tmp3659[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp3659[i, j]), order) + tmp3119[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp3119[i, j]), order) newtonZ[j] = Taylor1(identity(constant_term(temp_003[i, j])), order) temp_004[i, j] = Taylor1(constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]), order) newtonianNb_Potential[j] = Taylor1(identity(constant_term(temp_004[i, j])), order) end end - tmp3663[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) - tmp3665[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) - tmp3666[3j - 2] = Taylor1(constant_term(tmp3663[3j - 2]) + constant_term(tmp3665[3j - 1]), order) - tmp3668[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) - v2[j] = Taylor1(constant_term(tmp3666[3j - 2]) + constant_term(tmp3668[3j]), order) + tmp3123[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) + tmp3125[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) + tmp3126[3j - 2] = Taylor1(constant_term(tmp3123[3j - 2]) + constant_term(tmp3125[3j - 1]), order) + tmp3128[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) + v2[j] = Taylor1(constant_term(tmp3126[3j - 2]) + constant_term(tmp3128[3j]), order) end - tmp3670 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) - tmp3672 = Taylor1(constant_term(tmp3670) / constant_term(2), order) - tmp3673 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp3672), order) - J2M_t = Taylor1(constant_term(tmp3673) / constant_term(μ[mo]), order) - tmp3675 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) - tmp3676 = Taylor1(constant_term(tmp3675) / constant_term(μ[mo]), order) - C22M_t = Taylor1(constant_term(tmp3676) / constant_term(4), order) - tmp3679 = Taylor1(-(constant_term(I_M_t[1, 3])), order) - C21M_t = Taylor1(constant_term(tmp3679) / constant_term(μ[mo]), order) - tmp3681 = Taylor1(-(constant_term(I_M_t[3, 2])), order) - S21M_t = Taylor1(constant_term(tmp3681) / constant_term(μ[mo]), order) - tmp3683 = Taylor1(-(constant_term(I_M_t[2, 1])), order) - tmp3684 = Taylor1(constant_term(tmp3683) / constant_term(μ[mo]), order) - S22M_t = Taylor1(constant_term(tmp3684) / constant_term(2), order) + tmp3130 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) + tmp3132 = Taylor1(constant_term(tmp3130) / constant_term(2), order) + tmp3133 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp3132), order) + J2M_t = Taylor1(constant_term(tmp3133) / constant_term(μ[mo]), order) + tmp3135 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) + tmp3136 = Taylor1(constant_term(tmp3135) / constant_term(μ[mo]), order) + C22M_t = Taylor1(constant_term(tmp3136) / constant_term(4), order) + tmp3139 = Taylor1(-(constant_term(I_M_t[1, 3])), order) + C21M_t = Taylor1(constant_term(tmp3139) / constant_term(μ[mo]), order) + tmp3141 = Taylor1(-(constant_term(I_M_t[3, 2])), order) + S21M_t = Taylor1(constant_term(tmp3141) / constant_term(μ[mo]), order) + tmp3143 = Taylor1(-(constant_term(I_M_t[2, 1])), order) + tmp3144 = Taylor1(constant_term(tmp3143) / constant_term(μ[mo]), order) + S22M_t = Taylor1(constant_term(tmp3144) / constant_term(2), order) J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) - tmp3696 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - tmp3696 .= Taylor1(zero(_S), order) - tmp3698 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - tmp3698 .= Taylor1(zero(_S), order) - tmp3700 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - tmp3700 .= Taylor1(zero(_S), order) - tmp3704 = Array{Taylor1{_S}}(undef, size(X_bf)) - tmp3704 .= Taylor1(zero(_S), order) - tmp3706 = Array{Taylor1{_S}}(undef, size(Y_bf)) - tmp3706 .= Taylor1(zero(_S), order) - tmp3707 = Array{Taylor1{_S}}(undef, size(tmp3704)) - tmp3707 .= Taylor1(zero(_S), order) - tmp3722 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3722 .= Taylor1(zero(_S), order) - tmp3723 = Array{Taylor1{_S}}(undef, size(tmp3722)) - tmp3723 .= Taylor1(zero(_S), order) - tmp3725 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3725 .= Taylor1(zero(_S), order) - tmp3726 = Array{Taylor1{_S}}(undef, size(tmp3725)) - tmp3726 .= Taylor1(zero(_S), order) - tmp3727 = Array{Taylor1{_S}}(undef, size(tmp3726)) - tmp3727 .= Taylor1(zero(_S), order) - tmp3824 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp3824 .= Taylor1(zero(_S), order) - tmp3827 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp3827 .= Taylor1(zero(_S), order) - tmp3829 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3829 .= Taylor1(zero(_S), order) - tmp3830 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3830 .= Taylor1(zero(_S), order) - tmp3831 = Array{Taylor1{_S}}(undef, size(tmp3829)) - tmp3831 .= Taylor1(zero(_S), order) - tmp3832 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3832 .= Taylor1(zero(_S), order) - tmp3834 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3834 .= Taylor1(zero(_S), order) - tmp3835 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3835 .= Taylor1(zero(_S), order) - tmp3836 = Array{Taylor1{_S}}(undef, size(tmp3834)) - tmp3836 .= Taylor1(zero(_S), order) - tmp3837 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3837 .= Taylor1(zero(_S), order) - tmp3839 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3839 .= Taylor1(zero(_S), order) - tmp3840 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3840 .= Taylor1(zero(_S), order) - tmp3841 = Array{Taylor1{_S}}(undef, size(tmp3839)) - tmp3841 .= Taylor1(zero(_S), order) - tmp3842 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3842 .= Taylor1(zero(_S), order) - tmp3844 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3844 .= Taylor1(zero(_S), order) - tmp3845 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3845 .= Taylor1(zero(_S), order) - tmp3846 = Array{Taylor1{_S}}(undef, size(tmp3844)) - tmp3846 .= Taylor1(zero(_S), order) - tmp3847 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3847 .= Taylor1(zero(_S), order) - tmp3849 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3849 .= Taylor1(zero(_S), order) - tmp3850 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3850 .= Taylor1(zero(_S), order) - tmp3851 = Array{Taylor1{_S}}(undef, size(tmp3849)) - tmp3851 .= Taylor1(zero(_S), order) - tmp3852 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3852 .= Taylor1(zero(_S), order) - tmp3854 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3854 .= Taylor1(zero(_S), order) - tmp3855 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3855 .= Taylor1(zero(_S), order) - tmp3856 = Array{Taylor1{_S}}(undef, size(tmp3854)) - tmp3856 .= Taylor1(zero(_S), order) - tmp3857 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3857 .= Taylor1(zero(_S), order) - tmp3859 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3859 .= Taylor1(zero(_S), order) - tmp3860 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3860 .= Taylor1(zero(_S), order) - tmp3861 = Array{Taylor1{_S}}(undef, size(tmp3859)) - tmp3861 .= Taylor1(zero(_S), order) - tmp3862 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3862 .= Taylor1(zero(_S), order) - tmp3864 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3864 .= Taylor1(zero(_S), order) - tmp3865 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3865 .= Taylor1(zero(_S), order) - tmp3866 = Array{Taylor1{_S}}(undef, size(tmp3864)) - tmp3866 .= Taylor1(zero(_S), order) - tmp3867 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3867 .= Taylor1(zero(_S), order) - tmp3869 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3869 .= Taylor1(zero(_S), order) - tmp3870 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3870 .= Taylor1(zero(_S), order) - tmp3871 = Array{Taylor1{_S}}(undef, size(tmp3869)) - tmp3871 .= Taylor1(zero(_S), order) - tmp3872 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3872 .= Taylor1(zero(_S), order) - tmp3874 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3874 .= Taylor1(zero(_S), order) - tmp3875 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3875 .= Taylor1(zero(_S), order) - tmp3876 = Array{Taylor1{_S}}(undef, size(tmp3874)) - tmp3876 .= Taylor1(zero(_S), order) - tmp3877 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3877 .= Taylor1(zero(_S), order) - tmp3879 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3879 .= Taylor1(zero(_S), order) - tmp3880 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3880 .= Taylor1(zero(_S), order) - tmp3881 = Array{Taylor1{_S}}(undef, size(tmp3879)) - tmp3881 .= Taylor1(zero(_S), order) - tmp3882 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3882 .= Taylor1(zero(_S), order) - tmp3884 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3884 .= Taylor1(zero(_S), order) - tmp3885 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3885 .= Taylor1(zero(_S), order) - tmp3886 = Array{Taylor1{_S}}(undef, size(tmp3884)) - tmp3886 .= Taylor1(zero(_S), order) - tmp3887 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3887 .= Taylor1(zero(_S), order) - tmp3712 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3712 .= Taylor1(zero(_S), order) - tmp3713 = Array{Taylor1{_S}}(undef, size(tmp3712)) - tmp3713 .= Taylor1(zero(_S), order) - tmp3714 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3714 .= Taylor1(zero(_S), order) - tmp3716 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3716 .= Taylor1(zero(_S), order) - tmp3717 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3717 .= Taylor1(zero(_S), order) - tmp3729 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3729 .= Taylor1(zero(_S), order) - tmp3730 = Array{Taylor1{_S}}(undef, size(tmp3729)) - tmp3730 .= Taylor1(zero(_S), order) - tmp3731 = Array{Taylor1{_S}}(undef, size(tmp3730)) - tmp3731 .= Taylor1(zero(_S), order) - tmp3733 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3733 .= Taylor1(zero(_S), order) - tmp3734 = Array{Taylor1{_S}}(undef, size(tmp3733)) - tmp3734 .= Taylor1(zero(_S), order) - tmp3735 = Array{Taylor1{_S}}(undef, size(tmp3734)) - tmp3735 .= Taylor1(zero(_S), order) - tmp3736 = Array{Taylor1{_S}}(undef, size(tmp3735)) - tmp3736 .= Taylor1(zero(_S), order) - tmp3761 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3761 .= Taylor1(zero(_S), order) - tmp3762 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3762 .= Taylor1(zero(_S), order) - tmp3763 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3763 .= Taylor1(zero(_S), order) - tmp3764 = Array{Taylor1{_S}}(undef, size(tmp3762)) - tmp3764 .= Taylor1(zero(_S), order) - tmp3765 = Array{Taylor1{_S}}(undef, size(tmp3761)) - tmp3765 .= Taylor1(zero(_S), order) - tmp3766 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3766 .= Taylor1(zero(_S), order) - tmp3767 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3767 .= Taylor1(zero(_S), order) - tmp3768 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3768 .= Taylor1(zero(_S), order) - tmp3769 = Array{Taylor1{_S}}(undef, size(tmp3767)) - tmp3769 .= Taylor1(zero(_S), order) - tmp3770 = Array{Taylor1{_S}}(undef, size(tmp3766)) - tmp3770 .= Taylor1(zero(_S), order) - tmp3771 = Array{Taylor1{_S}}(undef, size(tmp3765)) - tmp3771 .= Taylor1(zero(_S), order) - tmp3773 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3773 .= Taylor1(zero(_S), order) - tmp3774 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3774 .= Taylor1(zero(_S), order) - tmp3775 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3775 .= Taylor1(zero(_S), order) - tmp3776 = Array{Taylor1{_S}}(undef, size(tmp3774)) - tmp3776 .= Taylor1(zero(_S), order) - tmp3777 = Array{Taylor1{_S}}(undef, size(tmp3773)) - tmp3777 .= Taylor1(zero(_S), order) - tmp3778 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3778 .= Taylor1(zero(_S), order) - tmp3779 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3779 .= Taylor1(zero(_S), order) - tmp3780 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3780 .= Taylor1(zero(_S), order) - tmp3781 = Array{Taylor1{_S}}(undef, size(tmp3779)) - tmp3781 .= Taylor1(zero(_S), order) - tmp3782 = Array{Taylor1{_S}}(undef, size(tmp3778)) - tmp3782 .= Taylor1(zero(_S), order) - tmp3783 = Array{Taylor1{_S}}(undef, size(tmp3777)) - tmp3783 .= Taylor1(zero(_S), order) - tmp3785 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3785 .= Taylor1(zero(_S), order) - tmp3786 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3786 .= Taylor1(zero(_S), order) - tmp3787 = Array{Taylor1{_S}}(undef, size(tmp3785)) - tmp3787 .= Taylor1(zero(_S), order) - tmp3788 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3788 .= Taylor1(zero(_S), order) - tmp3789 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3789 .= Taylor1(zero(_S), order) - tmp3790 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3790 .= Taylor1(zero(_S), order) - tmp3791 = Array{Taylor1{_S}}(undef, size(tmp3789)) - tmp3791 .= Taylor1(zero(_S), order) - tmp3792 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3792 .= Taylor1(zero(_S), order) - tmp3793 = Array{Taylor1{_S}}(undef, size(tmp3788)) - tmp3793 .= Taylor1(zero(_S), order) - tmp3813 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - tmp3813 .= Taylor1(zero(_S), order) - tmp3814 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) - tmp3814 .= Taylor1(zero(_S), order) - tmp3817 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) - tmp3817 .= Taylor1(zero(_S), order) - tmp3818 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) - tmp3818 .= Taylor1(zero(_S), order) - tmp3739 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3739 .= Taylor1(zero(_S), order) - tmp3740 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3740 .= Taylor1(zero(_S), order) - tmp3742 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3742 .= Taylor1(zero(_S), order) - tmp3743 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3743 .= Taylor1(zero(_S), order) - tmp3745 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3745 .= Taylor1(zero(_S), order) - tmp3748 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3748 .= Taylor1(zero(_S), order) - tmp3757 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3757 .= Taylor1(zero(_S), order) - tmp3758 = Array{Taylor1{_S}}(undef, size(tmp3757)) - tmp3758 .= Taylor1(zero(_S), order) - tmp3759 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3759 .= Taylor1(zero(_S), order) - tmp3750 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3750 .= Taylor1(zero(_S), order) - tmp3752 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3752 .= Taylor1(zero(_S), order) - tmp3753 = Array{Taylor1{_S}}(undef, size(tmp3752)) - tmp3753 .= Taylor1(zero(_S), order) - tmp3754 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3754 .= Taylor1(zero(_S), order) - tmp3799 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3799 .= Taylor1(zero(_S), order) - tmp3800 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp3800 .= Taylor1(zero(_S), order) - tmp3801 = Array{Taylor1{_S}}(undef, size(tmp3799)) - tmp3801 .= Taylor1(zero(_S), order) - tmp3802 = Array{Taylor1{_S}}(undef, size(tmp3801)) - tmp3802 .= Taylor1(zero(_S), order) - tmp3804 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3804 .= Taylor1(zero(_S), order) - tmp3805 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - tmp3805 .= Taylor1(zero(_S), order) - tmp3806 = Array{Taylor1{_S}}(undef, size(tmp3804)) - tmp3806 .= Taylor1(zero(_S), order) - tmp3807 = Array{Taylor1{_S}}(undef, size(tmp3806)) - tmp3807 .= Taylor1(zero(_S), order) - tmp3809 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp3809 .= Taylor1(zero(_S), order) - tmp3810 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3810 .= Taylor1(zero(_S), order) - tmp3811 = Array{Taylor1{_S}}(undef, size(tmp3810)) - tmp3811 .= Taylor1(zero(_S), order) - #= In[6]:474 =# Threads.@threads for j = 1:N_ext + tmp3156 = Array{Taylor1{_S}}(undef, size(X_bf_1)) + for i = CartesianIndices(tmp3156) + tmp3156[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3158 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) + for i = CartesianIndices(tmp3158) + tmp3158[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3160 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) + for i = CartesianIndices(tmp3160) + tmp3160[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3164 = Array{Taylor1{_S}}(undef, size(X_bf)) + for i = CartesianIndices(tmp3164) + tmp3164[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3166 = Array{Taylor1{_S}}(undef, size(Y_bf)) + for i = CartesianIndices(tmp3166) + tmp3166[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3167 = Array{Taylor1{_S}}(undef, size(tmp3164)) + for i = CartesianIndices(tmp3167) + tmp3167[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3182 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp3182) + tmp3182[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3183 = Array{Taylor1{_S}}(undef, size(tmp3182)) + for i = CartesianIndices(tmp3183) + tmp3183[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3185 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = CartesianIndices(tmp3185) + tmp3185[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3186 = Array{Taylor1{_S}}(undef, size(tmp3185)) + for i = CartesianIndices(tmp3186) + tmp3186[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3187 = Array{Taylor1{_S}}(undef, size(tmp3186)) + for i = CartesianIndices(tmp3187) + tmp3187[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3284 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + for i = CartesianIndices(tmp3284) + tmp3284[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3287 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + for i = CartesianIndices(tmp3287) + tmp3287[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3289 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3289) + tmp3289[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3290 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3290) + tmp3290[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3291 = Array{Taylor1{_S}}(undef, size(tmp3289)) + for i = CartesianIndices(tmp3291) + tmp3291[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3292 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3292) + tmp3292[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3294 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3294) + tmp3294[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3295 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3295) + tmp3295[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3296 = Array{Taylor1{_S}}(undef, size(tmp3294)) + for i = CartesianIndices(tmp3296) + tmp3296[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3297 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3297) + tmp3297[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3299 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3299) + tmp3299[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3300 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3300) + tmp3300[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3301 = Array{Taylor1{_S}}(undef, size(tmp3299)) + for i = CartesianIndices(tmp3301) + tmp3301[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3302 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3302) + tmp3302[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3304 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3304) + tmp3304[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3305 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3305) + tmp3305[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3306 = Array{Taylor1{_S}}(undef, size(tmp3304)) + for i = CartesianIndices(tmp3306) + tmp3306[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3307 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3307) + tmp3307[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3309 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3309) + tmp3309[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3310 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3310) + tmp3310[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3311 = Array{Taylor1{_S}}(undef, size(tmp3309)) + for i = CartesianIndices(tmp3311) + tmp3311[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3312 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3312) + tmp3312[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3314 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3314) + tmp3314[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3315 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3315) + tmp3315[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3316 = Array{Taylor1{_S}}(undef, size(tmp3314)) + for i = CartesianIndices(tmp3316) + tmp3316[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3317 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3317) + tmp3317[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3319 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3319) + tmp3319[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3320 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3320) + tmp3320[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3321 = Array{Taylor1{_S}}(undef, size(tmp3319)) + for i = CartesianIndices(tmp3321) + tmp3321[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3322 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3322) + tmp3322[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3324 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3324) + tmp3324[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3325 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3325) + tmp3325[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3326 = Array{Taylor1{_S}}(undef, size(tmp3324)) + for i = CartesianIndices(tmp3326) + tmp3326[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3327 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3327) + tmp3327[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3329 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3329) + tmp3329[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3330 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3330) + tmp3330[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3331 = Array{Taylor1{_S}}(undef, size(tmp3329)) + for i = CartesianIndices(tmp3331) + tmp3331[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3332 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = CartesianIndices(tmp3332) + tmp3332[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3334 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3334) + tmp3334[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3335 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3335) + tmp3335[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3336 = Array{Taylor1{_S}}(undef, size(tmp3334)) + for i = CartesianIndices(tmp3336) + tmp3336[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3337 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3337) + tmp3337[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3339 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3339) + tmp3339[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3340 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3340) + tmp3340[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3341 = Array{Taylor1{_S}}(undef, size(tmp3339)) + for i = CartesianIndices(tmp3341) + tmp3341[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3342 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3342) + tmp3342[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3344 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3344) + tmp3344[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3345 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3345) + tmp3345[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3346 = Array{Taylor1{_S}}(undef, size(tmp3344)) + for i = CartesianIndices(tmp3346) + tmp3346[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3347 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = CartesianIndices(tmp3347) + tmp3347[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3172 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp3172) + tmp3172[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3173 = Array{Taylor1{_S}}(undef, size(tmp3172)) + for i = CartesianIndices(tmp3173) + tmp3173[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3174 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp3174) + tmp3174[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3176 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = CartesianIndices(tmp3176) + tmp3176[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3177 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp3177) + tmp3177[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3189 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = CartesianIndices(tmp3189) + tmp3189[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3190 = Array{Taylor1{_S}}(undef, size(tmp3189)) + for i = CartesianIndices(tmp3190) + tmp3190[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3191 = Array{Taylor1{_S}}(undef, size(tmp3190)) + for i = CartesianIndices(tmp3191) + tmp3191[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3193 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = CartesianIndices(tmp3193) + tmp3193[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3194 = Array{Taylor1{_S}}(undef, size(tmp3193)) + for i = CartesianIndices(tmp3194) + tmp3194[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3195 = Array{Taylor1{_S}}(undef, size(tmp3194)) + for i = CartesianIndices(tmp3195) + tmp3195[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3196 = Array{Taylor1{_S}}(undef, size(tmp3195)) + for i = CartesianIndices(tmp3196) + tmp3196[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3221 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = CartesianIndices(tmp3221) + tmp3221[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3222 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3222) + tmp3222[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3223 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3223) + tmp3223[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3224 = Array{Taylor1{_S}}(undef, size(tmp3222)) + for i = CartesianIndices(tmp3224) + tmp3224[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3225 = Array{Taylor1{_S}}(undef, size(tmp3221)) + for i = CartesianIndices(tmp3225) + tmp3225[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3226 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = CartesianIndices(tmp3226) + tmp3226[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3227 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3227) + tmp3227[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3228 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3228) + tmp3228[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3229 = Array{Taylor1{_S}}(undef, size(tmp3227)) + for i = CartesianIndices(tmp3229) + tmp3229[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3230 = Array{Taylor1{_S}}(undef, size(tmp3226)) + for i = CartesianIndices(tmp3230) + tmp3230[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3231 = Array{Taylor1{_S}}(undef, size(tmp3225)) + for i = CartesianIndices(tmp3231) + tmp3231[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3233 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3233) + tmp3233[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3234 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3234) + tmp3234[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3235 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3235) + tmp3235[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3236 = Array{Taylor1{_S}}(undef, size(tmp3234)) + for i = CartesianIndices(tmp3236) + tmp3236[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3237 = Array{Taylor1{_S}}(undef, size(tmp3233)) + for i = CartesianIndices(tmp3237) + tmp3237[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3238 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3238) + tmp3238[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3239 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3239) + tmp3239[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3240 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3240) + tmp3240[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3241 = Array{Taylor1{_S}}(undef, size(tmp3239)) + for i = CartesianIndices(tmp3241) + tmp3241[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3242 = Array{Taylor1{_S}}(undef, size(tmp3238)) + for i = CartesianIndices(tmp3242) + tmp3242[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3243 = Array{Taylor1{_S}}(undef, size(tmp3237)) + for i = CartesianIndices(tmp3243) + tmp3243[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3245 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3245) + tmp3245[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3246 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3246) + tmp3246[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3247 = Array{Taylor1{_S}}(undef, size(tmp3245)) + for i = CartesianIndices(tmp3247) + tmp3247[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3248 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = CartesianIndices(tmp3248) + tmp3248[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3249 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3249) + tmp3249[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3250 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3250) + tmp3250[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3251 = Array{Taylor1{_S}}(undef, size(tmp3249)) + for i = CartesianIndices(tmp3251) + tmp3251[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3252 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = CartesianIndices(tmp3252) + tmp3252[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3253 = Array{Taylor1{_S}}(undef, size(tmp3248)) + for i = CartesianIndices(tmp3253) + tmp3253[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3273 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) + for i = CartesianIndices(tmp3273) + tmp3273[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3274 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) + for i = CartesianIndices(tmp3274) + tmp3274[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3277 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + for i = CartesianIndices(tmp3277) + tmp3277[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3278 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + for i = CartesianIndices(tmp3278) + tmp3278[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3199 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3199) + tmp3199[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3200 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3200) + tmp3200[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3202 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = CartesianIndices(tmp3202) + tmp3202[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3203 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = CartesianIndices(tmp3203) + tmp3203[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3205 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3205) + tmp3205[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3208 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3208) + tmp3208[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3217 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3217) + tmp3217[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3218 = Array{Taylor1{_S}}(undef, size(tmp3217)) + for i = CartesianIndices(tmp3218) + tmp3218[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3219 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3219) + tmp3219[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3210 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3210) + tmp3210[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3212 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3212) + tmp3212[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3213 = Array{Taylor1{_S}}(undef, size(tmp3212)) + for i = CartesianIndices(tmp3213) + tmp3213[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3214 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3214) + tmp3214[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3259 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = CartesianIndices(tmp3259) + tmp3259[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3260 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) + for i = CartesianIndices(tmp3260) + tmp3260[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3261 = Array{Taylor1{_S}}(undef, size(tmp3259)) + for i = CartesianIndices(tmp3261) + tmp3261[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3262 = Array{Taylor1{_S}}(undef, size(tmp3261)) + for i = CartesianIndices(tmp3262) + tmp3262[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3264 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = CartesianIndices(tmp3264) + tmp3264[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3265 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) + for i = CartesianIndices(tmp3265) + tmp3265[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3266 = Array{Taylor1{_S}}(undef, size(tmp3264)) + for i = CartesianIndices(tmp3266) + tmp3266[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3267 = Array{Taylor1{_S}}(undef, size(tmp3266)) + for i = CartesianIndices(tmp3267) + tmp3267[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3269 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) + for i = CartesianIndices(tmp3269) + tmp3269[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3270 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = CartesianIndices(tmp3270) + tmp3270[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3271 = Array{Taylor1{_S}}(undef, size(tmp3270)) + for i = CartesianIndices(tmp3271) + tmp3271[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1380 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -5538,17 +6248,17 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q Z_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[3, 1, j]), order) Z_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]), order) Z_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]), order) - tmp3696[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) - X_bf[i, j] = Taylor1(constant_term(tmp3696[i, j]) + constant_term(X_bf_3[i, j]), order) - tmp3698[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) - Y_bf[i, j] = Taylor1(constant_term(tmp3698[i, j]) + constant_term(Y_bf_3[i, j]), order) - tmp3700[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) - Z_bf[i, j] = Taylor1(constant_term(tmp3700[i, j]) + constant_term(Z_bf_3[i, j]), order) + tmp3156[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) + X_bf[i, j] = Taylor1(constant_term(tmp3156[i, j]) + constant_term(X_bf_3[i, j]), order) + tmp3158[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) + Y_bf[i, j] = Taylor1(constant_term(tmp3158[i, j]) + constant_term(Y_bf_3[i, j]), order) + tmp3160[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) + Z_bf[i, j] = Taylor1(constant_term(tmp3160[i, j]) + constant_term(Z_bf_3[i, j]), order) sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) - tmp3704[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) - tmp3706[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) - tmp3707[i, j] = Taylor1(constant_term(tmp3704[i, j]) + constant_term(tmp3706[i, j]), order) - r_xy[i, j] = Taylor1(sqrt(constant_term(tmp3707[i, j])), order) + tmp3164[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) + tmp3166[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) + tmp3167[i, j] = Taylor1(constant_term(tmp3164[i, j]) + constant_term(tmp3166[i, j]), order) + r_xy[i, j] = Taylor1(sqrt(constant_term(tmp3167[i, j])), order) cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) sin_λ[i, j] = Taylor1(constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]), order) cos_λ[i, j] = Taylor1(constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]), order) @@ -5557,35 +6267,35 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q dP_n[i, j, 1] = Taylor1(identity(constant_term(zero_q_1)), order) dP_n[i, j, 2] = Taylor1(identity(constant_term(one_t)), order) for n = 2:n1SEM[j] - tmp3712[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3713[i, j, n] = Taylor1(constant_term(tmp3712[i, j, n]) * constant_term(fact1_jsem[n]), order) - tmp3714[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) - P_n[i, j, n + 1] = Taylor1(constant_term(tmp3713[i, j, n]) - constant_term(tmp3714[i, j, n - 1]), order) - tmp3716[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3717[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) - dP_n[i, j, n + 1] = Taylor1(constant_term(tmp3716[i, j, n]) + constant_term(tmp3717[i, j, n]), order) + tmp3172[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp3173[i, j, n] = Taylor1(constant_term(tmp3172[i, j, n]) * constant_term(fact1_jsem[n]), order) + tmp3174[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) + P_n[i, j, n + 1] = Taylor1(constant_term(tmp3173[i, j, n]) - constant_term(tmp3174[i, j, n - 1]), order) + tmp3176[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp3177[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) + dP_n[i, j, n + 1] = Taylor1(constant_term(tmp3176[i, j, n]) + constant_term(tmp3177[i, j, n]), order) temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) end r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) - tmp3722[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) - tmp3723[i, j, 3] = Taylor1(constant_term(tmp3722[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ξ[i, j] = Taylor1(constant_term(tmp3723[i, j, 3]) / constant_term(r_p4[i, j]), order) - tmp3725[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) - tmp3726[i, j, 3] = Taylor1(constant_term(tmp3725[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) - tmp3727[i, j, 3] = Taylor1(constant_term(tmp3726[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ζ[i, j] = Taylor1(constant_term(tmp3727[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp3182[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) + tmp3183[i, j, 3] = Taylor1(constant_term(tmp3182[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ξ[i, j] = Taylor1(constant_term(tmp3183[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp3185[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) + tmp3186[i, j, 3] = Taylor1(constant_term(tmp3185[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) + tmp3187[i, j, 3] = Taylor1(constant_term(tmp3186[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ζ[i, j] = Taylor1(constant_term(tmp3187[i, j, 3]) / constant_term(r_p4[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) for n = 3:n1SEM[j] - tmp3729[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) - tmp3730[i, j, n + 1] = Taylor1(constant_term(tmp3729[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3731[i, j, n + 1] = Taylor1(constant_term(tmp3730[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjξ[i, j, n] = Taylor1(constant_term(tmp3731[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3733[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) - tmp3734[i, j, n + 1] = Taylor1(constant_term(tmp3733[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) - tmp3735[i, j, n + 1] = Taylor1(constant_term(tmp3734[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3736[i, j, n + 1] = Taylor1(constant_term(tmp3735[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjζ[i, j, n] = Taylor1(constant_term(tmp3736[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) + tmp3189[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) + tmp3190[i, j, n + 1] = Taylor1(constant_term(tmp3189[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp3191[i, j, n + 1] = Taylor1(constant_term(tmp3190[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjξ[i, j, n] = Taylor1(constant_term(tmp3191[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) + tmp3193[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) + tmp3194[i, j, n + 1] = Taylor1(constant_term(tmp3193[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) + tmp3195[i, j, n + 1] = Taylor1(constant_term(tmp3194[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp3196[i, j, n + 1] = Taylor1(constant_term(tmp3195[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjζ[i, j, n] = Taylor1(constant_term(tmp3196[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(temp_fjξ[i, j, n])), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(temp_fjζ[i, j, n])), order) end @@ -5598,69 +6308,69 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) cosϕ_dP_nm[i, j, 1, 1] = Taylor1(constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]), order) else - tmp3739[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - tmp3740[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - sin_mλ[i, j, m] = Taylor1(constant_term(tmp3739[i, j, m - 1]) + constant_term(tmp3740[i, j, m - 1]), order) - tmp3742[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - tmp3743[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - cos_mλ[i, j, m] = Taylor1(constant_term(tmp3742[i, j, m - 1]) - constant_term(tmp3743[i, j, m - 1]), order) - tmp3745[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) - secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp3745[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) + tmp3199[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + tmp3200[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + sin_mλ[i, j, m] = Taylor1(constant_term(tmp3199[i, j, m - 1]) + constant_term(tmp3200[i, j, m - 1]), order) + tmp3202[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + tmp3203[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + cos_mλ[i, j, m] = Taylor1(constant_term(tmp3202[i, j, m - 1]) - constant_term(tmp3203[i, j, m - 1]), order) + tmp3205[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) + secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp3205[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) P_nm[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3748[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) - cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp3748[i, j, m, m]) * constant_term(lnm3[m]), order) + tmp3208[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) + cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp3208[i, j, m, m]) * constant_term(lnm3[m]), order) end for n = m + 1:n1SEM[mo] if n == m + 1 - tmp3750[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3750[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp3210[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3210[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) else - tmp3752[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3753[i, j, n - 1, m] = Taylor1(constant_term(tmp3752[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - tmp3754[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3753[i, j, n - 1, m]) + constant_term(tmp3754[i, j, n - 2, m]), order) + tmp3212[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + tmp3213[i, j, n - 1, m] = Taylor1(constant_term(tmp3212[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp3214[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3213[i, j, n - 1, m]) + constant_term(tmp3214[i, j, n - 2, m]), order) end P_nm[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3757[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3758[i, j, n, m] = Taylor1(constant_term(tmp3757[i, j, n, m]) * constant_term(lnm3[n]), order) - tmp3759[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) - cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp3758[i, j, n, m]) + constant_term(tmp3759[i, j, n - 1, m]), order) + tmp3217[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) + tmp3218[i, j, n, m] = Taylor1(constant_term(tmp3217[i, j, n, m]) * constant_term(lnm3[n]), order) + tmp3219[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) + cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp3218[i, j, n, m]) + constant_term(tmp3219[i, j, n - 1, m]), order) end end - tmp3761[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) - tmp3762[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3763[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3764[i, j, 1] = Taylor1(constant_term(tmp3762[i, j, 1]) + constant_term(tmp3763[i, j, 1]), order) - tmp3765[i, j, 2, 1] = Taylor1(constant_term(tmp3761[i, j, 2, 1]) * constant_term(tmp3764[i, j, 1]), order) - tmp3766[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) - tmp3767[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3768[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3769[i, j, 2] = Taylor1(constant_term(tmp3767[i, j, 2]) + constant_term(tmp3768[i, j, 2]), order) - tmp3770[i, j, 2, 2] = Taylor1(constant_term(tmp3766[i, j, 2, 2]) * constant_term(tmp3769[i, j, 2]), order) - tmp3771[i, j, 2, 1] = Taylor1(constant_term(tmp3765[i, j, 2, 1]) + constant_term(tmp3770[i, j, 2, 2]), order) - F_CS_ξ[i, j] = Taylor1(constant_term(tmp3771[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3773[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) - tmp3774[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3775[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3776[i, j, 1] = Taylor1(constant_term(tmp3774[i, j, 1]) - constant_term(tmp3775[i, j, 1]), order) - tmp3777[i, j, 2, 1] = Taylor1(constant_term(tmp3773[i, j, 2, 1]) * constant_term(tmp3776[i, j, 1]), order) - tmp3778[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) - tmp3779[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3780[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3781[i, j, 2] = Taylor1(constant_term(tmp3779[i, j, 2]) - constant_term(tmp3780[i, j, 2]), order) - tmp3782[i, j, 2, 2] = Taylor1(constant_term(tmp3778[i, j, 2, 2]) * constant_term(tmp3781[i, j, 2]), order) - tmp3783[i, j, 2, 1] = Taylor1(constant_term(tmp3777[i, j, 2, 1]) + constant_term(tmp3782[i, j, 2, 2]), order) - F_CS_η[i, j] = Taylor1(constant_term(tmp3783[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3785[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3786[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3787[i, j, 1] = Taylor1(constant_term(tmp3785[i, j, 1]) + constant_term(tmp3786[i, j, 1]), order) - tmp3788[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3787[i, j, 1]), order) - tmp3789[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3790[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3791[i, j, 2] = Taylor1(constant_term(tmp3789[i, j, 2]) + constant_term(tmp3790[i, j, 2]), order) - tmp3792[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3791[i, j, 2]), order) - tmp3793[i, j, 2, 1] = Taylor1(constant_term(tmp3788[i, j, 2, 1]) + constant_term(tmp3792[i, j, 2, 2]), order) - F_CS_ζ[i, j] = Taylor1(constant_term(tmp3793[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3221[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) + tmp3222[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3223[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3224[i, j, 1] = Taylor1(constant_term(tmp3222[i, j, 1]) + constant_term(tmp3223[i, j, 1]), order) + tmp3225[i, j, 2, 1] = Taylor1(constant_term(tmp3221[i, j, 2, 1]) * constant_term(tmp3224[i, j, 1]), order) + tmp3226[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) + tmp3227[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3228[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3229[i, j, 2] = Taylor1(constant_term(tmp3227[i, j, 2]) + constant_term(tmp3228[i, j, 2]), order) + tmp3230[i, j, 2, 2] = Taylor1(constant_term(tmp3226[i, j, 2, 2]) * constant_term(tmp3229[i, j, 2]), order) + tmp3231[i, j, 2, 1] = Taylor1(constant_term(tmp3225[i, j, 2, 1]) + constant_term(tmp3230[i, j, 2, 2]), order) + F_CS_ξ[i, j] = Taylor1(constant_term(tmp3231[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3233[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) + tmp3234[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3235[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3236[i, j, 1] = Taylor1(constant_term(tmp3234[i, j, 1]) - constant_term(tmp3235[i, j, 1]), order) + tmp3237[i, j, 2, 1] = Taylor1(constant_term(tmp3233[i, j, 2, 1]) * constant_term(tmp3236[i, j, 1]), order) + tmp3238[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) + tmp3239[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3240[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3241[i, j, 2] = Taylor1(constant_term(tmp3239[i, j, 2]) - constant_term(tmp3240[i, j, 2]), order) + tmp3242[i, j, 2, 2] = Taylor1(constant_term(tmp3238[i, j, 2, 2]) * constant_term(tmp3241[i, j, 2]), order) + tmp3243[i, j, 2, 1] = Taylor1(constant_term(tmp3237[i, j, 2, 1]) + constant_term(tmp3242[i, j, 2, 2]), order) + F_CS_η[i, j] = Taylor1(constant_term(tmp3243[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3245[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3246[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3247[i, j, 1] = Taylor1(constant_term(tmp3245[i, j, 1]) + constant_term(tmp3246[i, j, 1]), order) + tmp3248[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3247[i, j, 1]), order) + tmp3249[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3250[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3251[i, j, 2] = Taylor1(constant_term(tmp3249[i, j, 2]) + constant_term(tmp3250[i, j, 2]), order) + tmp3252[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3251[i, j, 2]), order) + tmp3253[i, j, 2, 1] = Taylor1(constant_term(tmp3248[i, j, 2, 1]) + constant_term(tmp3252[i, j, 2, 2]), order) + F_CS_ζ[i, j] = Taylor1(constant_term(tmp3253[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -5670,32 +6380,32 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q Cnm_sinmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]), order) Snm_cosmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]), order) Snm_sinmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - tmp3799[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) - tmp3800[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3801[i, j, n, m] = Taylor1(constant_term(tmp3799[i, j, n, m]) * constant_term(tmp3800[i, j, n, m]), order) - tmp3802[i, j, n, m] = Taylor1(constant_term(tmp3801[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp3802[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) - tmp3804[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) - tmp3805[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) - tmp3806[i, j, n, m] = Taylor1(constant_term(tmp3804[i, j, n, m]) * constant_term(tmp3805[i, j, n, m]), order) - tmp3807[i, j, n, m] = Taylor1(constant_term(tmp3806[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp3807[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) - tmp3809[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3810[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3809[i, j, n, m]), order) - tmp3811[i, j, n, m] = Taylor1(constant_term(tmp3810[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp3811[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) + tmp3259[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) + tmp3260[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp3261[i, j, n, m] = Taylor1(constant_term(tmp3259[i, j, n, m]) * constant_term(tmp3260[i, j, n, m]), order) + tmp3262[i, j, n, m] = Taylor1(constant_term(tmp3261[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp3262[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) + tmp3264[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) + tmp3265[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) + tmp3266[i, j, n, m] = Taylor1(constant_term(tmp3264[i, j, n, m]) * constant_term(tmp3265[i, j, n, m]), order) + tmp3267[i, j, n, m] = Taylor1(constant_term(tmp3266[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp3267[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) + tmp3269[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp3270[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3269[i, j, n, m]), order) + tmp3271[i, j, n, m] = Taylor1(constant_term(tmp3270[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp3271[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ξ[i, j, n, m])), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(temp_CS_η[i, j, n, m])), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ζ[i, j, n, m])), order) end end - tmp3813[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3814[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) - F_JCS_ξ[i, j] = Taylor1(constant_term(tmp3813[i, j]) + constant_term(tmp3814[i, j]), order) + tmp3273[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) + tmp3274[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) + F_JCS_ξ[i, j] = Taylor1(constant_term(tmp3273[i, j]) + constant_term(tmp3274[i, j]), order) F_JCS_η[i, j] = Taylor1(constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]), order) - tmp3817[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - tmp3818[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(tmp3817[i, j]) + constant_term(tmp3818[i, j]), order) + tmp3277[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) + tmp3278[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) + F_JCS_ζ[i, j] = Taylor1(constant_term(tmp3277[i, j]) + constant_term(tmp3278[i, j]), order) else F_JCS_ξ[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) F_JCS_η[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -5703,146 +6413,176 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q end Rb2p[i, j, 1, 1] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 2, 1] = Taylor1(-(constant_term(sin_λ[i, j])), order) - tmp3824[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp3824[i, j]) * constant_term(cos_λ[i, j]), order) + tmp3284[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp3284[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 1, 2] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 2, 2] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - tmp3827[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp3827[i, j]) * constant_term(sin_λ[i, j]), order) + tmp3287[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp3287[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 1, 3] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) Rb2p[i, j, 2, 3] = Taylor1(identity(constant_term(zero_q_1)), order) Rb2p[i, j, 3, 3] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - tmp3829[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3830[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3831[i, j, 1, 1] = Taylor1(constant_term(tmp3829[i, j, 1, 1]) + constant_term(tmp3830[i, j, 1, 2]), order) - tmp3832[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp3831[i, j, 1, 1]) + constant_term(tmp3832[i, j, 1, 3]), order) - tmp3834[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3835[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3836[i, j, 2, 1] = Taylor1(constant_term(tmp3834[i, j, 2, 1]) + constant_term(tmp3835[i, j, 2, 2]), order) - tmp3837[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp3836[i, j, 2, 1]) + constant_term(tmp3837[i, j, 2, 3]), order) - tmp3839[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3840[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3841[i, j, 3, 1] = Taylor1(constant_term(tmp3839[i, j, 3, 1]) + constant_term(tmp3840[i, j, 3, 2]), order) - tmp3842[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp3841[i, j, 3, 1]) + constant_term(tmp3842[i, j, 3, 3]), order) - tmp3844[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3845[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3846[i, j, 1, 1] = Taylor1(constant_term(tmp3844[i, j, 1, 1]) + constant_term(tmp3845[i, j, 1, 2]), order) - tmp3847[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp3846[i, j, 1, 1]) + constant_term(tmp3847[i, j, 1, 3]), order) - tmp3849[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3850[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3851[i, j, 2, 1] = Taylor1(constant_term(tmp3849[i, j, 2, 1]) + constant_term(tmp3850[i, j, 2, 2]), order) - tmp3852[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp3851[i, j, 2, 1]) + constant_term(tmp3852[i, j, 2, 3]), order) - tmp3854[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3855[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3856[i, j, 3, 1] = Taylor1(constant_term(tmp3854[i, j, 3, 1]) + constant_term(tmp3855[i, j, 3, 2]), order) - tmp3857[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp3856[i, j, 3, 1]) + constant_term(tmp3857[i, j, 3, 3]), order) - tmp3859[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3860[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3861[i, j, 1, 1] = Taylor1(constant_term(tmp3859[i, j, 1, 1]) + constant_term(tmp3860[i, j, 1, 2]), order) - tmp3862[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp3861[i, j, 1, 1]) + constant_term(tmp3862[i, j, 1, 3]), order) - tmp3864[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3865[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3866[i, j, 2, 1] = Taylor1(constant_term(tmp3864[i, j, 2, 1]) + constant_term(tmp3865[i, j, 2, 2]), order) - tmp3867[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp3866[i, j, 2, 1]) + constant_term(tmp3867[i, j, 2, 3]), order) - tmp3869[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3870[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3871[i, j, 3, 1] = Taylor1(constant_term(tmp3869[i, j, 3, 1]) + constant_term(tmp3870[i, j, 3, 2]), order) - tmp3872[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp3871[i, j, 3, 1]) + constant_term(tmp3872[i, j, 3, 3]), order) - tmp3874[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) - tmp3875[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) - tmp3876[i, j, 1, 1] = Taylor1(constant_term(tmp3874[i, j, 1, 1]) + constant_term(tmp3875[i, j, 2, 1]), order) - tmp3877[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) - F_JCS_x[i, j] = Taylor1(constant_term(tmp3876[i, j, 1, 1]) + constant_term(tmp3877[i, j, 3, 1]), order) - tmp3879[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) - tmp3880[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) - tmp3881[i, j, 1, 2] = Taylor1(constant_term(tmp3879[i, j, 1, 2]) + constant_term(tmp3880[i, j, 2, 2]), order) - tmp3882[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) - F_JCS_y[i, j] = Taylor1(constant_term(tmp3881[i, j, 1, 2]) + constant_term(tmp3882[i, j, 3, 2]), order) - tmp3884[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) - tmp3885[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) - tmp3886[i, j, 1, 3] = Taylor1(constant_term(tmp3884[i, j, 1, 3]) + constant_term(tmp3885[i, j, 2, 3]), order) - tmp3887[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) - F_JCS_z[i, j] = Taylor1(constant_term(tmp3886[i, j, 1, 3]) + constant_term(tmp3887[i, j, 3, 3]), order) + tmp3289[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3290[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) + tmp3291[i, j, 1, 1] = Taylor1(constant_term(tmp3289[i, j, 1, 1]) + constant_term(tmp3290[i, j, 1, 2]), order) + tmp3292[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp3291[i, j, 1, 1]) + constant_term(tmp3292[i, j, 1, 3]), order) + tmp3294[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3295[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) + tmp3296[i, j, 2, 1] = Taylor1(constant_term(tmp3294[i, j, 2, 1]) + constant_term(tmp3295[i, j, 2, 2]), order) + tmp3297[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp3296[i, j, 2, 1]) + constant_term(tmp3297[i, j, 2, 3]), order) + tmp3299[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3300[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) + tmp3301[i, j, 3, 1] = Taylor1(constant_term(tmp3299[i, j, 3, 1]) + constant_term(tmp3300[i, j, 3, 2]), order) + tmp3302[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp3301[i, j, 3, 1]) + constant_term(tmp3302[i, j, 3, 3]), order) + tmp3304[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3305[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3306[i, j, 1, 1] = Taylor1(constant_term(tmp3304[i, j, 1, 1]) + constant_term(tmp3305[i, j, 1, 2]), order) + tmp3307[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp3306[i, j, 1, 1]) + constant_term(tmp3307[i, j, 1, 3]), order) + tmp3309[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3310[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3311[i, j, 2, 1] = Taylor1(constant_term(tmp3309[i, j, 2, 1]) + constant_term(tmp3310[i, j, 2, 2]), order) + tmp3312[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp3311[i, j, 2, 1]) + constant_term(tmp3312[i, j, 2, 3]), order) + tmp3314[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3315[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3316[i, j, 3, 1] = Taylor1(constant_term(tmp3314[i, j, 3, 1]) + constant_term(tmp3315[i, j, 3, 2]), order) + tmp3317[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp3316[i, j, 3, 1]) + constant_term(tmp3317[i, j, 3, 3]), order) + tmp3319[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3320[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3321[i, j, 1, 1] = Taylor1(constant_term(tmp3319[i, j, 1, 1]) + constant_term(tmp3320[i, j, 1, 2]), order) + tmp3322[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp3321[i, j, 1, 1]) + constant_term(tmp3322[i, j, 1, 3]), order) + tmp3324[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3325[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3326[i, j, 2, 1] = Taylor1(constant_term(tmp3324[i, j, 2, 1]) + constant_term(tmp3325[i, j, 2, 2]), order) + tmp3327[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp3326[i, j, 2, 1]) + constant_term(tmp3327[i, j, 2, 3]), order) + tmp3329[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3330[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3331[i, j, 3, 1] = Taylor1(constant_term(tmp3329[i, j, 3, 1]) + constant_term(tmp3330[i, j, 3, 2]), order) + tmp3332[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp3331[i, j, 3, 1]) + constant_term(tmp3332[i, j, 3, 3]), order) + tmp3334[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) + tmp3335[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) + tmp3336[i, j, 1, 1] = Taylor1(constant_term(tmp3334[i, j, 1, 1]) + constant_term(tmp3335[i, j, 2, 1]), order) + tmp3337[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) + F_JCS_x[i, j] = Taylor1(constant_term(tmp3336[i, j, 1, 1]) + constant_term(tmp3337[i, j, 3, 1]), order) + tmp3339[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) + tmp3340[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) + tmp3341[i, j, 1, 2] = Taylor1(constant_term(tmp3339[i, j, 1, 2]) + constant_term(tmp3340[i, j, 2, 2]), order) + tmp3342[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) + F_JCS_y[i, j] = Taylor1(constant_term(tmp3341[i, j, 1, 2]) + constant_term(tmp3342[i, j, 3, 2]), order) + tmp3344[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) + tmp3345[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) + tmp3346[i, j, 1, 3] = Taylor1(constant_term(tmp3344[i, j, 1, 3]) + constant_term(tmp3345[i, j, 2, 3]), order) + tmp3347[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) + F_JCS_z[i, j] = Taylor1(constant_term(tmp3346[i, j, 1, 3]) + constant_term(tmp3347[i, j, 3, 3]), order) end end end end - tmp3889 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp3889 .= Taylor1(zero(_S), order) - tmp3891 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp3891 .= Taylor1(zero(_S), order) - tmp3893 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp3893 .= Taylor1(zero(_S), order) - tmp3895 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp3895 .= Taylor1(zero(_S), order) - tmp3897 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp3897 .= Taylor1(zero(_S), order) - tmp3899 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp3899 .= Taylor1(zero(_S), order) - tmp3901 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3901 .= Taylor1(zero(_S), order) - tmp3902 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3902 .= Taylor1(zero(_S), order) - tmp3903 = Array{Taylor1{_S}}(undef, size(tmp3901)) - tmp3903 .= Taylor1(zero(_S), order) - tmp3905 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3905 .= Taylor1(zero(_S), order) - tmp3906 = Array{Taylor1{_S}}(undef, size(X)) - tmp3906 .= Taylor1(zero(_S), order) - tmp3907 = Array{Taylor1{_S}}(undef, size(tmp3905)) - tmp3907 .= Taylor1(zero(_S), order) - tmp3909 = Array{Taylor1{_S}}(undef, size(X)) - tmp3909 .= Taylor1(zero(_S), order) - tmp3910 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3910 .= Taylor1(zero(_S), order) - tmp3911 = Array{Taylor1{_S}}(undef, size(tmp3909)) - tmp3911 .= Taylor1(zero(_S), order) + tmp3349 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + for i = CartesianIndices(tmp3349) + tmp3349[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3351 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + for i = CartesianIndices(tmp3351) + tmp3351[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3353 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + for i = CartesianIndices(tmp3353) + tmp3353[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3355 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + for i = CartesianIndices(tmp3355) + tmp3355[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3357 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + for i = CartesianIndices(tmp3357) + tmp3357[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3359 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + for i = CartesianIndices(tmp3359) + tmp3359[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3361 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp3361) + tmp3361[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3362 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp3362) + tmp3362[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3363 = Array{Taylor1{_S}}(undef, size(tmp3361)) + for i = CartesianIndices(tmp3363) + tmp3363[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3365 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp3365) + tmp3365[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3366 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp3366) + tmp3366[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3367 = Array{Taylor1{_S}}(undef, size(tmp3365)) + for i = CartesianIndices(tmp3367) + tmp3367[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3369 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp3369) + tmp3369[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3370 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp3370) + tmp3370[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3371 = Array{Taylor1{_S}}(undef, size(tmp3369)) + for i = CartesianIndices(tmp3371) + tmp3371[i] = Taylor1(zero(constant_term(q[1])), order) + end for j = 1:N_ext for i = 1:N_ext if i == j continue else if UJ_interaction[i, j] - tmp3889[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp3889[i, j]), order) + tmp3349[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp3349[i, j]), order) accX[j] = Taylor1(identity(constant_term(temp_accX_j[i, j])), order) - tmp3891[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp3891[i, j]), order) + tmp3351[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp3351[i, j]), order) accY[j] = Taylor1(identity(constant_term(temp_accY_j[i, j])), order) - tmp3893[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp3893[i, j]), order) + tmp3353[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp3353[i, j]), order) accZ[j] = Taylor1(identity(constant_term(temp_accZ_j[i, j])), order) - tmp3895[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp3895[i, j]), order) + tmp3355[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp3355[i, j]), order) accX[i] = Taylor1(identity(constant_term(temp_accX_i[i, j])), order) - tmp3897[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp3897[i, j]), order) + tmp3357[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp3357[i, j]), order) accY[i] = Taylor1(identity(constant_term(temp_accY_i[i, j])), order) - tmp3899[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp3899[i, j]), order) + tmp3359[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp3359[i, j]), order) accZ[i] = Taylor1(identity(constant_term(temp_accZ_i[i, j])), order) if j == mo - tmp3901[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3902[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3903[i, j] = Taylor1(constant_term(tmp3901[i, j]) - constant_term(tmp3902[i, j]), order) - N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3903[i, j]), order) - tmp3905[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3906[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3907[i, j] = Taylor1(constant_term(tmp3905[i, j]) - constant_term(tmp3906[i, j]), order) - N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3907[i, j]), order) - tmp3909[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3910[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3911[i, j] = Taylor1(constant_term(tmp3909[i, j]) - constant_term(tmp3910[i, j]), order) - N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3911[i, j]), order) + tmp3361[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp3362[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp3363[i, j] = Taylor1(constant_term(tmp3361[i, j]) - constant_term(tmp3362[i, j]), order) + N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3363[i, j]), order) + tmp3365[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp3366[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp3367[i, j] = Taylor1(constant_term(tmp3365[i, j]) - constant_term(tmp3366[i, j]), order) + N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3367[i, j]), order) + tmp3369[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp3370[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp3371[i, j] = Taylor1(constant_term(tmp3369[i, j]) - constant_term(tmp3370[i, j]), order) + N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3371[i, j]), order) temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]), order) N_MfigM[1] = Taylor1(identity(constant_term(temp_N_M_x[i])), order) temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]), order) @@ -5854,25 +6594,43 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q end end end - tmp3923 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - tmp3923 .= Taylor1(zero(_S), order) + tmp3383 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) + for i = CartesianIndices(tmp3383) + tmp3383[i] = Taylor1(zero(constant_term(q[1])), order) + end Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) - Xij_t_Ui .= Taylor1(zero(_S), order) + for i = CartesianIndices(Xij_t_Ui) + Xij_t_Ui[i] = Taylor1(zero(constant_term(q[1])), order) + end Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) - Yij_t_Vi .= Taylor1(zero(_S), order) + for i = CartesianIndices(Yij_t_Vi) + Yij_t_Vi[i] = Taylor1(zero(constant_term(q[1])), order) + end Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) - Zij_t_Wi .= Taylor1(zero(_S), order) - tmp3929 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - tmp3929 .= Taylor1(zero(_S), order) - Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp3929)) - Rij_dot_Vi .= Taylor1(zero(_S), order) - tmp3932 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - tmp3932 .= Taylor1(zero(_S), order) - tmp3935 = Array{Taylor1{_S}}(undef, size(rij_dot_vi_div_rij_sq)) - tmp3935 .= Taylor1(zero(_S), order) + for i = CartesianIndices(Zij_t_Wi) + Zij_t_Wi[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3389 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) + for i = CartesianIndices(tmp3389) + tmp3389[i] = Taylor1(zero(constant_term(q[1])), order) + end + Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp3389)) + for i = CartesianIndices(Rij_dot_Vi) + Rij_dot_Vi[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3392 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + for i = CartesianIndices(tmp3392) + tmp3392[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3395 = Array{Taylor1{_S}}(undef, size(rij_dot_vi_div_rij_sq)) + for i = CartesianIndices(tmp3395) + tmp3395[i] = Taylor1(zero(constant_term(q[1])), order) + end pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) - pn1t2_7 .= Taylor1(zero(_S), order) - #= In[6]:713 =# Threads.@threads for j = 1:N + for i = CartesianIndices(pn1t2_7) + pn1t2_7[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1619 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -5881,18 +6639,18 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q ϕi_plus_4ϕj[i, j] = Taylor1(constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]), order) _2v2[i, j] = Taylor1(constant_term(2) * constant_term(v2[i]), order) sj2_plus_2si2[i, j] = Taylor1(constant_term(v2[j]) + constant_term(_2v2[i, j]), order) - tmp3923[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) - sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3923[i, j]), order) + tmp3383[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) + sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3383[i, j]), order) ϕs_and_vs[i, j] = Taylor1(constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]), order) Xij_t_Ui[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(dq[3i - 2]), order) Yij_t_Vi[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(dq[3i - 1]), order) Zij_t_Wi[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(dq[3i]), order) - tmp3929[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) - Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp3929[i, j]) + constant_term(Zij_t_Wi[i, j]), order) - tmp3932[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) - rij_dot_vi_div_rij_sq[i, j] = Taylor1(constant_term(tmp3932[i, j]) / constant_term(r_p2[i, j]), order) - tmp3935[i, j] = Taylor1(constant_term(1.5) * constant_term(rij_dot_vi_div_rij_sq[i, j]), order) - pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3935[i, j]), order) + tmp3389[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) + Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp3389[i, j]) + constant_term(Zij_t_Wi[i, j]), order) + tmp3392[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) + rij_dot_vi_div_rij_sq[i, j] = Taylor1(constant_term(tmp3392[i, j]) / constant_term(r_p2[i, j]), order) + tmp3395[i, j] = Taylor1(constant_term(1.5) * constant_term(rij_dot_vi_div_rij_sq[i, j]), order) + pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3395[i, j]), order) pn1t1_7[i, j] = Taylor1(constant_term(c_p2) + constant_term(pn1t2_7[i, j]), order) end end @@ -5900,31 +6658,55 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q pntempY[j] = Taylor1(identity(constant_term(zero_q_1)), order) pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp3942 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - tmp3942 .= Taylor1(zero(_S), order) - tmp3943 = Array{Taylor1{_S}}(undef, size(tmp3942)) - tmp3943 .= Taylor1(zero(_S), order) - tmp3944 = Array{Taylor1{_S}}(undef, size(tmp3943)) - tmp3944 .= Taylor1(zero(_S), order) - tmp3952 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - tmp3952 .= Taylor1(zero(_S), order) + tmp3402 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) + for i = CartesianIndices(tmp3402) + tmp3402[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3403 = Array{Taylor1{_S}}(undef, size(tmp3402)) + for i = CartesianIndices(tmp3403) + tmp3403[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3404 = Array{Taylor1{_S}}(undef, size(tmp3403)) + for i = CartesianIndices(tmp3404) + tmp3404[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3412 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) + for i = CartesianIndices(tmp3412) + tmp3412[i] = Taylor1(zero(constant_term(q[1])), order) + end termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) - termpnx .= Taylor1(zero(_S), order) + for i = CartesianIndices(termpnx) + termpnx[i] = Taylor1(zero(constant_term(q[1])), order) + end sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) - sumpnx .= Taylor1(zero(_S), order) - tmp3955 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - tmp3955 .= Taylor1(zero(_S), order) + for i = CartesianIndices(sumpnx) + sumpnx[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3415 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) + for i = CartesianIndices(tmp3415) + tmp3415[i] = Taylor1(zero(constant_term(q[1])), order) + end termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) - termpny .= Taylor1(zero(_S), order) + for i = CartesianIndices(termpny) + termpny[i] = Taylor1(zero(constant_term(q[1])), order) + end sumpny = Array{Taylor1{_S}}(undef, size(termpny)) - sumpny .= Taylor1(zero(_S), order) - tmp3958 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - tmp3958 .= Taylor1(zero(_S), order) + for i = CartesianIndices(sumpny) + sumpny[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3418 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) + for i = CartesianIndices(tmp3418) + tmp3418[i] = Taylor1(zero(constant_term(q[1])), order) + end termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) - termpnz .= Taylor1(zero(_S), order) + for i = CartesianIndices(termpnz) + termpnz[i] = Taylor1(zero(constant_term(q[1])), order) + end sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) - sumpnz .= Taylor1(zero(_S), order) - #= In[6]:752 =# Threads.@threads for j = 1:N + for i = CartesianIndices(sumpnz) + sumpnz[i] = Taylor1(zero(constant_term(q[1])), order) + end + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1658 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -5932,26 +6714,26 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q pNX_t_X[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(X[i, j]), order) pNY_t_Y[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(Y[i, j]), order) pNZ_t_Z[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(Z[i, j]), order) - tmp3942[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) - tmp3943[i, j] = Taylor1(constant_term(tmp3942[i, j]) + constant_term(pNZ_t_Z[i, j]), order) - tmp3944[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp3943[i, j]), order) - pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp3944[i, j]), order) + tmp3402[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) + tmp3403[i, j] = Taylor1(constant_term(tmp3402[i, j]) + constant_term(pNZ_t_Z[i, j]), order) + tmp3404[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp3403[i, j]), order) + pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp3404[i, j]), order) X_t_pn1[i, j] = Taylor1(constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]), order) Y_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]), order) Z_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]), order) pNX_t_pn3[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(pn3[i, j]), order) pNY_t_pn3[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(pn3[i, j]), order) pNZ_t_pn3[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(pn3[i, j]), order) - tmp3952[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) - termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp3952[i, j]), order) + tmp3412[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) + termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp3412[i, j]), order) sumpnx[i, j] = Taylor1(constant_term(pntempX[j]) + constant_term(termpnx[i, j]), order) pntempX[j] = Taylor1(identity(constant_term(sumpnx[i, j])), order) - tmp3955[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) - termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp3955[i, j]), order) + tmp3415[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) + termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp3415[i, j]), order) sumpny[i, j] = Taylor1(constant_term(pntempY[j]) + constant_term(termpny[i, j]), order) pntempY[j] = Taylor1(identity(constant_term(sumpny[i, j])), order) - tmp3958[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) - termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp3958[i, j]), order) + tmp3418[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) + termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp3418[i, j]), order) sumpnz[i, j] = Taylor1(constant_term(pntempZ[j]) + constant_term(termpnz[i, j]), order) pntempZ[j] = Taylor1(identity(constant_term(sumpnz[i, j])), order) end @@ -5963,9 +6745,9 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q x0s_M = Taylor1(identity(constant_term(r_star_M_0[1])), order) y0s_M = Taylor1(identity(constant_term(r_star_M_0[2])), order) z0s_M = Taylor1(identity(constant_term(r_star_M_0[3])), order) - tmp3965 = Taylor1(constant_term(x0s_M) ^ float(constant_term(2)), order) - tmp3967 = Taylor1(constant_term(y0s_M) ^ float(constant_term(2)), order) - ρ0s2_M = Taylor1(constant_term(tmp3965) + constant_term(tmp3967), order) + tmp3425 = Taylor1(constant_term(x0s_M) ^ float(constant_term(2)), order) + tmp3427 = Taylor1(constant_term(y0s_M) ^ float(constant_term(2)), order) + ρ0s2_M = Taylor1(constant_term(tmp3425) + constant_term(tmp3427), order) ρ0s_M = Taylor1(sqrt(constant_term(ρ0s2_M)), order) z0s2_M = Taylor1(constant_term(z0s_M) ^ float(constant_term(2)), order) r0s2_M = Taylor1(constant_term(ρ0s2_M) + constant_term(z0s2_M), order) @@ -5974,60 +6756,60 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q x0s_S = Taylor1(identity(constant_term(r_star_S_0[1])), order) y0s_S = Taylor1(identity(constant_term(r_star_S_0[2])), order) z0s_S = Taylor1(identity(constant_term(r_star_S_0[3])), order) - tmp3977 = Taylor1(constant_term(x0s_S) ^ float(constant_term(2)), order) - tmp3979 = Taylor1(constant_term(y0s_S) ^ float(constant_term(2)), order) - ρ0s2_S = Taylor1(constant_term(tmp3977) + constant_term(tmp3979), order) + tmp3437 = Taylor1(constant_term(x0s_S) ^ float(constant_term(2)), order) + tmp3439 = Taylor1(constant_term(y0s_S) ^ float(constant_term(2)), order) + ρ0s2_S = Taylor1(constant_term(tmp3437) + constant_term(tmp3439), order) ρ0s_S = Taylor1(sqrt(constant_term(ρ0s2_S)), order) z0s2_S = Taylor1(constant_term(z0s_S) ^ float(constant_term(2)), order) r0s2_S = Taylor1(constant_term(ρ0s2_S) + constant_term(z0s2_S), order) r0s_S = Taylor1(sqrt(constant_term(r0s2_S)), order) r0s5_S = Taylor1(constant_term(r0s_S) ^ float(constant_term(5)), order) - tmp3989 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]), order) - tmp3991 = Taylor1(constant_term(tmp3989) ^ float(constant_term(2)), order) - tmp3993 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M), order) - tmp3995 = Taylor1(constant_term(tmp3993) ^ float(constant_term(2)), order) - tmp3996 = Taylor1(constant_term(0.5) * constant_term(tmp3995), order) - tmp3997 = Taylor1(constant_term(tmp3991) + constant_term(tmp3996), order) - tmp3998 = Taylor1(constant_term(tmp3997) / constant_term(r_p2[mo, ea]), order) - tmp3999 = Taylor1(constant_term(5) * constant_term(tmp3998), order) - coeff0_M = Taylor1(constant_term(r0s2_M) - constant_term(tmp3999), order) - tmp4002 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]), order) - tmp4004 = Taylor1(constant_term(tmp4002) ^ float(constant_term(2)), order) - tmp4006 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S), order) - tmp4008 = Taylor1(constant_term(tmp4006) ^ float(constant_term(2)), order) - tmp4009 = Taylor1(constant_term(0.5) * constant_term(tmp4008), order) - tmp4010 = Taylor1(constant_term(tmp4004) + constant_term(tmp4009), order) - tmp4011 = Taylor1(constant_term(tmp4010) / constant_term(r_p2[mo, ea]), order) - tmp4012 = Taylor1(constant_term(5) * constant_term(tmp4011), order) - coeff0_S = Taylor1(constant_term(r0s2_S) - constant_term(tmp4012), order) + tmp3449 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]), order) + tmp3451 = Taylor1(constant_term(tmp3449) ^ float(constant_term(2)), order) + tmp3453 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M), order) + tmp3455 = Taylor1(constant_term(tmp3453) ^ float(constant_term(2)), order) + tmp3456 = Taylor1(constant_term(0.5) * constant_term(tmp3455), order) + tmp3457 = Taylor1(constant_term(tmp3451) + constant_term(tmp3456), order) + tmp3458 = Taylor1(constant_term(tmp3457) / constant_term(r_p2[mo, ea]), order) + tmp3459 = Taylor1(constant_term(5) * constant_term(tmp3458), order) + coeff0_M = Taylor1(constant_term(r0s2_M) - constant_term(tmp3459), order) + tmp3462 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]), order) + tmp3464 = Taylor1(constant_term(tmp3462) ^ float(constant_term(2)), order) + tmp3466 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S), order) + tmp3468 = Taylor1(constant_term(tmp3466) ^ float(constant_term(2)), order) + tmp3469 = Taylor1(constant_term(0.5) * constant_term(tmp3468), order) + tmp3470 = Taylor1(constant_term(tmp3464) + constant_term(tmp3469), order) + tmp3471 = Taylor1(constant_term(tmp3470) / constant_term(r_p2[mo, ea]), order) + tmp3472 = Taylor1(constant_term(5) * constant_term(tmp3471), order) + coeff0_S = Taylor1(constant_term(r0s2_S) - constant_term(tmp3472), order) k_20E_div_r0s5_M = Taylor1(constant_term(k_20E) / constant_term(r0s5_M), order) k_20E_div_r0s5_S = Taylor1(constant_term(k_20E) / constant_term(r0s5_S), order) - tmp4016 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) - tmp4017 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp4016), order) - a_tid_0_M_x = Taylor1(constant_term(tmp4017) * constant_term(X_bf[mo, ea]), order) - tmp4019 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) - tmp4020 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp4019), order) - a_tid_0_M_y = Taylor1(constant_term(tmp4020) * constant_term(Y_bf[mo, ea]), order) - tmp4023 = Taylor1(constant_term(2) * constant_term(z0s2_M), order) - tmp4024 = Taylor1(constant_term(tmp4023) + constant_term(coeff0_M), order) - tmp4025 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp4024), order) - a_tid_0_M_z = Taylor1(constant_term(tmp4025) * constant_term(Z_bf[mo, ea]), order) - tmp4027 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) - tmp4028 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp4027), order) - a_tid_0_S_x = Taylor1(constant_term(tmp4028) * constant_term(X_bf[mo, ea]), order) - tmp4030 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) - tmp4031 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp4030), order) - a_tid_0_S_y = Taylor1(constant_term(tmp4031) * constant_term(Y_bf[mo, ea]), order) - tmp4034 = Taylor1(constant_term(2) * constant_term(z0s2_S), order) - tmp4035 = Taylor1(constant_term(tmp4034) + constant_term(coeff0_S), order) - tmp4036 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp4035), order) - a_tid_0_S_z = Taylor1(constant_term(tmp4036) * constant_term(Z_bf[mo, ea]), order) + tmp3476 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) + tmp3477 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3476), order) + a_tid_0_M_x = Taylor1(constant_term(tmp3477) * constant_term(X_bf[mo, ea]), order) + tmp3479 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) + tmp3480 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3479), order) + a_tid_0_M_y = Taylor1(constant_term(tmp3480) * constant_term(Y_bf[mo, ea]), order) + tmp3483 = Taylor1(constant_term(2) * constant_term(z0s2_M), order) + tmp3484 = Taylor1(constant_term(tmp3483) + constant_term(coeff0_M), order) + tmp3485 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3484), order) + a_tid_0_M_z = Taylor1(constant_term(tmp3485) * constant_term(Z_bf[mo, ea]), order) + tmp3487 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) + tmp3488 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3487), order) + a_tid_0_S_x = Taylor1(constant_term(tmp3488) * constant_term(X_bf[mo, ea]), order) + tmp3490 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) + tmp3491 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3490), order) + a_tid_0_S_y = Taylor1(constant_term(tmp3491) * constant_term(Y_bf[mo, ea]), order) + tmp3494 = Taylor1(constant_term(2) * constant_term(z0s2_S), order) + tmp3495 = Taylor1(constant_term(tmp3494) + constant_term(coeff0_S), order) + tmp3496 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3495), order) + a_tid_0_S_z = Taylor1(constant_term(tmp3496) * constant_term(Z_bf[mo, ea]), order) x1s_M = Taylor1(identity(constant_term(r_star_M_1[1])), order) y1s_M = Taylor1(identity(constant_term(r_star_M_1[2])), order) z1s_M = Taylor1(identity(constant_term(r_star_M_1[3])), order) - tmp4039 = Taylor1(constant_term(x1s_M) ^ float(constant_term(2)), order) - tmp4041 = Taylor1(constant_term(y1s_M) ^ float(constant_term(2)), order) - ρ1s2_M = Taylor1(constant_term(tmp4039) + constant_term(tmp4041), order) + tmp3499 = Taylor1(constant_term(x1s_M) ^ float(constant_term(2)), order) + tmp3501 = Taylor1(constant_term(y1s_M) ^ float(constant_term(2)), order) + ρ1s2_M = Taylor1(constant_term(tmp3499) + constant_term(tmp3501), order) ρ1s_M = Taylor1(sqrt(constant_term(ρ1s2_M)), order) z1s2_M = Taylor1(constant_term(z1s_M) ^ float(constant_term(2)), order) r1s2_M = Taylor1(constant_term(ρ1s2_M) + constant_term(z1s2_M), order) @@ -6036,66 +6818,66 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q x1s_S = Taylor1(identity(constant_term(r_star_S_1[1])), order) y1s_S = Taylor1(identity(constant_term(r_star_S_1[2])), order) z1s_S = Taylor1(identity(constant_term(r_star_S_1[3])), order) - tmp4051 = Taylor1(constant_term(x1s_S) ^ float(constant_term(2)), order) - tmp4053 = Taylor1(constant_term(y1s_S) ^ float(constant_term(2)), order) - ρ1s2_S = Taylor1(constant_term(tmp4051) + constant_term(tmp4053), order) + tmp3511 = Taylor1(constant_term(x1s_S) ^ float(constant_term(2)), order) + tmp3513 = Taylor1(constant_term(y1s_S) ^ float(constant_term(2)), order) + ρ1s2_S = Taylor1(constant_term(tmp3511) + constant_term(tmp3513), order) ρ1s_S = Taylor1(sqrt(constant_term(ρ1s2_S)), order) z1s2_S = Taylor1(constant_term(z1s_S) ^ float(constant_term(2)), order) r1s2_S = Taylor1(constant_term(ρ1s2_S) + constant_term(z1s2_S), order) r1s_S = Taylor1(sqrt(constant_term(r1s2_S)), order) r1s5_S = Taylor1(constant_term(r1s_S) ^ float(constant_term(5)), order) - tmp4062 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]), order) - tmp4063 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]), order) - coeff1_1_M = Taylor1(constant_term(tmp4062) + constant_term(tmp4063), order) - tmp4065 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]), order) - tmp4066 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]), order) - coeff1_1_S = Taylor1(constant_term(tmp4065) + constant_term(tmp4066), order) + tmp3522 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]), order) + tmp3523 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]), order) + coeff1_1_M = Taylor1(constant_term(tmp3522) + constant_term(tmp3523), order) + tmp3525 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]), order) + tmp3526 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]), order) + coeff1_1_S = Taylor1(constant_term(tmp3525) + constant_term(tmp3526), order) coeff2_1_M = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_1[3]), order) coeff2_1_S = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_1[3]), order) - tmp4071 = Taylor1(constant_term(10) * constant_term(coeff1_1_M), order) - tmp4072 = Taylor1(constant_term(tmp4071) * constant_term(coeff2_1_M), order) - coeff3_1_M = Taylor1(constant_term(tmp4072) / constant_term(r_p2[mo, ea]), order) - tmp4075 = Taylor1(constant_term(10) * constant_term(coeff1_1_S), order) - tmp4076 = Taylor1(constant_term(tmp4075) * constant_term(coeff2_1_S), order) - coeff3_1_S = Taylor1(constant_term(tmp4076) / constant_term(r_p2[mo, ea]), order) + tmp3531 = Taylor1(constant_term(10) * constant_term(coeff1_1_M), order) + tmp3532 = Taylor1(constant_term(tmp3531) * constant_term(coeff2_1_M), order) + coeff3_1_M = Taylor1(constant_term(tmp3532) / constant_term(r_p2[mo, ea]), order) + tmp3535 = Taylor1(constant_term(10) * constant_term(coeff1_1_S), order) + tmp3536 = Taylor1(constant_term(tmp3535) * constant_term(coeff2_1_S), order) + coeff3_1_S = Taylor1(constant_term(tmp3536) / constant_term(r_p2[mo, ea]), order) k_21E_div_r1s5_M = Taylor1(constant_term(k_21E) / constant_term(r1s5_M), order) k_21E_div_r1s5_S = Taylor1(constant_term(k_21E) / constant_term(r1s5_S), order) - tmp4081 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) - tmp4082 = Taylor1(constant_term(tmp4081) * constant_term(r_star_M_1[1]), order) - tmp4083 = Taylor1(constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]), order) - tmp4084 = Taylor1(constant_term(tmp4082) - constant_term(tmp4083), order) - a_tid_1_M_x = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp4084), order) - tmp4087 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) - tmp4088 = Taylor1(constant_term(tmp4087) * constant_term(r_star_M_1[2]), order) - tmp4089 = Taylor1(constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]), order) - tmp4090 = Taylor1(constant_term(tmp4088) - constant_term(tmp4089), order) - a_tid_1_M_y = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp4090), order) - tmp4093 = Taylor1(constant_term(2) * constant_term(coeff1_1_M), order) - tmp4094 = Taylor1(constant_term(tmp4093) * constant_term(r_star_M_1[3]), order) - tmp4095 = Taylor1(constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]), order) - tmp4096 = Taylor1(constant_term(tmp4094) - constant_term(tmp4095), order) - a_tid_1_M_z = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp4096), order) - tmp4099 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) - tmp4100 = Taylor1(constant_term(tmp4099) * constant_term(r_star_S_1[1]), order) - tmp4101 = Taylor1(constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]), order) - tmp4102 = Taylor1(constant_term(tmp4100) - constant_term(tmp4101), order) - a_tid_1_S_x = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp4102), order) - tmp4105 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) - tmp4106 = Taylor1(constant_term(tmp4105) * constant_term(r_star_S_1[2]), order) - tmp4107 = Taylor1(constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]), order) - tmp4108 = Taylor1(constant_term(tmp4106) - constant_term(tmp4107), order) - a_tid_1_S_y = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp4108), order) - tmp4111 = Taylor1(constant_term(2) * constant_term(coeff1_1_S), order) - tmp4112 = Taylor1(constant_term(tmp4111) * constant_term(r_star_S_1[3]), order) - tmp4113 = Taylor1(constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]), order) - tmp4114 = Taylor1(constant_term(tmp4112) - constant_term(tmp4113), order) - a_tid_1_S_z = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp4114), order) + tmp3541 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) + tmp3542 = Taylor1(constant_term(tmp3541) * constant_term(r_star_M_1[1]), order) + tmp3543 = Taylor1(constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]), order) + tmp3544 = Taylor1(constant_term(tmp3542) - constant_term(tmp3543), order) + a_tid_1_M_x = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3544), order) + tmp3547 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) + tmp3548 = Taylor1(constant_term(tmp3547) * constant_term(r_star_M_1[2]), order) + tmp3549 = Taylor1(constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]), order) + tmp3550 = Taylor1(constant_term(tmp3548) - constant_term(tmp3549), order) + a_tid_1_M_y = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3550), order) + tmp3553 = Taylor1(constant_term(2) * constant_term(coeff1_1_M), order) + tmp3554 = Taylor1(constant_term(tmp3553) * constant_term(r_star_M_1[3]), order) + tmp3555 = Taylor1(constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]), order) + tmp3556 = Taylor1(constant_term(tmp3554) - constant_term(tmp3555), order) + a_tid_1_M_z = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3556), order) + tmp3559 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) + tmp3560 = Taylor1(constant_term(tmp3559) * constant_term(r_star_S_1[1]), order) + tmp3561 = Taylor1(constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]), order) + tmp3562 = Taylor1(constant_term(tmp3560) - constant_term(tmp3561), order) + a_tid_1_S_x = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3562), order) + tmp3565 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) + tmp3566 = Taylor1(constant_term(tmp3565) * constant_term(r_star_S_1[2]), order) + tmp3567 = Taylor1(constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]), order) + tmp3568 = Taylor1(constant_term(tmp3566) - constant_term(tmp3567), order) + a_tid_1_S_y = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3568), order) + tmp3571 = Taylor1(constant_term(2) * constant_term(coeff1_1_S), order) + tmp3572 = Taylor1(constant_term(tmp3571) * constant_term(r_star_S_1[3]), order) + tmp3573 = Taylor1(constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]), order) + tmp3574 = Taylor1(constant_term(tmp3572) - constant_term(tmp3573), order) + a_tid_1_S_z = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3574), order) x2s_M = Taylor1(identity(constant_term(r_star_M_2[1])), order) y2s_M = Taylor1(identity(constant_term(r_star_M_2[2])), order) z2s_M = Taylor1(identity(constant_term(r_star_M_2[3])), order) - tmp4117 = Taylor1(constant_term(x2s_M) ^ float(constant_term(2)), order) - tmp4119 = Taylor1(constant_term(y2s_M) ^ float(constant_term(2)), order) - ρ2s2_M = Taylor1(constant_term(tmp4117) + constant_term(tmp4119), order) + tmp3577 = Taylor1(constant_term(x2s_M) ^ float(constant_term(2)), order) + tmp3579 = Taylor1(constant_term(y2s_M) ^ float(constant_term(2)), order) + ρ2s2_M = Taylor1(constant_term(tmp3577) + constant_term(tmp3579), order) ρ2s_M = Taylor1(sqrt(constant_term(ρ2s2_M)), order) z2s2_M = Taylor1(constant_term(z2s_M) ^ float(constant_term(2)), order) r2s2_M = Taylor1(constant_term(ρ2s2_M) + constant_term(z2s2_M), order) @@ -6104,965 +6886,999 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q x2s_S = Taylor1(identity(constant_term(r_star_S_2[1])), order) y2s_S = Taylor1(identity(constant_term(r_star_S_2[2])), order) z2s_S = Taylor1(identity(constant_term(r_star_S_2[3])), order) - tmp4129 = Taylor1(constant_term(x2s_S) ^ float(constant_term(2)), order) - tmp4131 = Taylor1(constant_term(y2s_S) ^ float(constant_term(2)), order) - ρ2s2_S = Taylor1(constant_term(tmp4129) + constant_term(tmp4131), order) + tmp3589 = Taylor1(constant_term(x2s_S) ^ float(constant_term(2)), order) + tmp3591 = Taylor1(constant_term(y2s_S) ^ float(constant_term(2)), order) + ρ2s2_S = Taylor1(constant_term(tmp3589) + constant_term(tmp3591), order) ρ2s_S = Taylor1(sqrt(constant_term(ρ2s2_S)), order) z2s2_S = Taylor1(constant_term(z2s_S) ^ float(constant_term(2)), order) r2s2_S = Taylor1(constant_term(ρ2s2_S) + constant_term(z2s2_S), order) r2s_S = Taylor1(sqrt(constant_term(r2s2_S)), order) r2s5_S = Taylor1(constant_term(r2s_S) ^ float(constant_term(5)), order) - tmp4140 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]), order) - tmp4141 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]), order) - coeff1_2_M = Taylor1(constant_term(tmp4140) + constant_term(tmp4141), order) - tmp4143 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]), order) - tmp4144 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]), order) - coeff1_2_S = Taylor1(constant_term(tmp4143) + constant_term(tmp4144), order) - tmp4148 = Taylor1(constant_term(coeff1_2_M) ^ float(constant_term(2)), order) - tmp4151 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) - tmp4152 = Taylor1(constant_term(0.5) * constant_term(tmp4151), order) - tmp4153 = Taylor1(constant_term(tmp4152) * constant_term(ρ2s2_M), order) - tmp4154 = Taylor1(constant_term(tmp4148) - constant_term(tmp4153), order) - tmp4155 = Taylor1(constant_term(5) * constant_term(tmp4154), order) - coeff3_2_M = Taylor1(constant_term(tmp4155) / constant_term(r_p2[mo, ea]), order) - tmp4159 = Taylor1(constant_term(coeff1_2_S) ^ float(constant_term(2)), order) - tmp4162 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) - tmp4163 = Taylor1(constant_term(0.5) * constant_term(tmp4162), order) - tmp4164 = Taylor1(constant_term(tmp4163) * constant_term(ρ2s2_S), order) - tmp4165 = Taylor1(constant_term(tmp4159) - constant_term(tmp4164), order) - tmp4166 = Taylor1(constant_term(5) * constant_term(tmp4165), order) - coeff3_2_S = Taylor1(constant_term(tmp4166) / constant_term(r_p2[mo, ea]), order) + tmp3600 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]), order) + tmp3601 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]), order) + coeff1_2_M = Taylor1(constant_term(tmp3600) + constant_term(tmp3601), order) + tmp3603 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]), order) + tmp3604 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]), order) + coeff1_2_S = Taylor1(constant_term(tmp3603) + constant_term(tmp3604), order) + tmp3608 = Taylor1(constant_term(coeff1_2_M) ^ float(constant_term(2)), order) + tmp3611 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) + tmp3612 = Taylor1(constant_term(0.5) * constant_term(tmp3611), order) + tmp3613 = Taylor1(constant_term(tmp3612) * constant_term(ρ2s2_M), order) + tmp3614 = Taylor1(constant_term(tmp3608) - constant_term(tmp3613), order) + tmp3615 = Taylor1(constant_term(5) * constant_term(tmp3614), order) + coeff3_2_M = Taylor1(constant_term(tmp3615) / constant_term(r_p2[mo, ea]), order) + tmp3619 = Taylor1(constant_term(coeff1_2_S) ^ float(constant_term(2)), order) + tmp3622 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) + tmp3623 = Taylor1(constant_term(0.5) * constant_term(tmp3622), order) + tmp3624 = Taylor1(constant_term(tmp3623) * constant_term(ρ2s2_S), order) + tmp3625 = Taylor1(constant_term(tmp3619) - constant_term(tmp3624), order) + tmp3626 = Taylor1(constant_term(5) * constant_term(tmp3625), order) + coeff3_2_S = Taylor1(constant_term(tmp3626) / constant_term(r_p2[mo, ea]), order) k_22E_div_r2s5_M = Taylor1(constant_term(k_22E) / constant_term(r2s5_M), order) k_22E_div_r2s5_S = Taylor1(constant_term(k_22E) / constant_term(r2s5_S), order) - tmp4171 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) - tmp4172 = Taylor1(constant_term(tmp4171) * constant_term(r_star_M_2[1]), order) - tmp4173 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) - tmp4174 = Taylor1(constant_term(tmp4173) * constant_term(X_bf[mo, ea]), order) - tmp4175 = Taylor1(constant_term(tmp4172) - constant_term(tmp4174), order) - a_tid_2_M_x = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp4175), order) - tmp4178 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) - tmp4179 = Taylor1(constant_term(tmp4178) * constant_term(r_star_M_2[2]), order) - tmp4180 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) - tmp4181 = Taylor1(constant_term(tmp4180) * constant_term(Y_bf[mo, ea]), order) - tmp4182 = Taylor1(constant_term(tmp4179) - constant_term(tmp4181), order) - a_tid_2_M_y = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp4182), order) - tmp4184 = Taylor1(-(constant_term(coeff3_2_M)), order) - tmp4185 = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp4184), order) - a_tid_2_M_z = Taylor1(constant_term(tmp4185) * constant_term(Z_bf[mo, ea]), order) - tmp4188 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) - tmp4189 = Taylor1(constant_term(tmp4188) * constant_term(r_star_S_2[1]), order) - tmp4190 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) - tmp4191 = Taylor1(constant_term(tmp4190) * constant_term(X_bf[mo, ea]), order) - tmp4192 = Taylor1(constant_term(tmp4189) - constant_term(tmp4191), order) - a_tid_2_S_x = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp4192), order) - tmp4195 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) - tmp4196 = Taylor1(constant_term(tmp4195) * constant_term(r_star_S_2[2]), order) - tmp4197 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) - tmp4198 = Taylor1(constant_term(tmp4197) * constant_term(Y_bf[mo, ea]), order) - tmp4199 = Taylor1(constant_term(tmp4196) - constant_term(tmp4198), order) - a_tid_2_S_y = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp4199), order) - tmp4201 = Taylor1(-(constant_term(coeff3_2_S)), order) - tmp4202 = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp4201), order) - a_tid_2_S_z = Taylor1(constant_term(tmp4202) * constant_term(Z_bf[mo, ea]), order) - tmp4204 = Taylor1(constant_term(RE_au) / constant_term(r_p1d2[mo, ea]), order) - RE_div_r_p5 = Taylor1(constant_term(tmp4204) ^ float(constant_term(5)), order) + tmp3631 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) + tmp3632 = Taylor1(constant_term(tmp3631) * constant_term(r_star_M_2[1]), order) + tmp3633 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) + tmp3634 = Taylor1(constant_term(tmp3633) * constant_term(X_bf[mo, ea]), order) + tmp3635 = Taylor1(constant_term(tmp3632) - constant_term(tmp3634), order) + a_tid_2_M_x = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3635), order) + tmp3638 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) + tmp3639 = Taylor1(constant_term(tmp3638) * constant_term(r_star_M_2[2]), order) + tmp3640 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) + tmp3641 = Taylor1(constant_term(tmp3640) * constant_term(Y_bf[mo, ea]), order) + tmp3642 = Taylor1(constant_term(tmp3639) - constant_term(tmp3641), order) + a_tid_2_M_y = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3642), order) + tmp3644 = Taylor1(-(constant_term(coeff3_2_M)), order) + tmp3645 = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3644), order) + a_tid_2_M_z = Taylor1(constant_term(tmp3645) * constant_term(Z_bf[mo, ea]), order) + tmp3648 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) + tmp3649 = Taylor1(constant_term(tmp3648) * constant_term(r_star_S_2[1]), order) + tmp3650 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) + tmp3651 = Taylor1(constant_term(tmp3650) * constant_term(X_bf[mo, ea]), order) + tmp3652 = Taylor1(constant_term(tmp3649) - constant_term(tmp3651), order) + a_tid_2_S_x = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3652), order) + tmp3655 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) + tmp3656 = Taylor1(constant_term(tmp3655) * constant_term(r_star_S_2[2]), order) + tmp3657 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) + tmp3658 = Taylor1(constant_term(tmp3657) * constant_term(Y_bf[mo, ea]), order) + tmp3659 = Taylor1(constant_term(tmp3656) - constant_term(tmp3658), order) + a_tid_2_S_y = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3659), order) + tmp3661 = Taylor1(-(constant_term(coeff3_2_S)), order) + tmp3662 = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3661), order) + a_tid_2_S_z = Taylor1(constant_term(tmp3662) * constant_term(Z_bf[mo, ea]), order) + tmp3664 = Taylor1(constant_term(RE_au) / constant_term(r_p1d2[mo, ea]), order) + RE_div_r_p5 = Taylor1(constant_term(tmp3664) ^ float(constant_term(5)), order) aux_tidacc = Taylor1(constant_term(tid_num_coeff) * constant_term(RE_div_r_p5), order) a_tidal_coeff_M = Taylor1(constant_term(μ[mo]) * constant_term(aux_tidacc), order) a_tidal_coeff_S = Taylor1(constant_term(μ[su]) * constant_term(aux_tidacc), order) - tmp4210 = Taylor1(constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x), order) - tmp4211 = Taylor1(constant_term(tmp4210) + constant_term(a_tid_2_M_x), order) - tmp4212 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp4211), order) - tmp4213 = Taylor1(constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x), order) - tmp4214 = Taylor1(constant_term(tmp4213) + constant_term(a_tid_2_S_x), order) - tmp4215 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp4214), order) - a_tidal_tod_x = Taylor1(constant_term(tmp4212) + constant_term(tmp4215), order) - tmp4217 = Taylor1(constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y), order) - tmp4218 = Taylor1(constant_term(tmp4217) + constant_term(a_tid_2_M_y), order) - tmp4219 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp4218), order) - tmp4220 = Taylor1(constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y), order) - tmp4221 = Taylor1(constant_term(tmp4220) + constant_term(a_tid_2_S_y), order) - tmp4222 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp4221), order) - a_tidal_tod_y = Taylor1(constant_term(tmp4219) + constant_term(tmp4222), order) - tmp4224 = Taylor1(constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z), order) - tmp4225 = Taylor1(constant_term(tmp4224) + constant_term(a_tid_2_M_z), order) - tmp4226 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp4225), order) - tmp4227 = Taylor1(constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z), order) - tmp4228 = Taylor1(constant_term(tmp4227) + constant_term(a_tid_2_S_z), order) - tmp4229 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp4228), order) - a_tidal_tod_z = Taylor1(constant_term(tmp4226) + constant_term(tmp4229), order) - tmp4231 = Taylor1(constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x), order) - tmp4232 = Taylor1(constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y), order) - tmp4233 = Taylor1(constant_term(tmp4231) + constant_term(tmp4232), order) - tmp4234 = Taylor1(constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_x = Taylor1(constant_term(tmp4233) + constant_term(tmp4234), order) - tmp4236 = Taylor1(constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x), order) - tmp4237 = Taylor1(constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y), order) - tmp4238 = Taylor1(constant_term(tmp4236) + constant_term(tmp4237), order) - tmp4239 = Taylor1(constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_y = Taylor1(constant_term(tmp4238) + constant_term(tmp4239), order) - tmp4241 = Taylor1(constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x), order) - tmp4242 = Taylor1(constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y), order) - tmp4243 = Taylor1(constant_term(tmp4241) + constant_term(tmp4242), order) - tmp4244 = Taylor1(constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_z = Taylor1(constant_term(tmp4243) + constant_term(tmp4244), order) + tmp3670 = Taylor1(constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x), order) + tmp3671 = Taylor1(constant_term(tmp3670) + constant_term(a_tid_2_M_x), order) + tmp3672 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3671), order) + tmp3673 = Taylor1(constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x), order) + tmp3674 = Taylor1(constant_term(tmp3673) + constant_term(a_tid_2_S_x), order) + tmp3675 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3674), order) + a_tidal_tod_x = Taylor1(constant_term(tmp3672) + constant_term(tmp3675), order) + tmp3677 = Taylor1(constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y), order) + tmp3678 = Taylor1(constant_term(tmp3677) + constant_term(a_tid_2_M_y), order) + tmp3679 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3678), order) + tmp3680 = Taylor1(constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y), order) + tmp3681 = Taylor1(constant_term(tmp3680) + constant_term(a_tid_2_S_y), order) + tmp3682 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3681), order) + a_tidal_tod_y = Taylor1(constant_term(tmp3679) + constant_term(tmp3682), order) + tmp3684 = Taylor1(constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z), order) + tmp3685 = Taylor1(constant_term(tmp3684) + constant_term(a_tid_2_M_z), order) + tmp3686 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3685), order) + tmp3687 = Taylor1(constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z), order) + tmp3688 = Taylor1(constant_term(tmp3687) + constant_term(a_tid_2_S_z), order) + tmp3689 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3688), order) + a_tidal_tod_z = Taylor1(constant_term(tmp3686) + constant_term(tmp3689), order) + tmp3691 = Taylor1(constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x), order) + tmp3692 = Taylor1(constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y), order) + tmp3693 = Taylor1(constant_term(tmp3691) + constant_term(tmp3692), order) + tmp3694 = Taylor1(constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_x = Taylor1(constant_term(tmp3693) + constant_term(tmp3694), order) + tmp3696 = Taylor1(constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x), order) + tmp3697 = Taylor1(constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y), order) + tmp3698 = Taylor1(constant_term(tmp3696) + constant_term(tmp3697), order) + tmp3699 = Taylor1(constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_y = Taylor1(constant_term(tmp3698) + constant_term(tmp3699), order) + tmp3701 = Taylor1(constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x), order) + tmp3702 = Taylor1(constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y), order) + tmp3703 = Taylor1(constant_term(tmp3701) + constant_term(tmp3702), order) + tmp3704 = Taylor1(constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_z = Taylor1(constant_term(tmp3703) + constant_term(tmp3704), order) accX_mo_tides = Taylor1(constant_term(accX[mo]) + constant_term(a_tidal_x), order) accY_mo_tides = Taylor1(constant_term(accY[mo]) + constant_term(a_tidal_y), order) accZ_mo_tides = Taylor1(constant_term(accZ[mo]) + constant_term(a_tidal_z), order) accX[mo] = Taylor1(identity(constant_term(accX_mo_tides)), order) accY[mo] = Taylor1(identity(constant_term(accY_mo_tides)), order) accZ[mo] = Taylor1(identity(constant_term(accZ_mo_tides)), order) - #= In[6]:990 =# Threads.@threads for i = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1896 =# Threads.@threads for i = 1:N_ext dq[3 * (N + i) - 2] = Taylor1(constant_term(postNewtonX[i]) + constant_term(accX[i]), order) dq[3 * (N + i) - 1] = Taylor1(constant_term(postNewtonY[i]) + constant_term(accY[i]), order) dq[3 * (N + i)] = Taylor1(constant_term(postNewtonZ[i]) + constant_term(accZ[i]), order) end - #= In[6]:995 =# Threads.@threads for i = N_ext + 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1901 =# Threads.@threads for i = N_ext + 1:N dq[3 * (N + i) - 2] = Taylor1(identity(constant_term(postNewtonX[i])), order) dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) end - tmp4252 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp4253 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp4254 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp4255 = Taylor1(constant_term(tmp4253) + constant_term(tmp4254), order) - Iω_x = Taylor1(constant_term(tmp4252) + constant_term(tmp4255), order) - tmp4257 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp4258 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp4259 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp4260 = Taylor1(constant_term(tmp4258) + constant_term(tmp4259), order) - Iω_y = Taylor1(constant_term(tmp4257) + constant_term(tmp4260), order) - tmp4262 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp4263 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp4264 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp4265 = Taylor1(constant_term(tmp4263) + constant_term(tmp4264), order) - Iω_z = Taylor1(constant_term(tmp4262) + constant_term(tmp4265), order) - tmp4267 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) - tmp4268 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) - ωxIω_x = Taylor1(constant_term(tmp4267) - constant_term(tmp4268), order) - tmp4270 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) - tmp4271 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) - ωxIω_y = Taylor1(constant_term(tmp4270) - constant_term(tmp4271), order) - tmp4273 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) - tmp4274 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) - ωxIω_z = Taylor1(constant_term(tmp4273) - constant_term(tmp4274), order) - tmp4276 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp4277 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp4278 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp4279 = Taylor1(constant_term(tmp4277) + constant_term(tmp4278), order) - dIω_x = Taylor1(constant_term(tmp4276) + constant_term(tmp4279), order) - tmp4281 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp4282 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp4283 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp4284 = Taylor1(constant_term(tmp4282) + constant_term(tmp4283), order) - dIω_y = Taylor1(constant_term(tmp4281) + constant_term(tmp4284), order) - tmp4286 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp4287 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp4288 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp4289 = Taylor1(constant_term(tmp4287) + constant_term(tmp4288), order) - dIω_z = Taylor1(constant_term(tmp4286) + constant_term(tmp4289), order) + tmp3712 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp3713 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp3714 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp3715 = Taylor1(constant_term(tmp3713) + constant_term(tmp3714), order) + Iω_x = Taylor1(constant_term(tmp3712) + constant_term(tmp3715), order) + tmp3717 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp3718 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp3719 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp3720 = Taylor1(constant_term(tmp3718) + constant_term(tmp3719), order) + Iω_y = Taylor1(constant_term(tmp3717) + constant_term(tmp3720), order) + tmp3722 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp3723 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp3724 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp3725 = Taylor1(constant_term(tmp3723) + constant_term(tmp3724), order) + Iω_z = Taylor1(constant_term(tmp3722) + constant_term(tmp3725), order) + tmp3727 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) + tmp3728 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) + ωxIω_x = Taylor1(constant_term(tmp3727) - constant_term(tmp3728), order) + tmp3730 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) + tmp3731 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) + ωxIω_y = Taylor1(constant_term(tmp3730) - constant_term(tmp3731), order) + tmp3733 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) + tmp3734 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) + ωxIω_z = Taylor1(constant_term(tmp3733) - constant_term(tmp3734), order) + tmp3736 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp3737 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp3738 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp3739 = Taylor1(constant_term(tmp3737) + constant_term(tmp3738), order) + dIω_x = Taylor1(constant_term(tmp3736) + constant_term(tmp3739), order) + tmp3741 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp3742 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp3743 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp3744 = Taylor1(constant_term(tmp3742) + constant_term(tmp3743), order) + dIω_y = Taylor1(constant_term(tmp3741) + constant_term(tmp3744), order) + tmp3746 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp3747 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp3748 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp3749 = Taylor1(constant_term(tmp3747) + constant_term(tmp3748), order) + dIω_z = Taylor1(constant_term(tmp3746) + constant_term(tmp3749), order) er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) - tmp4294 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) - tmp4295 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) - tmp4296 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) - tmp4297 = Taylor1(constant_term(tmp4295) + constant_term(tmp4296), order) - er_EM_1 = Taylor1(constant_term(tmp4294) + constant_term(tmp4297), order) - tmp4299 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) - tmp4300 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) - tmp4301 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) - tmp4302 = Taylor1(constant_term(tmp4300) + constant_term(tmp4301), order) - er_EM_2 = Taylor1(constant_term(tmp4299) + constant_term(tmp4302), order) - tmp4304 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) - tmp4305 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) - tmp4306 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) - tmp4307 = Taylor1(constant_term(tmp4305) + constant_term(tmp4306), order) - er_EM_3 = Taylor1(constant_term(tmp4304) + constant_term(tmp4307), order) - tmp4309 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) - tmp4310 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) - tmp4311 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) - tmp4312 = Taylor1(constant_term(tmp4310) + constant_term(tmp4311), order) - p_E_1 = Taylor1(constant_term(tmp4309) + constant_term(tmp4312), order) - tmp4314 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) - tmp4315 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) - tmp4316 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) - tmp4317 = Taylor1(constant_term(tmp4315) + constant_term(tmp4316), order) - p_E_2 = Taylor1(constant_term(tmp4314) + constant_term(tmp4317), order) - tmp4319 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) - tmp4320 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) - tmp4321 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) - tmp4322 = Taylor1(constant_term(tmp4320) + constant_term(tmp4321), order) - p_E_3 = Taylor1(constant_term(tmp4319) + constant_term(tmp4322), order) - tmp4324 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) - tmp4325 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) - tmp4326 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) - tmp4327 = Taylor1(constant_term(tmp4325) + constant_term(tmp4326), order) - I_er_EM_1 = Taylor1(constant_term(tmp4324) + constant_term(tmp4327), order) - tmp4329 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) - tmp4330 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) - tmp4331 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) - tmp4332 = Taylor1(constant_term(tmp4330) + constant_term(tmp4331), order) - I_er_EM_2 = Taylor1(constant_term(tmp4329) + constant_term(tmp4332), order) - tmp4334 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) - tmp4335 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) - tmp4336 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) - tmp4337 = Taylor1(constant_term(tmp4335) + constant_term(tmp4336), order) - I_er_EM_3 = Taylor1(constant_term(tmp4334) + constant_term(tmp4337), order) - tmp4339 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) - tmp4340 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) - tmp4341 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) - tmp4342 = Taylor1(constant_term(tmp4340) + constant_term(tmp4341), order) - I_p_E_1 = Taylor1(constant_term(tmp4339) + constant_term(tmp4342), order) - tmp4344 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) - tmp4345 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) - tmp4346 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) - tmp4347 = Taylor1(constant_term(tmp4345) + constant_term(tmp4346), order) - I_p_E_2 = Taylor1(constant_term(tmp4344) + constant_term(tmp4347), order) - tmp4349 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) - tmp4350 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) - tmp4351 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) - tmp4352 = Taylor1(constant_term(tmp4350) + constant_term(tmp4351), order) - I_p_E_3 = Taylor1(constant_term(tmp4349) + constant_term(tmp4352), order) - tmp4354 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) - tmp4355 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) - er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp4354) - constant_term(tmp4355), order) - tmp4357 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) - tmp4358 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) - er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp4357) - constant_term(tmp4358), order) - tmp4360 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) - tmp4361 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) - er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp4360) - constant_term(tmp4361), order) - tmp4363 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) - tmp4364 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) - er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp4363) - constant_term(tmp4364), order) - tmp4366 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) - tmp4367 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) - er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp4366) - constant_term(tmp4367), order) - tmp4369 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) - tmp4370 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) - er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp4369) - constant_term(tmp4370), order) - tmp4372 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) - tmp4373 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) - p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp4372) - constant_term(tmp4373), order) - tmp4375 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) - tmp4376 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) - p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp4375) - constant_term(tmp4376), order) - tmp4378 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) - tmp4379 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) - p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp4378) - constant_term(tmp4379), order) - tmp4381 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) - tmp4382 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) - p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp4381) - constant_term(tmp4382), order) - tmp4384 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) - tmp4385 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) - p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp4384) - constant_term(tmp4385), order) - tmp4387 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) - tmp4388 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) - p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp4387) - constant_term(tmp4388), order) - tmp4392 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) - tmp4393 = Taylor1(constant_term(7) * constant_term(tmp4392), order) - one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp4393), order) + tmp3754 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3755 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3756 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) + tmp3757 = Taylor1(constant_term(tmp3755) + constant_term(tmp3756), order) + er_EM_1 = Taylor1(constant_term(tmp3754) + constant_term(tmp3757), order) + tmp3759 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3760 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3761 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) + tmp3762 = Taylor1(constant_term(tmp3760) + constant_term(tmp3761), order) + er_EM_2 = Taylor1(constant_term(tmp3759) + constant_term(tmp3762), order) + tmp3764 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3765 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3766 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) + tmp3767 = Taylor1(constant_term(tmp3765) + constant_term(tmp3766), order) + er_EM_3 = Taylor1(constant_term(tmp3764) + constant_term(tmp3767), order) + tmp3769 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) + tmp3770 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) + tmp3771 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) + tmp3772 = Taylor1(constant_term(tmp3770) + constant_term(tmp3771), order) + p_E_1 = Taylor1(constant_term(tmp3769) + constant_term(tmp3772), order) + tmp3774 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) + tmp3775 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) + tmp3776 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) + tmp3777 = Taylor1(constant_term(tmp3775) + constant_term(tmp3776), order) + p_E_2 = Taylor1(constant_term(tmp3774) + constant_term(tmp3777), order) + tmp3779 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) + tmp3780 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) + tmp3781 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) + tmp3782 = Taylor1(constant_term(tmp3780) + constant_term(tmp3781), order) + p_E_3 = Taylor1(constant_term(tmp3779) + constant_term(tmp3782), order) + tmp3784 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) + tmp3785 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) + tmp3786 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) + tmp3787 = Taylor1(constant_term(tmp3785) + constant_term(tmp3786), order) + I_er_EM_1 = Taylor1(constant_term(tmp3784) + constant_term(tmp3787), order) + tmp3789 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) + tmp3790 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) + tmp3791 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) + tmp3792 = Taylor1(constant_term(tmp3790) + constant_term(tmp3791), order) + I_er_EM_2 = Taylor1(constant_term(tmp3789) + constant_term(tmp3792), order) + tmp3794 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) + tmp3795 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) + tmp3796 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) + tmp3797 = Taylor1(constant_term(tmp3795) + constant_term(tmp3796), order) + I_er_EM_3 = Taylor1(constant_term(tmp3794) + constant_term(tmp3797), order) + tmp3799 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) + tmp3800 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) + tmp3801 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) + tmp3802 = Taylor1(constant_term(tmp3800) + constant_term(tmp3801), order) + I_p_E_1 = Taylor1(constant_term(tmp3799) + constant_term(tmp3802), order) + tmp3804 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) + tmp3805 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) + tmp3806 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) + tmp3807 = Taylor1(constant_term(tmp3805) + constant_term(tmp3806), order) + I_p_E_2 = Taylor1(constant_term(tmp3804) + constant_term(tmp3807), order) + tmp3809 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) + tmp3810 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) + tmp3811 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + tmp3812 = Taylor1(constant_term(tmp3810) + constant_term(tmp3811), order) + I_p_E_3 = Taylor1(constant_term(tmp3809) + constant_term(tmp3812), order) + tmp3814 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) + tmp3815 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) + er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp3814) - constant_term(tmp3815), order) + tmp3817 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) + tmp3818 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) + er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp3817) - constant_term(tmp3818), order) + tmp3820 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) + tmp3821 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) + er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp3820) - constant_term(tmp3821), order) + tmp3823 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) + tmp3824 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) + er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp3823) - constant_term(tmp3824), order) + tmp3826 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) + tmp3827 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) + er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp3826) - constant_term(tmp3827), order) + tmp3829 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) + tmp3830 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) + er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp3829) - constant_term(tmp3830), order) + tmp3832 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) + tmp3833 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) + p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp3832) - constant_term(tmp3833), order) + tmp3835 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) + tmp3836 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) + p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp3835) - constant_term(tmp3836), order) + tmp3838 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) + tmp3839 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) + p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp3838) - constant_term(tmp3839), order) + tmp3841 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) + tmp3842 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) + p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp3841) - constant_term(tmp3842), order) + tmp3844 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) + tmp3845 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) + p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp3844) - constant_term(tmp3845), order) + tmp3847 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) + tmp3848 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) + p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp3847) - constant_term(tmp3848), order) + tmp3852 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) + tmp3853 = Taylor1(constant_term(7) * constant_term(tmp3852), order) + one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp3853), order) two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) - tmp4398 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) - N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp4398), order) - tmp4400 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) - tmp4401 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) - tmp4402 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp4401), order) - tmp4403 = Taylor1(constant_term(tmp4400) + constant_term(tmp4402), order) - tmp4405 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) - tmp4406 = Taylor1(constant_term(tmp4403) - constant_term(tmp4405), order) - N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp4406), order) - tmp4408 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) - tmp4409 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) - tmp4410 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp4409), order) - tmp4411 = Taylor1(constant_term(tmp4408) + constant_term(tmp4410), order) - tmp4413 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) - tmp4414 = Taylor1(constant_term(tmp4411) - constant_term(tmp4413), order) - N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp4414), order) - tmp4416 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) - tmp4417 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) - tmp4418 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp4417), order) - tmp4419 = Taylor1(constant_term(tmp4416) + constant_term(tmp4418), order) - tmp4421 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) - tmp4422 = Taylor1(constant_term(tmp4419) - constant_term(tmp4421), order) - N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp4422), order) - tmp4424 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp4425 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp4426 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp4427 = Taylor1(constant_term(tmp4425) + constant_term(tmp4426), order) - N_1_LMF = Taylor1(constant_term(tmp4424) + constant_term(tmp4427), order) - tmp4429 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp4430 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp4431 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp4432 = Taylor1(constant_term(tmp4430) + constant_term(tmp4431), order) - N_2_LMF = Taylor1(constant_term(tmp4429) + constant_term(tmp4432), order) - tmp4434 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp4435 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp4436 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp4437 = Taylor1(constant_term(tmp4435) + constant_term(tmp4436), order) - N_3_LMF = Taylor1(constant_term(tmp4434) + constant_term(tmp4437), order) - tmp4439 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) - tmp4440 = Taylor1(constant_term(k_ν) * constant_term(tmp4439), order) - tmp4441 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp4442 = Taylor1(constant_term(tmp4441) * constant_term(q[6N + 11]), order) - N_cmb_1 = Taylor1(constant_term(tmp4440) - constant_term(tmp4442), order) - tmp4444 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) - tmp4445 = Taylor1(constant_term(k_ν) * constant_term(tmp4444), order) - tmp4446 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp4447 = Taylor1(constant_term(tmp4446) * constant_term(q[6N + 10]), order) - N_cmb_2 = Taylor1(constant_term(tmp4445) + constant_term(tmp4447), order) - tmp4449 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) - N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp4449), order) - tmp4451 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) - tmp4452 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp4451), order) - tmp4453 = Taylor1(constant_term(tmp4452) + constant_term(N_cmb_1), order) - tmp4454 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) - I_dω_1 = Taylor1(constant_term(tmp4453) - constant_term(tmp4454), order) - tmp4456 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) - tmp4457 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp4456), order) - tmp4458 = Taylor1(constant_term(tmp4457) + constant_term(N_cmb_2), order) - tmp4459 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) - I_dω_2 = Taylor1(constant_term(tmp4458) - constant_term(tmp4459), order) - tmp4461 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) - tmp4462 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp4461), order) - tmp4463 = Taylor1(constant_term(tmp4462) + constant_term(N_cmb_3), order) - tmp4464 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) - I_dω_3 = Taylor1(constant_term(tmp4463) - constant_term(tmp4464), order) + tmp3858 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) + N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp3858), order) + tmp3860 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) + tmp3861 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) + tmp3862 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3861), order) + tmp3863 = Taylor1(constant_term(tmp3860) + constant_term(tmp3862), order) + tmp3865 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) + tmp3866 = Taylor1(constant_term(tmp3863) - constant_term(tmp3865), order) + N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3866), order) + tmp3868 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) + tmp3869 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) + tmp3870 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3869), order) + tmp3871 = Taylor1(constant_term(tmp3868) + constant_term(tmp3870), order) + tmp3873 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) + tmp3874 = Taylor1(constant_term(tmp3871) - constant_term(tmp3873), order) + N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3874), order) + tmp3876 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) + tmp3877 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) + tmp3878 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3877), order) + tmp3879 = Taylor1(constant_term(tmp3876) + constant_term(tmp3878), order) + tmp3881 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) + tmp3882 = Taylor1(constant_term(tmp3879) - constant_term(tmp3881), order) + N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3882), order) + tmp3884 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3885 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3886 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3887 = Taylor1(constant_term(tmp3885) + constant_term(tmp3886), order) + N_1_LMF = Taylor1(constant_term(tmp3884) + constant_term(tmp3887), order) + tmp3889 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3890 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3891 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3892 = Taylor1(constant_term(tmp3890) + constant_term(tmp3891), order) + N_2_LMF = Taylor1(constant_term(tmp3889) + constant_term(tmp3892), order) + tmp3894 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3895 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3896 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3897 = Taylor1(constant_term(tmp3895) + constant_term(tmp3896), order) + N_3_LMF = Taylor1(constant_term(tmp3894) + constant_term(tmp3897), order) + tmp3899 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) + tmp3900 = Taylor1(constant_term(k_ν) * constant_term(tmp3899), order) + tmp3901 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp3902 = Taylor1(constant_term(tmp3901) * constant_term(q[6N + 11]), order) + N_cmb_1 = Taylor1(constant_term(tmp3900) - constant_term(tmp3902), order) + tmp3904 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) + tmp3905 = Taylor1(constant_term(k_ν) * constant_term(tmp3904), order) + tmp3906 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp3907 = Taylor1(constant_term(tmp3906) * constant_term(q[6N + 10]), order) + N_cmb_2 = Taylor1(constant_term(tmp3905) + constant_term(tmp3907), order) + tmp3909 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) + N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp3909), order) + tmp3911 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) + tmp3912 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp3911), order) + tmp3913 = Taylor1(constant_term(tmp3912) + constant_term(N_cmb_1), order) + tmp3914 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) + I_dω_1 = Taylor1(constant_term(tmp3913) - constant_term(tmp3914), order) + tmp3916 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) + tmp3917 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp3916), order) + tmp3918 = Taylor1(constant_term(tmp3917) + constant_term(N_cmb_2), order) + tmp3919 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) + I_dω_2 = Taylor1(constant_term(tmp3918) - constant_term(tmp3919), order) + tmp3921 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) + tmp3922 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp3921), order) + tmp3923 = Taylor1(constant_term(tmp3922) + constant_term(N_cmb_3), order) + tmp3924 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) + I_dω_3 = Taylor1(constant_term(tmp3923) - constant_term(tmp3924), order) Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) - tmp4469 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) - tmp4470 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) - m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp4469) - constant_term(tmp4470), order) - tmp4472 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) - tmp4473 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) - m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp4472) - constant_term(tmp4473), order) - tmp4475 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) - tmp4476 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) - m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp4475) - constant_term(tmp4476), order) + tmp3929 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) + tmp3930 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) + m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp3929) - constant_term(tmp3930), order) + tmp3932 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) + tmp3933 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) + m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp3932) - constant_term(tmp3933), order) + tmp3935 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) + tmp3936 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) + m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp3935) - constant_term(tmp3936), order) Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) - tmp4481 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp4612 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp4482 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp4481), order) - tmp4483 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp4613 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp4484 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp4483), order) - tmp4485 = Taylor1(constant_term(tmp4482) + constant_term(tmp4484), order) - tmp4486 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp4614 = Taylor1(cos(constant_term(q[6N + 2])), order) - dq[6N + 1] = Taylor1(constant_term(tmp4485) / constant_term(tmp4486), order) - tmp4488 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp4615 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp4489 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp4488), order) - tmp4490 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp4616 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp4491 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp4490), order) - dq[6N + 2] = Taylor1(constant_term(tmp4489) - constant_term(tmp4491), order) - tmp4493 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp4617 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp4494 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp4493), order) - dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp4494), order) - tmp4496 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) - tmp4497 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) - tmp4498 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) - tmp4499 = Taylor1(constant_term(tmp4497) + constant_term(tmp4498), order) - dq[6N + 4] = Taylor1(constant_term(tmp4496) + constant_term(tmp4499), order) - tmp4501 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) - tmp4502 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) - tmp4503 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) - tmp4504 = Taylor1(constant_term(tmp4502) + constant_term(tmp4503), order) - dq[6N + 5] = Taylor1(constant_term(tmp4501) + constant_term(tmp4504), order) - tmp4506 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) - tmp4507 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) - tmp4508 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) - tmp4509 = Taylor1(constant_term(tmp4507) + constant_term(tmp4508), order) - dq[6N + 6] = Taylor1(constant_term(tmp4506) + constant_term(tmp4509), order) - tmp4511 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp4618 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp4512 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp4511), order) - dq[6N + 9] = Taylor1(-(constant_term(tmp4512)), order) - tmp4514 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp4619 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp4515 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp4514), order) - dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp4515), order) + tmp3941 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp4072 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3942 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3941), order) + tmp3943 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp4073 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3944 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3943), order) + tmp3945 = Taylor1(constant_term(tmp3942) + constant_term(tmp3944), order) + tmp3946 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp4074 = Taylor1(cos(constant_term(q[6N + 2])), order) + dq[6N + 1] = Taylor1(constant_term(tmp3945) / constant_term(tmp3946), order) + tmp3948 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp4075 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3949 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3948), order) + tmp3950 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp4076 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3951 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3950), order) + dq[6N + 2] = Taylor1(constant_term(tmp3949) - constant_term(tmp3951), order) + tmp3953 = Taylor1(cos(constant_term(q[6N + 2])), order) + tmp4077 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp3954 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp3953), order) + dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp3954), order) + tmp3956 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) + tmp3957 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) + tmp3958 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) + tmp3959 = Taylor1(constant_term(tmp3957) + constant_term(tmp3958), order) + dq[6N + 4] = Taylor1(constant_term(tmp3956) + constant_term(tmp3959), order) + tmp3961 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) + tmp3962 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) + tmp3963 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) + tmp3964 = Taylor1(constant_term(tmp3962) + constant_term(tmp3963), order) + dq[6N + 5] = Taylor1(constant_term(tmp3961) + constant_term(tmp3964), order) + tmp3966 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) + tmp3967 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) + tmp3968 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) + tmp3969 = Taylor1(constant_term(tmp3967) + constant_term(tmp3968), order) + dq[6N + 6] = Taylor1(constant_term(tmp3966) + constant_term(tmp3969), order) + tmp3971 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp4078 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp3972 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp3971), order) + dq[6N + 9] = Taylor1(-(constant_term(tmp3972)), order) + tmp3974 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp4079 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp3975 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp3974), order) + dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp3975), order) dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) - tmp4520 = Taylor1(constant_term(newtonianCoeff[su, ea]) * constant_term(J2_t[su]), order) - tmp4523 = Taylor1(constant_term(sin_ϕ[su, ea]) ^ float(constant_term(2)), order) - tmp4524 = Taylor1(constant_term(3) * constant_term(tmp4523), order) - tmp4525 = Taylor1(constant_term(one_t) - constant_term(tmp4524), order) - tmp4527 = Taylor1(constant_term(tmp4525) / constant_term(2), order) - w_LE = Taylor1(constant_term(tmp4520) * constant_term(tmp4527), order) - tmp4530 = Taylor1(constant_term(0.5) * constant_term(v2[ea]), order) - tmp4531 = Taylor1(constant_term(tmp4530) + constant_term(newtonianNb_Potential[ea]), order) - α_TTmTDB = Taylor1(constant_term(tmp4531) + constant_term(w_LE), order) + tmp3980 = Taylor1(constant_term(newtonianCoeff[su, ea]) * constant_term(J2_t[su]), order) + tmp3983 = Taylor1(constant_term(sin_ϕ[su, ea]) ^ float(constant_term(2)), order) + tmp3984 = Taylor1(constant_term(3) * constant_term(tmp3983), order) + tmp3985 = Taylor1(constant_term(one_t) - constant_term(tmp3984), order) + tmp3987 = Taylor1(constant_term(tmp3985) / constant_term(2), order) + w_LE = Taylor1(constant_term(tmp3980) * constant_term(tmp3987), order) + tmp3990 = Taylor1(constant_term(0.5) * constant_term(v2[ea]), order) + tmp3991 = Taylor1(constant_term(tmp3990) + constant_term(newtonianNb_Potential[ea]), order) + α_TTmTDB = Taylor1(constant_term(tmp3991) + constant_term(w_LE), order) v4E = Taylor1(constant_term(v2[ea]) ^ float(constant_term(2)), order) ϕ_Earth_Newtonian_sq = Taylor1(constant_term(newtonianNb_Potential[ea]) ^ float(constant_term(2)), order) - tmp4538 = Taylor1(constant_term(ϕ_Earth_Newtonian_sq) / constant_term(2), order) - tmp4540 = Taylor1(constant_term(v4E) / constant_term(8), order) - β_TTmTDB = Taylor1(constant_term(tmp4538) - constant_term(tmp4540), order) + tmp3998 = Taylor1(constant_term(ϕ_Earth_Newtonian_sq) / constant_term(2), order) + tmp4000 = Taylor1(constant_term(v4E) / constant_term(8), order) + β_TTmTDB = Taylor1(constant_term(tmp3998) - constant_term(tmp4000), order) β_TTmTDB_i_1 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - β_TTmTDB_i_1 .= Taylor1(zero(_S), order) - tmp4545 = Array{Taylor1{_S}}(undef, size(v2)) - tmp4545 .= Taylor1(zero(_S), order) - tmp4547 = Array{Taylor1{_S}}(undef, size(v2)) - tmp4547 .= Taylor1(zero(_S), order) - tmp4548 = Array{Taylor1{_S}}(undef, size(tmp4545)) - tmp4548 .= Taylor1(zero(_S), order) + for i = CartesianIndices(β_TTmTDB_i_1) + β_TTmTDB_i_1[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4005 = Array{Taylor1{_S}}(undef, size(v2)) + for i = CartesianIndices(tmp4005) + tmp4005[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4007 = Array{Taylor1{_S}}(undef, size(v2)) + for i = CartesianIndices(tmp4007) + tmp4007[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4008 = Array{Taylor1{_S}}(undef, size(tmp4005)) + for i = CartesianIndices(tmp4008) + tmp4008[i] = Taylor1(zero(constant_term(q[1])), order) + end β_TTmTDB_i_2 = Array{Taylor1{_S}}(undef, size(newtonianNb_Potential)) - β_TTmTDB_i_2 .= Taylor1(zero(_S), order) - tmp4550 = Array{Taylor1{_S}}(undef, size(X)) - tmp4550 .= Taylor1(zero(_S), order) - tmp4551 = Array{Taylor1{_S}}(undef, size(Y)) - tmp4551 .= Taylor1(zero(_S), order) - tmp4552 = Array{Taylor1{_S}}(undef, size(tmp4550)) - tmp4552 .= Taylor1(zero(_S), order) - tmp4553 = Array{Taylor1{_S}}(undef, size(Z)) - tmp4553 .= Taylor1(zero(_S), order) - tmp4554 = Array{Taylor1{_S}}(undef, size(tmp4552)) - tmp4554 .= Taylor1(zero(_S), order) - β_TTmTDB_i_3 = Array{Taylor1{_S}}(undef, size(tmp4554)) - β_TTmTDB_i_3 .= Taylor1(zero(_S), order) + for i = CartesianIndices(β_TTmTDB_i_2) + β_TTmTDB_i_2[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4010 = Array{Taylor1{_S}}(undef, size(X)) + for i = CartesianIndices(tmp4010) + tmp4010[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4011 = Array{Taylor1{_S}}(undef, size(Y)) + for i = CartesianIndices(tmp4011) + tmp4011[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4012 = Array{Taylor1{_S}}(undef, size(tmp4010)) + for i = CartesianIndices(tmp4012) + tmp4012[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4013 = Array{Taylor1{_S}}(undef, size(Z)) + for i = CartesianIndices(tmp4013) + tmp4013[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4014 = Array{Taylor1{_S}}(undef, size(tmp4012)) + for i = CartesianIndices(tmp4014) + tmp4014[i] = Taylor1(zero(constant_term(q[1])), order) + end + β_TTmTDB_i_3 = Array{Taylor1{_S}}(undef, size(tmp4014)) + for i = CartesianIndices(β_TTmTDB_i_3) + β_TTmTDB_i_3[i] = Taylor1(zero(constant_term(q[1])), order) + end β_TTmTDB_i_4 = Array{Taylor1{_S}}(undef, size(rij_dot_vi_div_rij_sq)) - β_TTmTDB_i_4 .= Taylor1(zero(_S), order) - tmp4559 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_1)) - tmp4559 .= Taylor1(zero(_S), order) - tmp4560 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_3)) - tmp4560 .= Taylor1(zero(_S), order) - β_TTmTDB_i = Array{Taylor1{_S}}(undef, size(tmp4559)) - β_TTmTDB_i .= Taylor1(zero(_S), order) - tmp4562 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) - tmp4562 .= Taylor1(zero(_S), order) - temp_β_TTmTDB = Array{Taylor1{_S}}(undef, size(tmp4562)) - temp_β_TTmTDB .= Taylor1(zero(_S), order) + for i = CartesianIndices(β_TTmTDB_i_4) + β_TTmTDB_i_4[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4019 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_1)) + for i = CartesianIndices(tmp4019) + tmp4019[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4020 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_3)) + for i = CartesianIndices(tmp4020) + tmp4020[i] = Taylor1(zero(constant_term(q[1])), order) + end + β_TTmTDB_i = Array{Taylor1{_S}}(undef, size(tmp4019)) + for i = CartesianIndices(β_TTmTDB_i) + β_TTmTDB_i[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4022 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) + for i = CartesianIndices(tmp4022) + tmp4022[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_β_TTmTDB = Array{Taylor1{_S}}(undef, size(tmp4022)) + for i = CartesianIndices(temp_β_TTmTDB) + temp_β_TTmTDB[i] = Taylor1(zero(constant_term(q[1])), order) + end for i = 1:N if i == ea continue else β_TTmTDB_i_1[i, ea] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, ea]), order) - tmp4545[ea] = Taylor1(constant_term(1.5) * constant_term(v2[ea]), order) - tmp4547[i] = Taylor1(constant_term(2) * constant_term(v2[i]), order) - tmp4548[ea] = Taylor1(constant_term(tmp4545[ea]) + constant_term(tmp4547[i]), order) - β_TTmTDB_i_2[i] = Taylor1(constant_term(newtonianNb_Potential[i]) - constant_term(tmp4548[ea]), order) - tmp4550[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 2]) * constant_term(X[i, ea]), order) - tmp4551[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 1]) * constant_term(Y[i, ea]), order) - tmp4552[i, ea] = Taylor1(constant_term(tmp4550[i, ea]) + constant_term(tmp4551[i, ea]), order) - tmp4553[i, ea] = Taylor1(constant_term(dq[3 * (N + i)]) * constant_term(Z[i, ea]), order) - tmp4554[i, ea] = Taylor1(constant_term(tmp4552[i, ea]) + constant_term(tmp4553[i, ea]), order) - β_TTmTDB_i_3[i, ea] = Taylor1(constant_term(tmp4554[i, ea]) / constant_term(2), order) + tmp4005[ea] = Taylor1(constant_term(1.5) * constant_term(v2[ea]), order) + tmp4007[i] = Taylor1(constant_term(2) * constant_term(v2[i]), order) + tmp4008[ea] = Taylor1(constant_term(tmp4005[ea]) + constant_term(tmp4007[i]), order) + β_TTmTDB_i_2[i] = Taylor1(constant_term(newtonianNb_Potential[i]) - constant_term(tmp4008[ea]), order) + tmp4010[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 2]) * constant_term(X[i, ea]), order) + tmp4011[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 1]) * constant_term(Y[i, ea]), order) + tmp4012[i, ea] = Taylor1(constant_term(tmp4010[i, ea]) + constant_term(tmp4011[i, ea]), order) + tmp4013[i, ea] = Taylor1(constant_term(dq[3 * (N + i)]) * constant_term(Z[i, ea]), order) + tmp4014[i, ea] = Taylor1(constant_term(tmp4012[i, ea]) + constant_term(tmp4013[i, ea]), order) + β_TTmTDB_i_3[i, ea] = Taylor1(constant_term(tmp4014[i, ea]) / constant_term(2), order) β_TTmTDB_i_4[i, ea] = Taylor1(constant_term(rij_dot_vi_div_rij_sq[i, ea]) / constant_term(2), order) - tmp4559[i, ea] = Taylor1(constant_term(β_TTmTDB_i_1[i, ea]) + constant_term(β_TTmTDB_i_2[i]), order) - tmp4560[i, ea] = Taylor1(constant_term(β_TTmTDB_i_3[i, ea]) + constant_term(β_TTmTDB_i_4[i, ea]), order) - β_TTmTDB_i[i, ea] = Taylor1(constant_term(tmp4559[i, ea]) + constant_term(tmp4560[i, ea]), order) - tmp4562[i, ea] = Taylor1(constant_term(newtonian1b_Potential[i, ea]) * constant_term(β_TTmTDB_i[i, ea]), order) - temp_β_TTmTDB[i, ea] = Taylor1(constant_term(β_TTmTDB) + constant_term(tmp4562[i, ea]), order) + tmp4019[i, ea] = Taylor1(constant_term(β_TTmTDB_i_1[i, ea]) + constant_term(β_TTmTDB_i_2[i]), order) + tmp4020[i, ea] = Taylor1(constant_term(β_TTmTDB_i_3[i, ea]) + constant_term(β_TTmTDB_i_4[i, ea]), order) + β_TTmTDB_i[i, ea] = Taylor1(constant_term(tmp4019[i, ea]) + constant_term(tmp4020[i, ea]), order) + tmp4022[i, ea] = Taylor1(constant_term(newtonian1b_Potential[i, ea]) * constant_term(β_TTmTDB_i[i, ea]), order) + temp_β_TTmTDB[i, ea] = Taylor1(constant_term(β_TTmTDB) + constant_term(tmp4022[i, ea]), order) β_TTmTDB = Taylor1(identity(constant_term(temp_β_TTmTDB[i, ea])), order) end end - tmp4564 = Taylor1(constant_term(c_m2) * constant_term(α_TTmTDB), order) - tmp4565 = Taylor1(constant_term(L_B) - constant_term(tmp4564), order) - tmp4566 = Taylor1(constant_term(tmp4565) * constant_term(one_plus_L_B_minus_L_G), order) - tmp4567 = Taylor1(constant_term(c_m4) * constant_term(β_TTmTDB), order) - tmp4568 = Taylor1(constant_term(tmp4567) - constant_term(L_G), order) - tmp4569 = Taylor1(constant_term(tmp4566) + constant_term(tmp4568), order) - dq[6N + 13] = Taylor1(constant_term(daysec) * constant_term(tmp4569), order) - return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp3501, tmp3502, tmp3503, tmp3504, tmp3505, tmp3506, tmp3507, tmp3508, tmp3510, tmp3511, tmp3512, tmp3513, tmp3514, tmp3515, tmp3516, tmp3517, tmp3518, tmp3520, tmp3521, tmp3523, tmp3524, tmp3525, tmp3526, tmp3527, tmp3528, tmp3529, tmp3530, tmp3532, tmp3533, tmp3534, tmp3535, tmp3536, tmp3537, tmp3538, tmp3539, tmp3541, tmp3542, tmp3543, tmp3545, tmp3546, tmp3548, tmp3549, tmp3552, tmp3553, tmp3554, tmp3555, tmp3557, tmp3558, tmp3559, tmp3560, tmp3561, tmp3563, tmp3564, tmp3565, tmp3566, tmp3568, tmp3569, tmp3570, tmp3571, tmp3572, tmp3574, tmp3575, tmp3576, tmp3577, tmp3579, tmp3580, tmp3581, tmp3582, tmp3583, tmp3585, tmp3586, tmp3587, tmp3588, tmp3590, tmp3591, tmp3592, tmp3593, tmp3595, tmp3596, tmp3597, tmp3598, tmp3670, tmp3672, tmp3673, tmp3675, tmp3676, tmp3679, tmp3681, tmp3683, tmp3684, tmp3965, tmp3967, tmp3977, tmp3979, tmp3989, tmp3991, tmp3993, tmp3995, tmp3996, tmp3997, tmp3998, tmp3999, tmp4002, tmp4004, tmp4006, tmp4008, tmp4009, tmp4010, tmp4011, tmp4012, tmp4016, tmp4017, tmp4019, tmp4020, tmp4023, tmp4024, tmp4025, tmp4027, tmp4028, tmp4030, tmp4031, tmp4034, tmp4035, tmp4036, tmp4039, tmp4041, tmp4051, tmp4053, tmp4062, tmp4063, tmp4065, tmp4066, tmp4071, tmp4072, tmp4075, tmp4076, tmp4081, tmp4082, tmp4083, tmp4084, tmp4087, tmp4088, tmp4089, tmp4090, tmp4093, tmp4094, tmp4095, tmp4096, tmp4099, tmp4100, tmp4101, tmp4102, tmp4105, tmp4106, tmp4107, tmp4108, tmp4111, tmp4112, tmp4113, tmp4114, tmp4117, tmp4119, tmp4129, tmp4131, tmp4140, tmp4141, tmp4143, tmp4144, tmp4148, tmp4151, tmp4152, tmp4153, tmp4154, tmp4155, tmp4159, tmp4162, tmp4163, tmp4164, tmp4165, tmp4166, tmp4171, tmp4172, tmp4173, tmp4174, tmp4175, tmp4178, tmp4179, tmp4180, tmp4181, tmp4182, tmp4184, tmp4185, tmp4188, tmp4189, tmp4190, tmp4191, tmp4192, tmp4195, tmp4196, tmp4197, tmp4198, tmp4199, tmp4201, tmp4202, tmp4204, tmp4210, tmp4211, tmp4212, tmp4213, tmp4214, tmp4215, tmp4217, tmp4218, tmp4219, tmp4220, tmp4221, tmp4222, tmp4224, tmp4225, tmp4226, tmp4227, tmp4228, tmp4229, tmp4231, tmp4232, tmp4233, tmp4234, tmp4236, tmp4237, tmp4238, tmp4239, tmp4241, tmp4242, tmp4243, tmp4244, tmp4252, tmp4253, tmp4254, tmp4255, tmp4257, tmp4258, tmp4259, tmp4260, tmp4262, tmp4263, tmp4264, tmp4265, tmp4267, tmp4268, tmp4270, tmp4271, tmp4273, tmp4274, tmp4276, tmp4277, tmp4278, tmp4279, tmp4281, tmp4282, tmp4283, tmp4284, tmp4286, tmp4287, tmp4288, tmp4289, tmp4294, tmp4295, tmp4296, tmp4297, tmp4299, tmp4300, tmp4301, tmp4302, tmp4304, tmp4305, tmp4306, tmp4307, tmp4309, tmp4310, tmp4311, tmp4312, tmp4314, tmp4315, tmp4316, tmp4317, tmp4319, tmp4320, tmp4321, tmp4322, tmp4324, tmp4325, tmp4326, tmp4327, tmp4329, tmp4330, tmp4331, tmp4332, tmp4334, tmp4335, tmp4336, tmp4337, tmp4339, tmp4340, tmp4341, tmp4342, tmp4344, tmp4345, tmp4346, tmp4347, tmp4349, tmp4350, tmp4351, tmp4352, tmp4354, tmp4355, tmp4357, tmp4358, tmp4360, tmp4361, tmp4363, tmp4364, tmp4366, tmp4367, tmp4369, tmp4370, tmp4372, tmp4373, tmp4375, tmp4376, tmp4378, tmp4379, tmp4381, tmp4382, tmp4384, tmp4385, tmp4387, tmp4388, tmp4392, tmp4393, tmp4398, tmp4400, tmp4401, tmp4402, tmp4403, tmp4405, tmp4406, tmp4408, tmp4409, tmp4410, tmp4411, tmp4413, tmp4414, tmp4416, tmp4417, tmp4418, tmp4419, tmp4421, tmp4422, tmp4424, tmp4425, tmp4426, tmp4427, tmp4429, tmp4430, tmp4431, tmp4432, tmp4434, tmp4435, tmp4436, tmp4437, tmp4439, tmp4440, tmp4441, tmp4442, tmp4444, tmp4445, tmp4446, tmp4447, tmp4449, tmp4451, tmp4452, tmp4453, tmp4454, tmp4456, tmp4457, tmp4458, tmp4459, tmp4461, tmp4462, tmp4463, tmp4464, tmp4469, tmp4470, tmp4472, tmp4473, tmp4475, tmp4476, tmp4481, tmp4482, tmp4483, tmp4484, tmp4485, tmp4486, tmp4488, tmp4489, tmp4490, tmp4491, tmp4493, tmp4494, tmp4496, tmp4497, tmp4498, tmp4499, tmp4501, tmp4502, tmp4503, tmp4504, tmp4506, tmp4507, tmp4508, tmp4509, tmp4511, tmp4512, tmp4514, tmp4515, tmp4520, tmp4523, tmp4524, tmp4525, tmp4527, tmp4530, tmp4531, tmp4538, tmp4540, tmp4564, tmp4565, tmp4566, tmp4567, tmp4568, tmp4569, ϕ_m, θ_m, ψ_m, tmp4571, tmp4572, tmp4573, tmp4574, tmp4575, tmp4576, tmp4577, tmp4578, tmp4579, tmp4580, tmp4581, tmp4582, tmp4583, tmp4584, tmp4585, tmp4586, tmp4587, tmp4588, tmp4589, tmp4590, tmp4591, tmp4592, tmp4593, tmp4594, tmp4595, tmp4596, tmp4597, tmp4598, tmp4599, ϕ_c, tmp4600, tmp4601, tmp4602, tmp4603, tmp4604, tmp4605, tmp4606, tmp4607, tmp4608, tmp4609, tmp4610, tmp4611, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, x0s_M, y0s_M, z0s_M, ρ0s2_M, ρ0s_M, z0s2_M, r0s2_M, r0s_M, r0s5_M, x0s_S, y0s_S, z0s_S, ρ0s2_S, ρ0s_S, z0s2_S, r0s2_S, r0s_S, r0s5_S, coeff0_M, coeff0_S, k_20E_div_r0s5_M, k_20E_div_r0s5_S, a_tid_0_M_x, a_tid_0_M_y, a_tid_0_M_z, a_tid_0_S_x, a_tid_0_S_y, a_tid_0_S_z, x1s_M, y1s_M, z1s_M, ρ1s2_M, ρ1s_M, z1s2_M, r1s2_M, r1s_M, r1s5_M, x1s_S, y1s_S, z1s_S, ρ1s2_S, ρ1s_S, z1s2_S, r1s2_S, r1s_S, r1s5_S, coeff1_1_M, coeff1_1_S, coeff2_1_M, coeff2_1_S, coeff3_1_M, coeff3_1_S, k_21E_div_r1s5_M, k_21E_div_r1s5_S, a_tid_1_M_x, a_tid_1_M_y, a_tid_1_M_z, a_tid_1_S_x, a_tid_1_S_y, a_tid_1_S_z, x2s_M, y2s_M, z2s_M, ρ2s2_M, ρ2s_M, z2s2_M, r2s2_M, r2s_M, r2s5_M, x2s_S, y2s_S, z2s_S, ρ2s2_S, ρ2s_S, z2s2_S, r2s2_S, r2s_S, r2s5_S, coeff1_2_M, coeff1_2_S, coeff3_2_M, coeff3_2_S, k_22E_div_r2s5_M, k_22E_div_r2s5_S, a_tid_2_M_x, a_tid_2_M_y, a_tid_2_M_z, a_tid_2_S_x, a_tid_2_S_y, a_tid_2_S_z, RE_div_r_p5, aux_tidacc, a_tidal_coeff_M, a_tidal_coeff_S, a_tidal_tod_x, a_tidal_tod_y, a_tidal_tod_z, a_tidal_x, a_tidal_y, a_tidal_z, accX_mo_tides, accY_mo_tides, accZ_mo_tides, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp4612, tmp4613, tmp4614, tmp4615, tmp4616, tmp4617, tmp4618, tmp4619, w_LE, α_TTmTDB, v4E, ϕ_Earth_Newtonian_sq, β_TTmTDB], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp3607, tmp3609, tmp3612, tmp3614, tmp3617, tmp3619, tmp3663, tmp3665, tmp3666, tmp3668, tmp4545, tmp4547, tmp4548, β_TTmTDB_i_2], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, rij_dot_vi_div_rij_sq, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp3627, tmp3630, tmp3632, tmp3633, tmp3635, tmp3643, tmp3644, tmp3655, temp_001, tmp3657, temp_002, tmp3659, temp_003, temp_004, tmp3696, tmp3698, tmp3700, tmp3704, tmp3706, tmp3707, tmp3813, tmp3814, tmp3817, tmp3818, tmp3824, tmp3827, tmp3889, tmp3891, tmp3893, tmp3895, tmp3897, tmp3899, tmp3901, tmp3902, tmp3903, tmp3905, tmp3906, tmp3907, tmp3909, tmp3910, tmp3911, tmp3923, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp3929, Rij_dot_Vi, tmp3932, tmp3935, pn1t2_7, tmp3942, tmp3943, tmp3944, tmp3952, termpnx, sumpnx, tmp3955, termpny, sumpny, tmp3958, termpnz, sumpnz, β_TTmTDB_i_1, tmp4550, tmp4551, tmp4552, tmp4553, tmp4554, β_TTmTDB_i_3, β_TTmTDB_i_4, tmp4559, tmp4560, β_TTmTDB_i, tmp4562, temp_β_TTmTDB], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp3712, tmp3713, tmp3714, tmp3716, tmp3717, tmp3722, tmp3723, tmp3725, tmp3726, tmp3727, tmp3729, tmp3730, tmp3731, tmp3733, tmp3734, tmp3735, tmp3736, tmp3739, tmp3740, tmp3742, tmp3743, tmp3762, tmp3763, tmp3764, tmp3767, tmp3768, tmp3769, tmp3774, tmp3775, tmp3776, tmp3779, tmp3780, tmp3781, tmp3785, tmp3786, tmp3787, tmp3789, tmp3790, tmp3791], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp3745, tmp3748, tmp3750, tmp3752, tmp3753, tmp3754, tmp3757, tmp3758, tmp3759, tmp3761, tmp3765, tmp3766, tmp3770, tmp3771, tmp3773, tmp3777, tmp3778, tmp3782, tmp3783, tmp3788, tmp3792, tmp3793, tmp3799, tmp3800, tmp3801, tmp3802, tmp3804, tmp3805, tmp3806, tmp3807, tmp3809, tmp3810, tmp3811, tmp3829, tmp3830, tmp3831, tmp3832, tmp3834, tmp3835, tmp3836, tmp3837, tmp3839, tmp3840, tmp3841, tmp3842, tmp3844, tmp3845, tmp3846, tmp3847, tmp3849, tmp3850, tmp3851, tmp3852, tmp3854, tmp3855, tmp3856, tmp3857, tmp3859, tmp3860, tmp3861, tmp3862, tmp3864, tmp3865, tmp3866, tmp3867, tmp3869, tmp3870, tmp3871, tmp3872, tmp3874, tmp3875, tmp3876, tmp3877, tmp3879, tmp3880, tmp3881, tmp3882, tmp3884, tmp3885, tmp3886, tmp3887]) + tmp4024 = Taylor1(constant_term(c_m2) * constant_term(α_TTmTDB), order) + tmp4025 = Taylor1(constant_term(L_B) - constant_term(tmp4024), order) + tmp4026 = Taylor1(constant_term(tmp4025) * constant_term(one_plus_L_B_minus_L_G), order) + tmp4027 = Taylor1(constant_term(c_m4) * constant_term(β_TTmTDB), order) + tmp4028 = Taylor1(constant_term(tmp4027) - constant_term(L_G), order) + tmp4029 = Taylor1(constant_term(tmp4026) + constant_term(tmp4028), order) + dq[6N + 13] = Taylor1(constant_term(daysec) * constant_term(tmp4029), order) + return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp2961, tmp2962, tmp2963, tmp2964, tmp2965, tmp2966, tmp2967, tmp2968, tmp2970, tmp2971, tmp2972, tmp2973, tmp2974, tmp2975, tmp2976, tmp2977, tmp2978, tmp2980, tmp2981, tmp2983, tmp2984, tmp2985, tmp2986, tmp2987, tmp2988, tmp2989, tmp2990, tmp2992, tmp2993, tmp2994, tmp2995, tmp2996, tmp2997, tmp2998, tmp2999, tmp3001, tmp3002, tmp3003, tmp3005, tmp3006, tmp3008, tmp3009, tmp3012, tmp3013, tmp3014, tmp3015, tmp3017, tmp3018, tmp3019, tmp3020, tmp3021, tmp3023, tmp3024, tmp3025, tmp3026, tmp3028, tmp3029, tmp3030, tmp3031, tmp3032, tmp3034, tmp3035, tmp3036, tmp3037, tmp3039, tmp3040, tmp3041, tmp3042, tmp3043, tmp3045, tmp3046, tmp3047, tmp3048, tmp3050, tmp3051, tmp3052, tmp3053, tmp3055, tmp3056, tmp3057, tmp3058, tmp3130, tmp3132, tmp3133, tmp3135, tmp3136, tmp3139, tmp3141, tmp3143, tmp3144, tmp3425, tmp3427, tmp3437, tmp3439, tmp3449, tmp3451, tmp3453, tmp3455, tmp3456, tmp3457, tmp3458, tmp3459, tmp3462, tmp3464, tmp3466, tmp3468, tmp3469, tmp3470, tmp3471, tmp3472, tmp3476, tmp3477, tmp3479, tmp3480, tmp3483, tmp3484, tmp3485, tmp3487, tmp3488, tmp3490, tmp3491, tmp3494, tmp3495, tmp3496, tmp3499, tmp3501, tmp3511, tmp3513, tmp3522, tmp3523, tmp3525, tmp3526, tmp3531, tmp3532, tmp3535, tmp3536, tmp3541, tmp3542, tmp3543, tmp3544, tmp3547, tmp3548, tmp3549, tmp3550, tmp3553, tmp3554, tmp3555, tmp3556, tmp3559, tmp3560, tmp3561, tmp3562, tmp3565, tmp3566, tmp3567, tmp3568, tmp3571, tmp3572, tmp3573, tmp3574, tmp3577, tmp3579, tmp3589, tmp3591, tmp3600, tmp3601, tmp3603, tmp3604, tmp3608, tmp3611, tmp3612, tmp3613, tmp3614, tmp3615, tmp3619, tmp3622, tmp3623, tmp3624, tmp3625, tmp3626, tmp3631, tmp3632, tmp3633, tmp3634, tmp3635, tmp3638, tmp3639, tmp3640, tmp3641, tmp3642, tmp3644, tmp3645, tmp3648, tmp3649, tmp3650, tmp3651, tmp3652, tmp3655, tmp3656, tmp3657, tmp3658, tmp3659, tmp3661, tmp3662, tmp3664, tmp3670, tmp3671, tmp3672, tmp3673, tmp3674, tmp3675, tmp3677, tmp3678, tmp3679, tmp3680, tmp3681, tmp3682, tmp3684, tmp3685, tmp3686, tmp3687, tmp3688, tmp3689, tmp3691, tmp3692, tmp3693, tmp3694, tmp3696, tmp3697, tmp3698, tmp3699, tmp3701, tmp3702, tmp3703, tmp3704, tmp3712, tmp3713, tmp3714, tmp3715, tmp3717, tmp3718, tmp3719, tmp3720, tmp3722, tmp3723, tmp3724, tmp3725, tmp3727, tmp3728, tmp3730, tmp3731, tmp3733, tmp3734, tmp3736, tmp3737, tmp3738, tmp3739, tmp3741, tmp3742, tmp3743, tmp3744, tmp3746, tmp3747, tmp3748, tmp3749, tmp3754, tmp3755, tmp3756, tmp3757, tmp3759, tmp3760, tmp3761, tmp3762, tmp3764, tmp3765, tmp3766, tmp3767, tmp3769, tmp3770, tmp3771, tmp3772, tmp3774, tmp3775, tmp3776, tmp3777, tmp3779, tmp3780, tmp3781, tmp3782, tmp3784, tmp3785, tmp3786, tmp3787, tmp3789, tmp3790, tmp3791, tmp3792, tmp3794, tmp3795, tmp3796, tmp3797, tmp3799, tmp3800, tmp3801, tmp3802, tmp3804, tmp3805, tmp3806, tmp3807, tmp3809, tmp3810, tmp3811, tmp3812, tmp3814, tmp3815, tmp3817, tmp3818, tmp3820, tmp3821, tmp3823, tmp3824, tmp3826, tmp3827, tmp3829, tmp3830, tmp3832, tmp3833, tmp3835, tmp3836, tmp3838, tmp3839, tmp3841, tmp3842, tmp3844, tmp3845, tmp3847, tmp3848, tmp3852, tmp3853, tmp3858, tmp3860, tmp3861, tmp3862, tmp3863, tmp3865, tmp3866, tmp3868, tmp3869, tmp3870, tmp3871, tmp3873, tmp3874, tmp3876, tmp3877, tmp3878, tmp3879, tmp3881, tmp3882, tmp3884, tmp3885, tmp3886, tmp3887, tmp3889, tmp3890, tmp3891, tmp3892, tmp3894, tmp3895, tmp3896, tmp3897, tmp3899, tmp3900, tmp3901, tmp3902, tmp3904, tmp3905, tmp3906, tmp3907, tmp3909, tmp3911, tmp3912, tmp3913, tmp3914, tmp3916, tmp3917, tmp3918, tmp3919, tmp3921, tmp3922, tmp3923, tmp3924, tmp3929, tmp3930, tmp3932, tmp3933, tmp3935, tmp3936, tmp3941, tmp3942, tmp3943, tmp3944, tmp3945, tmp3946, tmp3948, tmp3949, tmp3950, tmp3951, tmp3953, tmp3954, tmp3956, tmp3957, tmp3958, tmp3959, tmp3961, tmp3962, tmp3963, tmp3964, tmp3966, tmp3967, tmp3968, tmp3969, tmp3971, tmp3972, tmp3974, tmp3975, tmp3980, tmp3983, tmp3984, tmp3985, tmp3987, tmp3990, tmp3991, tmp3998, tmp4000, tmp4024, tmp4025, tmp4026, tmp4027, tmp4028, tmp4029, ϕ_m, θ_m, ψ_m, tmp4031, tmp4032, tmp4033, tmp4034, tmp4035, tmp4036, tmp4037, tmp4038, tmp4039, tmp4040, tmp4041, tmp4042, tmp4043, tmp4044, tmp4045, tmp4046, tmp4047, tmp4048, tmp4049, tmp4050, tmp4051, tmp4052, tmp4053, tmp4054, tmp4055, tmp4056, tmp4057, tmp4058, tmp4059, ϕ_c, tmp4060, tmp4061, tmp4062, tmp4063, tmp4064, tmp4065, tmp4066, tmp4067, tmp4068, tmp4069, tmp4070, tmp4071, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, x0s_M, y0s_M, z0s_M, ρ0s2_M, ρ0s_M, z0s2_M, r0s2_M, r0s_M, r0s5_M, x0s_S, y0s_S, z0s_S, ρ0s2_S, ρ0s_S, z0s2_S, r0s2_S, r0s_S, r0s5_S, coeff0_M, coeff0_S, k_20E_div_r0s5_M, k_20E_div_r0s5_S, a_tid_0_M_x, a_tid_0_M_y, a_tid_0_M_z, a_tid_0_S_x, a_tid_0_S_y, a_tid_0_S_z, x1s_M, y1s_M, z1s_M, ρ1s2_M, ρ1s_M, z1s2_M, r1s2_M, r1s_M, r1s5_M, x1s_S, y1s_S, z1s_S, ρ1s2_S, ρ1s_S, z1s2_S, r1s2_S, r1s_S, r1s5_S, coeff1_1_M, coeff1_1_S, coeff2_1_M, coeff2_1_S, coeff3_1_M, coeff3_1_S, k_21E_div_r1s5_M, k_21E_div_r1s5_S, a_tid_1_M_x, a_tid_1_M_y, a_tid_1_M_z, a_tid_1_S_x, a_tid_1_S_y, a_tid_1_S_z, x2s_M, y2s_M, z2s_M, ρ2s2_M, ρ2s_M, z2s2_M, r2s2_M, r2s_M, r2s5_M, x2s_S, y2s_S, z2s_S, ρ2s2_S, ρ2s_S, z2s2_S, r2s2_S, r2s_S, r2s5_S, coeff1_2_M, coeff1_2_S, coeff3_2_M, coeff3_2_S, k_22E_div_r2s5_M, k_22E_div_r2s5_S, a_tid_2_M_x, a_tid_2_M_y, a_tid_2_M_z, a_tid_2_S_x, a_tid_2_S_y, a_tid_2_S_z, RE_div_r_p5, aux_tidacc, a_tidal_coeff_M, a_tidal_coeff_S, a_tidal_tod_x, a_tidal_tod_y, a_tidal_tod_z, a_tidal_x, a_tidal_y, a_tidal_z, accX_mo_tides, accY_mo_tides, accZ_mo_tides, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp4072, tmp4073, tmp4074, tmp4075, tmp4076, tmp4077, tmp4078, tmp4079, w_LE, α_TTmTDB, v4E, ϕ_Earth_Newtonian_sq, β_TTmTDB], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp3067, tmp3069, tmp3072, tmp3074, tmp3077, tmp3079, tmp3123, tmp3125, tmp3126, tmp3128, tmp4005, tmp4007, tmp4008, β_TTmTDB_i_2], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, rij_dot_vi_div_rij_sq, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp3087, tmp3090, tmp3092, tmp3093, tmp3095, tmp3103, tmp3104, tmp3115, temp_001, tmp3117, temp_002, tmp3119, temp_003, temp_004, tmp3156, tmp3158, tmp3160, tmp3164, tmp3166, tmp3167, tmp3273, tmp3274, tmp3277, tmp3278, tmp3284, tmp3287, tmp3349, tmp3351, tmp3353, tmp3355, tmp3357, tmp3359, tmp3361, tmp3362, tmp3363, tmp3365, tmp3366, tmp3367, tmp3369, tmp3370, tmp3371, tmp3383, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp3389, Rij_dot_Vi, tmp3392, tmp3395, pn1t2_7, tmp3402, tmp3403, tmp3404, tmp3412, termpnx, sumpnx, tmp3415, termpny, sumpny, tmp3418, termpnz, sumpnz, β_TTmTDB_i_1, tmp4010, tmp4011, tmp4012, tmp4013, tmp4014, β_TTmTDB_i_3, β_TTmTDB_i_4, tmp4019, tmp4020, β_TTmTDB_i, tmp4022, temp_β_TTmTDB], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp3172, tmp3173, tmp3174, tmp3176, tmp3177, tmp3182, tmp3183, tmp3185, tmp3186, tmp3187, tmp3189, tmp3190, tmp3191, tmp3193, tmp3194, tmp3195, tmp3196, tmp3199, tmp3200, tmp3202, tmp3203, tmp3222, tmp3223, tmp3224, tmp3227, tmp3228, tmp3229, tmp3234, tmp3235, tmp3236, tmp3239, tmp3240, tmp3241, tmp3245, tmp3246, tmp3247, tmp3249, tmp3250, tmp3251], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp3205, tmp3208, tmp3210, tmp3212, tmp3213, tmp3214, tmp3217, tmp3218, tmp3219, tmp3221, tmp3225, tmp3226, tmp3230, tmp3231, tmp3233, tmp3237, tmp3238, tmp3242, tmp3243, tmp3248, tmp3252, tmp3253, tmp3259, tmp3260, tmp3261, tmp3262, tmp3264, tmp3265, tmp3266, tmp3267, tmp3269, tmp3270, tmp3271, tmp3289, tmp3290, tmp3291, tmp3292, tmp3294, tmp3295, tmp3296, tmp3297, tmp3299, tmp3300, tmp3301, tmp3302, tmp3304, tmp3305, tmp3306, tmp3307, tmp3309, tmp3310, tmp3311, tmp3312, tmp3314, tmp3315, tmp3316, tmp3317, tmp3319, tmp3320, tmp3321, tmp3322, tmp3324, tmp3325, tmp3326, tmp3327, tmp3329, tmp3330, tmp3331, tmp3332, tmp3334, tmp3335, tmp3336, tmp3337, tmp3339, tmp3340, tmp3341, tmp3342, tmp3344, tmp3345, tmp3346, tmp3347]) end # TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: DE430! function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} order = t.order - tmp3501 = __ralloc.v0[1] - tmp3502 = __ralloc.v0[2] - tmp3503 = __ralloc.v0[3] - tmp3504 = __ralloc.v0[4] - tmp3505 = __ralloc.v0[5] - tmp3506 = __ralloc.v0[6] - tmp3507 = __ralloc.v0[7] - tmp3508 = __ralloc.v0[8] - tmp3510 = __ralloc.v0[9] - tmp3511 = __ralloc.v0[10] - tmp3512 = __ralloc.v0[11] - tmp3513 = __ralloc.v0[12] - tmp3514 = __ralloc.v0[13] - tmp3515 = __ralloc.v0[14] - tmp3516 = __ralloc.v0[15] - tmp3517 = __ralloc.v0[16] - tmp3518 = __ralloc.v0[17] - tmp3520 = __ralloc.v0[18] - tmp3521 = __ralloc.v0[19] - tmp3523 = __ralloc.v0[20] - tmp3524 = __ralloc.v0[21] - tmp3525 = __ralloc.v0[22] - tmp3526 = __ralloc.v0[23] - tmp3527 = __ralloc.v0[24] - tmp3528 = __ralloc.v0[25] - tmp3529 = __ralloc.v0[26] - tmp3530 = __ralloc.v0[27] - tmp3532 = __ralloc.v0[28] - tmp3533 = __ralloc.v0[29] - tmp3534 = __ralloc.v0[30] - tmp3535 = __ralloc.v0[31] - tmp3536 = __ralloc.v0[32] - tmp3537 = __ralloc.v0[33] - tmp3538 = __ralloc.v0[34] - tmp3539 = __ralloc.v0[35] - tmp3541 = __ralloc.v0[36] - tmp3542 = __ralloc.v0[37] - tmp3543 = __ralloc.v0[38] - tmp3545 = __ralloc.v0[39] - tmp3546 = __ralloc.v0[40] - tmp3548 = __ralloc.v0[41] - tmp3549 = __ralloc.v0[42] - tmp3552 = __ralloc.v0[43] - tmp3553 = __ralloc.v0[44] - tmp3554 = __ralloc.v0[45] - tmp3555 = __ralloc.v0[46] - tmp3557 = __ralloc.v0[47] - tmp3558 = __ralloc.v0[48] - tmp3559 = __ralloc.v0[49] - tmp3560 = __ralloc.v0[50] - tmp3561 = __ralloc.v0[51] - tmp3563 = __ralloc.v0[52] - tmp3564 = __ralloc.v0[53] - tmp3565 = __ralloc.v0[54] - tmp3566 = __ralloc.v0[55] - tmp3568 = __ralloc.v0[56] - tmp3569 = __ralloc.v0[57] - tmp3570 = __ralloc.v0[58] - tmp3571 = __ralloc.v0[59] - tmp3572 = __ralloc.v0[60] - tmp3574 = __ralloc.v0[61] - tmp3575 = __ralloc.v0[62] - tmp3576 = __ralloc.v0[63] - tmp3577 = __ralloc.v0[64] - tmp3579 = __ralloc.v0[65] - tmp3580 = __ralloc.v0[66] - tmp3581 = __ralloc.v0[67] - tmp3582 = __ralloc.v0[68] - tmp3583 = __ralloc.v0[69] - tmp3585 = __ralloc.v0[70] - tmp3586 = __ralloc.v0[71] - tmp3587 = __ralloc.v0[72] - tmp3588 = __ralloc.v0[73] - tmp3590 = __ralloc.v0[74] - tmp3591 = __ralloc.v0[75] - tmp3592 = __ralloc.v0[76] - tmp3593 = __ralloc.v0[77] - tmp3595 = __ralloc.v0[78] - tmp3596 = __ralloc.v0[79] - tmp3597 = __ralloc.v0[80] - tmp3598 = __ralloc.v0[81] - tmp3670 = __ralloc.v0[82] - tmp3672 = __ralloc.v0[83] - tmp3673 = __ralloc.v0[84] - tmp3675 = __ralloc.v0[85] - tmp3676 = __ralloc.v0[86] - tmp3679 = __ralloc.v0[87] - tmp3681 = __ralloc.v0[88] - tmp3683 = __ralloc.v0[89] - tmp3684 = __ralloc.v0[90] - tmp3965 = __ralloc.v0[91] - tmp3967 = __ralloc.v0[92] - tmp3977 = __ralloc.v0[93] - tmp3979 = __ralloc.v0[94] - tmp3989 = __ralloc.v0[95] - tmp3991 = __ralloc.v0[96] - tmp3993 = __ralloc.v0[97] - tmp3995 = __ralloc.v0[98] - tmp3996 = __ralloc.v0[99] - tmp3997 = __ralloc.v0[100] - tmp3998 = __ralloc.v0[101] - tmp3999 = __ralloc.v0[102] - tmp4002 = __ralloc.v0[103] - tmp4004 = __ralloc.v0[104] - tmp4006 = __ralloc.v0[105] - tmp4008 = __ralloc.v0[106] - tmp4009 = __ralloc.v0[107] - tmp4010 = __ralloc.v0[108] - tmp4011 = __ralloc.v0[109] - tmp4012 = __ralloc.v0[110] - tmp4016 = __ralloc.v0[111] - tmp4017 = __ralloc.v0[112] - tmp4019 = __ralloc.v0[113] - tmp4020 = __ralloc.v0[114] - tmp4023 = __ralloc.v0[115] - tmp4024 = __ralloc.v0[116] - tmp4025 = __ralloc.v0[117] - tmp4027 = __ralloc.v0[118] - tmp4028 = __ralloc.v0[119] - tmp4030 = __ralloc.v0[120] - tmp4031 = __ralloc.v0[121] - tmp4034 = __ralloc.v0[122] - tmp4035 = __ralloc.v0[123] - tmp4036 = __ralloc.v0[124] - tmp4039 = __ralloc.v0[125] - tmp4041 = __ralloc.v0[126] - tmp4051 = __ralloc.v0[127] - tmp4053 = __ralloc.v0[128] - tmp4062 = __ralloc.v0[129] - tmp4063 = __ralloc.v0[130] - tmp4065 = __ralloc.v0[131] - tmp4066 = __ralloc.v0[132] - tmp4071 = __ralloc.v0[133] - tmp4072 = __ralloc.v0[134] - tmp4075 = __ralloc.v0[135] - tmp4076 = __ralloc.v0[136] - tmp4081 = __ralloc.v0[137] - tmp4082 = __ralloc.v0[138] - tmp4083 = __ralloc.v0[139] - tmp4084 = __ralloc.v0[140] - tmp4087 = __ralloc.v0[141] - tmp4088 = __ralloc.v0[142] - tmp4089 = __ralloc.v0[143] - tmp4090 = __ralloc.v0[144] - tmp4093 = __ralloc.v0[145] - tmp4094 = __ralloc.v0[146] - tmp4095 = __ralloc.v0[147] - tmp4096 = __ralloc.v0[148] - tmp4099 = __ralloc.v0[149] - tmp4100 = __ralloc.v0[150] - tmp4101 = __ralloc.v0[151] - tmp4102 = __ralloc.v0[152] - tmp4105 = __ralloc.v0[153] - tmp4106 = __ralloc.v0[154] - tmp4107 = __ralloc.v0[155] - tmp4108 = __ralloc.v0[156] - tmp4111 = __ralloc.v0[157] - tmp4112 = __ralloc.v0[158] - tmp4113 = __ralloc.v0[159] - tmp4114 = __ralloc.v0[160] - tmp4117 = __ralloc.v0[161] - tmp4119 = __ralloc.v0[162] - tmp4129 = __ralloc.v0[163] - tmp4131 = __ralloc.v0[164] - tmp4140 = __ralloc.v0[165] - tmp4141 = __ralloc.v0[166] - tmp4143 = __ralloc.v0[167] - tmp4144 = __ralloc.v0[168] - tmp4148 = __ralloc.v0[169] - tmp4151 = __ralloc.v0[170] - tmp4152 = __ralloc.v0[171] - tmp4153 = __ralloc.v0[172] - tmp4154 = __ralloc.v0[173] - tmp4155 = __ralloc.v0[174] - tmp4159 = __ralloc.v0[175] - tmp4162 = __ralloc.v0[176] - tmp4163 = __ralloc.v0[177] - tmp4164 = __ralloc.v0[178] - tmp4165 = __ralloc.v0[179] - tmp4166 = __ralloc.v0[180] - tmp4171 = __ralloc.v0[181] - tmp4172 = __ralloc.v0[182] - tmp4173 = __ralloc.v0[183] - tmp4174 = __ralloc.v0[184] - tmp4175 = __ralloc.v0[185] - tmp4178 = __ralloc.v0[186] - tmp4179 = __ralloc.v0[187] - tmp4180 = __ralloc.v0[188] - tmp4181 = __ralloc.v0[189] - tmp4182 = __ralloc.v0[190] - tmp4184 = __ralloc.v0[191] - tmp4185 = __ralloc.v0[192] - tmp4188 = __ralloc.v0[193] - tmp4189 = __ralloc.v0[194] - tmp4190 = __ralloc.v0[195] - tmp4191 = __ralloc.v0[196] - tmp4192 = __ralloc.v0[197] - tmp4195 = __ralloc.v0[198] - tmp4196 = __ralloc.v0[199] - tmp4197 = __ralloc.v0[200] - tmp4198 = __ralloc.v0[201] - tmp4199 = __ralloc.v0[202] - tmp4201 = __ralloc.v0[203] - tmp4202 = __ralloc.v0[204] - tmp4204 = __ralloc.v0[205] - tmp4210 = __ralloc.v0[206] - tmp4211 = __ralloc.v0[207] - tmp4212 = __ralloc.v0[208] - tmp4213 = __ralloc.v0[209] - tmp4214 = __ralloc.v0[210] - tmp4215 = __ralloc.v0[211] - tmp4217 = __ralloc.v0[212] - tmp4218 = __ralloc.v0[213] - tmp4219 = __ralloc.v0[214] - tmp4220 = __ralloc.v0[215] - tmp4221 = __ralloc.v0[216] - tmp4222 = __ralloc.v0[217] - tmp4224 = __ralloc.v0[218] - tmp4225 = __ralloc.v0[219] - tmp4226 = __ralloc.v0[220] - tmp4227 = __ralloc.v0[221] - tmp4228 = __ralloc.v0[222] - tmp4229 = __ralloc.v0[223] - tmp4231 = __ralloc.v0[224] - tmp4232 = __ralloc.v0[225] - tmp4233 = __ralloc.v0[226] - tmp4234 = __ralloc.v0[227] - tmp4236 = __ralloc.v0[228] - tmp4237 = __ralloc.v0[229] - tmp4238 = __ralloc.v0[230] - tmp4239 = __ralloc.v0[231] - tmp4241 = __ralloc.v0[232] - tmp4242 = __ralloc.v0[233] - tmp4243 = __ralloc.v0[234] - tmp4244 = __ralloc.v0[235] - tmp4252 = __ralloc.v0[236] - tmp4253 = __ralloc.v0[237] - tmp4254 = __ralloc.v0[238] - tmp4255 = __ralloc.v0[239] - tmp4257 = __ralloc.v0[240] - tmp4258 = __ralloc.v0[241] - tmp4259 = __ralloc.v0[242] - tmp4260 = __ralloc.v0[243] - tmp4262 = __ralloc.v0[244] - tmp4263 = __ralloc.v0[245] - tmp4264 = __ralloc.v0[246] - tmp4265 = __ralloc.v0[247] - tmp4267 = __ralloc.v0[248] - tmp4268 = __ralloc.v0[249] - tmp4270 = __ralloc.v0[250] - tmp4271 = __ralloc.v0[251] - tmp4273 = __ralloc.v0[252] - tmp4274 = __ralloc.v0[253] - tmp4276 = __ralloc.v0[254] - tmp4277 = __ralloc.v0[255] - tmp4278 = __ralloc.v0[256] - tmp4279 = __ralloc.v0[257] - tmp4281 = __ralloc.v0[258] - tmp4282 = __ralloc.v0[259] - tmp4283 = __ralloc.v0[260] - tmp4284 = __ralloc.v0[261] - tmp4286 = __ralloc.v0[262] - tmp4287 = __ralloc.v0[263] - tmp4288 = __ralloc.v0[264] - tmp4289 = __ralloc.v0[265] - tmp4294 = __ralloc.v0[266] - tmp4295 = __ralloc.v0[267] - tmp4296 = __ralloc.v0[268] - tmp4297 = __ralloc.v0[269] - tmp4299 = __ralloc.v0[270] - tmp4300 = __ralloc.v0[271] - tmp4301 = __ralloc.v0[272] - tmp4302 = __ralloc.v0[273] - tmp4304 = __ralloc.v0[274] - tmp4305 = __ralloc.v0[275] - tmp4306 = __ralloc.v0[276] - tmp4307 = __ralloc.v0[277] - tmp4309 = __ralloc.v0[278] - tmp4310 = __ralloc.v0[279] - tmp4311 = __ralloc.v0[280] - tmp4312 = __ralloc.v0[281] - tmp4314 = __ralloc.v0[282] - tmp4315 = __ralloc.v0[283] - tmp4316 = __ralloc.v0[284] - tmp4317 = __ralloc.v0[285] - tmp4319 = __ralloc.v0[286] - tmp4320 = __ralloc.v0[287] - tmp4321 = __ralloc.v0[288] - tmp4322 = __ralloc.v0[289] - tmp4324 = __ralloc.v0[290] - tmp4325 = __ralloc.v0[291] - tmp4326 = __ralloc.v0[292] - tmp4327 = __ralloc.v0[293] - tmp4329 = __ralloc.v0[294] - tmp4330 = __ralloc.v0[295] - tmp4331 = __ralloc.v0[296] - tmp4332 = __ralloc.v0[297] - tmp4334 = __ralloc.v0[298] - tmp4335 = __ralloc.v0[299] - tmp4336 = __ralloc.v0[300] - tmp4337 = __ralloc.v0[301] - tmp4339 = __ralloc.v0[302] - tmp4340 = __ralloc.v0[303] - tmp4341 = __ralloc.v0[304] - tmp4342 = __ralloc.v0[305] - tmp4344 = __ralloc.v0[306] - tmp4345 = __ralloc.v0[307] - tmp4346 = __ralloc.v0[308] - tmp4347 = __ralloc.v0[309] - tmp4349 = __ralloc.v0[310] - tmp4350 = __ralloc.v0[311] - tmp4351 = __ralloc.v0[312] - tmp4352 = __ralloc.v0[313] - tmp4354 = __ralloc.v0[314] - tmp4355 = __ralloc.v0[315] - tmp4357 = __ralloc.v0[316] - tmp4358 = __ralloc.v0[317] - tmp4360 = __ralloc.v0[318] - tmp4361 = __ralloc.v0[319] - tmp4363 = __ralloc.v0[320] - tmp4364 = __ralloc.v0[321] - tmp4366 = __ralloc.v0[322] - tmp4367 = __ralloc.v0[323] - tmp4369 = __ralloc.v0[324] - tmp4370 = __ralloc.v0[325] - tmp4372 = __ralloc.v0[326] - tmp4373 = __ralloc.v0[327] - tmp4375 = __ralloc.v0[328] - tmp4376 = __ralloc.v0[329] - tmp4378 = __ralloc.v0[330] - tmp4379 = __ralloc.v0[331] - tmp4381 = __ralloc.v0[332] - tmp4382 = __ralloc.v0[333] - tmp4384 = __ralloc.v0[334] - tmp4385 = __ralloc.v0[335] - tmp4387 = __ralloc.v0[336] - tmp4388 = __ralloc.v0[337] - tmp4392 = __ralloc.v0[338] - tmp4393 = __ralloc.v0[339] - tmp4398 = __ralloc.v0[340] - tmp4400 = __ralloc.v0[341] - tmp4401 = __ralloc.v0[342] - tmp4402 = __ralloc.v0[343] - tmp4403 = __ralloc.v0[344] - tmp4405 = __ralloc.v0[345] - tmp4406 = __ralloc.v0[346] - tmp4408 = __ralloc.v0[347] - tmp4409 = __ralloc.v0[348] - tmp4410 = __ralloc.v0[349] - tmp4411 = __ralloc.v0[350] - tmp4413 = __ralloc.v0[351] - tmp4414 = __ralloc.v0[352] - tmp4416 = __ralloc.v0[353] - tmp4417 = __ralloc.v0[354] - tmp4418 = __ralloc.v0[355] - tmp4419 = __ralloc.v0[356] - tmp4421 = __ralloc.v0[357] - tmp4422 = __ralloc.v0[358] - tmp4424 = __ralloc.v0[359] - tmp4425 = __ralloc.v0[360] - tmp4426 = __ralloc.v0[361] - tmp4427 = __ralloc.v0[362] - tmp4429 = __ralloc.v0[363] - tmp4430 = __ralloc.v0[364] - tmp4431 = __ralloc.v0[365] - tmp4432 = __ralloc.v0[366] - tmp4434 = __ralloc.v0[367] - tmp4435 = __ralloc.v0[368] - tmp4436 = __ralloc.v0[369] - tmp4437 = __ralloc.v0[370] - tmp4439 = __ralloc.v0[371] - tmp4440 = __ralloc.v0[372] - tmp4441 = __ralloc.v0[373] - tmp4442 = __ralloc.v0[374] - tmp4444 = __ralloc.v0[375] - tmp4445 = __ralloc.v0[376] - tmp4446 = __ralloc.v0[377] - tmp4447 = __ralloc.v0[378] - tmp4449 = __ralloc.v0[379] - tmp4451 = __ralloc.v0[380] - tmp4452 = __ralloc.v0[381] - tmp4453 = __ralloc.v0[382] - tmp4454 = __ralloc.v0[383] - tmp4456 = __ralloc.v0[384] - tmp4457 = __ralloc.v0[385] - tmp4458 = __ralloc.v0[386] - tmp4459 = __ralloc.v0[387] - tmp4461 = __ralloc.v0[388] - tmp4462 = __ralloc.v0[389] - tmp4463 = __ralloc.v0[390] - tmp4464 = __ralloc.v0[391] - tmp4469 = __ralloc.v0[392] - tmp4470 = __ralloc.v0[393] - tmp4472 = __ralloc.v0[394] - tmp4473 = __ralloc.v0[395] - tmp4475 = __ralloc.v0[396] - tmp4476 = __ralloc.v0[397] - tmp4481 = __ralloc.v0[398] - tmp4482 = __ralloc.v0[399] - tmp4483 = __ralloc.v0[400] - tmp4484 = __ralloc.v0[401] - tmp4485 = __ralloc.v0[402] - tmp4486 = __ralloc.v0[403] - tmp4488 = __ralloc.v0[404] - tmp4489 = __ralloc.v0[405] - tmp4490 = __ralloc.v0[406] - tmp4491 = __ralloc.v0[407] - tmp4493 = __ralloc.v0[408] - tmp4494 = __ralloc.v0[409] - tmp4496 = __ralloc.v0[410] - tmp4497 = __ralloc.v0[411] - tmp4498 = __ralloc.v0[412] - tmp4499 = __ralloc.v0[413] - tmp4501 = __ralloc.v0[414] - tmp4502 = __ralloc.v0[415] - tmp4503 = __ralloc.v0[416] - tmp4504 = __ralloc.v0[417] - tmp4506 = __ralloc.v0[418] - tmp4507 = __ralloc.v0[419] - tmp4508 = __ralloc.v0[420] - tmp4509 = __ralloc.v0[421] - tmp4511 = __ralloc.v0[422] - tmp4512 = __ralloc.v0[423] - tmp4514 = __ralloc.v0[424] - tmp4515 = __ralloc.v0[425] - tmp4520 = __ralloc.v0[426] - tmp4523 = __ralloc.v0[427] - tmp4524 = __ralloc.v0[428] - tmp4525 = __ralloc.v0[429] - tmp4527 = __ralloc.v0[430] - tmp4530 = __ralloc.v0[431] - tmp4531 = __ralloc.v0[432] - tmp4538 = __ralloc.v0[433] - tmp4540 = __ralloc.v0[434] - tmp4564 = __ralloc.v0[435] - tmp4565 = __ralloc.v0[436] - tmp4566 = __ralloc.v0[437] - tmp4567 = __ralloc.v0[438] - tmp4568 = __ralloc.v0[439] - tmp4569 = __ralloc.v0[440] + tmp2961 = __ralloc.v0[1] + tmp2962 = __ralloc.v0[2] + tmp2963 = __ralloc.v0[3] + tmp2964 = __ralloc.v0[4] + tmp2965 = __ralloc.v0[5] + tmp2966 = __ralloc.v0[6] + tmp2967 = __ralloc.v0[7] + tmp2968 = __ralloc.v0[8] + tmp2970 = __ralloc.v0[9] + tmp2971 = __ralloc.v0[10] + tmp2972 = __ralloc.v0[11] + tmp2973 = __ralloc.v0[12] + tmp2974 = __ralloc.v0[13] + tmp2975 = __ralloc.v0[14] + tmp2976 = __ralloc.v0[15] + tmp2977 = __ralloc.v0[16] + tmp2978 = __ralloc.v0[17] + tmp2980 = __ralloc.v0[18] + tmp2981 = __ralloc.v0[19] + tmp2983 = __ralloc.v0[20] + tmp2984 = __ralloc.v0[21] + tmp2985 = __ralloc.v0[22] + tmp2986 = __ralloc.v0[23] + tmp2987 = __ralloc.v0[24] + tmp2988 = __ralloc.v0[25] + tmp2989 = __ralloc.v0[26] + tmp2990 = __ralloc.v0[27] + tmp2992 = __ralloc.v0[28] + tmp2993 = __ralloc.v0[29] + tmp2994 = __ralloc.v0[30] + tmp2995 = __ralloc.v0[31] + tmp2996 = __ralloc.v0[32] + tmp2997 = __ralloc.v0[33] + tmp2998 = __ralloc.v0[34] + tmp2999 = __ralloc.v0[35] + tmp3001 = __ralloc.v0[36] + tmp3002 = __ralloc.v0[37] + tmp3003 = __ralloc.v0[38] + tmp3005 = __ralloc.v0[39] + tmp3006 = __ralloc.v0[40] + tmp3008 = __ralloc.v0[41] + tmp3009 = __ralloc.v0[42] + tmp3012 = __ralloc.v0[43] + tmp3013 = __ralloc.v0[44] + tmp3014 = __ralloc.v0[45] + tmp3015 = __ralloc.v0[46] + tmp3017 = __ralloc.v0[47] + tmp3018 = __ralloc.v0[48] + tmp3019 = __ralloc.v0[49] + tmp3020 = __ralloc.v0[50] + tmp3021 = __ralloc.v0[51] + tmp3023 = __ralloc.v0[52] + tmp3024 = __ralloc.v0[53] + tmp3025 = __ralloc.v0[54] + tmp3026 = __ralloc.v0[55] + tmp3028 = __ralloc.v0[56] + tmp3029 = __ralloc.v0[57] + tmp3030 = __ralloc.v0[58] + tmp3031 = __ralloc.v0[59] + tmp3032 = __ralloc.v0[60] + tmp3034 = __ralloc.v0[61] + tmp3035 = __ralloc.v0[62] + tmp3036 = __ralloc.v0[63] + tmp3037 = __ralloc.v0[64] + tmp3039 = __ralloc.v0[65] + tmp3040 = __ralloc.v0[66] + tmp3041 = __ralloc.v0[67] + tmp3042 = __ralloc.v0[68] + tmp3043 = __ralloc.v0[69] + tmp3045 = __ralloc.v0[70] + tmp3046 = __ralloc.v0[71] + tmp3047 = __ralloc.v0[72] + tmp3048 = __ralloc.v0[73] + tmp3050 = __ralloc.v0[74] + tmp3051 = __ralloc.v0[75] + tmp3052 = __ralloc.v0[76] + tmp3053 = __ralloc.v0[77] + tmp3055 = __ralloc.v0[78] + tmp3056 = __ralloc.v0[79] + tmp3057 = __ralloc.v0[80] + tmp3058 = __ralloc.v0[81] + tmp3130 = __ralloc.v0[82] + tmp3132 = __ralloc.v0[83] + tmp3133 = __ralloc.v0[84] + tmp3135 = __ralloc.v0[85] + tmp3136 = __ralloc.v0[86] + tmp3139 = __ralloc.v0[87] + tmp3141 = __ralloc.v0[88] + tmp3143 = __ralloc.v0[89] + tmp3144 = __ralloc.v0[90] + tmp3425 = __ralloc.v0[91] + tmp3427 = __ralloc.v0[92] + tmp3437 = __ralloc.v0[93] + tmp3439 = __ralloc.v0[94] + tmp3449 = __ralloc.v0[95] + tmp3451 = __ralloc.v0[96] + tmp3453 = __ralloc.v0[97] + tmp3455 = __ralloc.v0[98] + tmp3456 = __ralloc.v0[99] + tmp3457 = __ralloc.v0[100] + tmp3458 = __ralloc.v0[101] + tmp3459 = __ralloc.v0[102] + tmp3462 = __ralloc.v0[103] + tmp3464 = __ralloc.v0[104] + tmp3466 = __ralloc.v0[105] + tmp3468 = __ralloc.v0[106] + tmp3469 = __ralloc.v0[107] + tmp3470 = __ralloc.v0[108] + tmp3471 = __ralloc.v0[109] + tmp3472 = __ralloc.v0[110] + tmp3476 = __ralloc.v0[111] + tmp3477 = __ralloc.v0[112] + tmp3479 = __ralloc.v0[113] + tmp3480 = __ralloc.v0[114] + tmp3483 = __ralloc.v0[115] + tmp3484 = __ralloc.v0[116] + tmp3485 = __ralloc.v0[117] + tmp3487 = __ralloc.v0[118] + tmp3488 = __ralloc.v0[119] + tmp3490 = __ralloc.v0[120] + tmp3491 = __ralloc.v0[121] + tmp3494 = __ralloc.v0[122] + tmp3495 = __ralloc.v0[123] + tmp3496 = __ralloc.v0[124] + tmp3499 = __ralloc.v0[125] + tmp3501 = __ralloc.v0[126] + tmp3511 = __ralloc.v0[127] + tmp3513 = __ralloc.v0[128] + tmp3522 = __ralloc.v0[129] + tmp3523 = __ralloc.v0[130] + tmp3525 = __ralloc.v0[131] + tmp3526 = __ralloc.v0[132] + tmp3531 = __ralloc.v0[133] + tmp3532 = __ralloc.v0[134] + tmp3535 = __ralloc.v0[135] + tmp3536 = __ralloc.v0[136] + tmp3541 = __ralloc.v0[137] + tmp3542 = __ralloc.v0[138] + tmp3543 = __ralloc.v0[139] + tmp3544 = __ralloc.v0[140] + tmp3547 = __ralloc.v0[141] + tmp3548 = __ralloc.v0[142] + tmp3549 = __ralloc.v0[143] + tmp3550 = __ralloc.v0[144] + tmp3553 = __ralloc.v0[145] + tmp3554 = __ralloc.v0[146] + tmp3555 = __ralloc.v0[147] + tmp3556 = __ralloc.v0[148] + tmp3559 = __ralloc.v0[149] + tmp3560 = __ralloc.v0[150] + tmp3561 = __ralloc.v0[151] + tmp3562 = __ralloc.v0[152] + tmp3565 = __ralloc.v0[153] + tmp3566 = __ralloc.v0[154] + tmp3567 = __ralloc.v0[155] + tmp3568 = __ralloc.v0[156] + tmp3571 = __ralloc.v0[157] + tmp3572 = __ralloc.v0[158] + tmp3573 = __ralloc.v0[159] + tmp3574 = __ralloc.v0[160] + tmp3577 = __ralloc.v0[161] + tmp3579 = __ralloc.v0[162] + tmp3589 = __ralloc.v0[163] + tmp3591 = __ralloc.v0[164] + tmp3600 = __ralloc.v0[165] + tmp3601 = __ralloc.v0[166] + tmp3603 = __ralloc.v0[167] + tmp3604 = __ralloc.v0[168] + tmp3608 = __ralloc.v0[169] + tmp3611 = __ralloc.v0[170] + tmp3612 = __ralloc.v0[171] + tmp3613 = __ralloc.v0[172] + tmp3614 = __ralloc.v0[173] + tmp3615 = __ralloc.v0[174] + tmp3619 = __ralloc.v0[175] + tmp3622 = __ralloc.v0[176] + tmp3623 = __ralloc.v0[177] + tmp3624 = __ralloc.v0[178] + tmp3625 = __ralloc.v0[179] + tmp3626 = __ralloc.v0[180] + tmp3631 = __ralloc.v0[181] + tmp3632 = __ralloc.v0[182] + tmp3633 = __ralloc.v0[183] + tmp3634 = __ralloc.v0[184] + tmp3635 = __ralloc.v0[185] + tmp3638 = __ralloc.v0[186] + tmp3639 = __ralloc.v0[187] + tmp3640 = __ralloc.v0[188] + tmp3641 = __ralloc.v0[189] + tmp3642 = __ralloc.v0[190] + tmp3644 = __ralloc.v0[191] + tmp3645 = __ralloc.v0[192] + tmp3648 = __ralloc.v0[193] + tmp3649 = __ralloc.v0[194] + tmp3650 = __ralloc.v0[195] + tmp3651 = __ralloc.v0[196] + tmp3652 = __ralloc.v0[197] + tmp3655 = __ralloc.v0[198] + tmp3656 = __ralloc.v0[199] + tmp3657 = __ralloc.v0[200] + tmp3658 = __ralloc.v0[201] + tmp3659 = __ralloc.v0[202] + tmp3661 = __ralloc.v0[203] + tmp3662 = __ralloc.v0[204] + tmp3664 = __ralloc.v0[205] + tmp3670 = __ralloc.v0[206] + tmp3671 = __ralloc.v0[207] + tmp3672 = __ralloc.v0[208] + tmp3673 = __ralloc.v0[209] + tmp3674 = __ralloc.v0[210] + tmp3675 = __ralloc.v0[211] + tmp3677 = __ralloc.v0[212] + tmp3678 = __ralloc.v0[213] + tmp3679 = __ralloc.v0[214] + tmp3680 = __ralloc.v0[215] + tmp3681 = __ralloc.v0[216] + tmp3682 = __ralloc.v0[217] + tmp3684 = __ralloc.v0[218] + tmp3685 = __ralloc.v0[219] + tmp3686 = __ralloc.v0[220] + tmp3687 = __ralloc.v0[221] + tmp3688 = __ralloc.v0[222] + tmp3689 = __ralloc.v0[223] + tmp3691 = __ralloc.v0[224] + tmp3692 = __ralloc.v0[225] + tmp3693 = __ralloc.v0[226] + tmp3694 = __ralloc.v0[227] + tmp3696 = __ralloc.v0[228] + tmp3697 = __ralloc.v0[229] + tmp3698 = __ralloc.v0[230] + tmp3699 = __ralloc.v0[231] + tmp3701 = __ralloc.v0[232] + tmp3702 = __ralloc.v0[233] + tmp3703 = __ralloc.v0[234] + tmp3704 = __ralloc.v0[235] + tmp3712 = __ralloc.v0[236] + tmp3713 = __ralloc.v0[237] + tmp3714 = __ralloc.v0[238] + tmp3715 = __ralloc.v0[239] + tmp3717 = __ralloc.v0[240] + tmp3718 = __ralloc.v0[241] + tmp3719 = __ralloc.v0[242] + tmp3720 = __ralloc.v0[243] + tmp3722 = __ralloc.v0[244] + tmp3723 = __ralloc.v0[245] + tmp3724 = __ralloc.v0[246] + tmp3725 = __ralloc.v0[247] + tmp3727 = __ralloc.v0[248] + tmp3728 = __ralloc.v0[249] + tmp3730 = __ralloc.v0[250] + tmp3731 = __ralloc.v0[251] + tmp3733 = __ralloc.v0[252] + tmp3734 = __ralloc.v0[253] + tmp3736 = __ralloc.v0[254] + tmp3737 = __ralloc.v0[255] + tmp3738 = __ralloc.v0[256] + tmp3739 = __ralloc.v0[257] + tmp3741 = __ralloc.v0[258] + tmp3742 = __ralloc.v0[259] + tmp3743 = __ralloc.v0[260] + tmp3744 = __ralloc.v0[261] + tmp3746 = __ralloc.v0[262] + tmp3747 = __ralloc.v0[263] + tmp3748 = __ralloc.v0[264] + tmp3749 = __ralloc.v0[265] + tmp3754 = __ralloc.v0[266] + tmp3755 = __ralloc.v0[267] + tmp3756 = __ralloc.v0[268] + tmp3757 = __ralloc.v0[269] + tmp3759 = __ralloc.v0[270] + tmp3760 = __ralloc.v0[271] + tmp3761 = __ralloc.v0[272] + tmp3762 = __ralloc.v0[273] + tmp3764 = __ralloc.v0[274] + tmp3765 = __ralloc.v0[275] + tmp3766 = __ralloc.v0[276] + tmp3767 = __ralloc.v0[277] + tmp3769 = __ralloc.v0[278] + tmp3770 = __ralloc.v0[279] + tmp3771 = __ralloc.v0[280] + tmp3772 = __ralloc.v0[281] + tmp3774 = __ralloc.v0[282] + tmp3775 = __ralloc.v0[283] + tmp3776 = __ralloc.v0[284] + tmp3777 = __ralloc.v0[285] + tmp3779 = __ralloc.v0[286] + tmp3780 = __ralloc.v0[287] + tmp3781 = __ralloc.v0[288] + tmp3782 = __ralloc.v0[289] + tmp3784 = __ralloc.v0[290] + tmp3785 = __ralloc.v0[291] + tmp3786 = __ralloc.v0[292] + tmp3787 = __ralloc.v0[293] + tmp3789 = __ralloc.v0[294] + tmp3790 = __ralloc.v0[295] + tmp3791 = __ralloc.v0[296] + tmp3792 = __ralloc.v0[297] + tmp3794 = __ralloc.v0[298] + tmp3795 = __ralloc.v0[299] + tmp3796 = __ralloc.v0[300] + tmp3797 = __ralloc.v0[301] + tmp3799 = __ralloc.v0[302] + tmp3800 = __ralloc.v0[303] + tmp3801 = __ralloc.v0[304] + tmp3802 = __ralloc.v0[305] + tmp3804 = __ralloc.v0[306] + tmp3805 = __ralloc.v0[307] + tmp3806 = __ralloc.v0[308] + tmp3807 = __ralloc.v0[309] + tmp3809 = __ralloc.v0[310] + tmp3810 = __ralloc.v0[311] + tmp3811 = __ralloc.v0[312] + tmp3812 = __ralloc.v0[313] + tmp3814 = __ralloc.v0[314] + tmp3815 = __ralloc.v0[315] + tmp3817 = __ralloc.v0[316] + tmp3818 = __ralloc.v0[317] + tmp3820 = __ralloc.v0[318] + tmp3821 = __ralloc.v0[319] + tmp3823 = __ralloc.v0[320] + tmp3824 = __ralloc.v0[321] + tmp3826 = __ralloc.v0[322] + tmp3827 = __ralloc.v0[323] + tmp3829 = __ralloc.v0[324] + tmp3830 = __ralloc.v0[325] + tmp3832 = __ralloc.v0[326] + tmp3833 = __ralloc.v0[327] + tmp3835 = __ralloc.v0[328] + tmp3836 = __ralloc.v0[329] + tmp3838 = __ralloc.v0[330] + tmp3839 = __ralloc.v0[331] + tmp3841 = __ralloc.v0[332] + tmp3842 = __ralloc.v0[333] + tmp3844 = __ralloc.v0[334] + tmp3845 = __ralloc.v0[335] + tmp3847 = __ralloc.v0[336] + tmp3848 = __ralloc.v0[337] + tmp3852 = __ralloc.v0[338] + tmp3853 = __ralloc.v0[339] + tmp3858 = __ralloc.v0[340] + tmp3860 = __ralloc.v0[341] + tmp3861 = __ralloc.v0[342] + tmp3862 = __ralloc.v0[343] + tmp3863 = __ralloc.v0[344] + tmp3865 = __ralloc.v0[345] + tmp3866 = __ralloc.v0[346] + tmp3868 = __ralloc.v0[347] + tmp3869 = __ralloc.v0[348] + tmp3870 = __ralloc.v0[349] + tmp3871 = __ralloc.v0[350] + tmp3873 = __ralloc.v0[351] + tmp3874 = __ralloc.v0[352] + tmp3876 = __ralloc.v0[353] + tmp3877 = __ralloc.v0[354] + tmp3878 = __ralloc.v0[355] + tmp3879 = __ralloc.v0[356] + tmp3881 = __ralloc.v0[357] + tmp3882 = __ralloc.v0[358] + tmp3884 = __ralloc.v0[359] + tmp3885 = __ralloc.v0[360] + tmp3886 = __ralloc.v0[361] + tmp3887 = __ralloc.v0[362] + tmp3889 = __ralloc.v0[363] + tmp3890 = __ralloc.v0[364] + tmp3891 = __ralloc.v0[365] + tmp3892 = __ralloc.v0[366] + tmp3894 = __ralloc.v0[367] + tmp3895 = __ralloc.v0[368] + tmp3896 = __ralloc.v0[369] + tmp3897 = __ralloc.v0[370] + tmp3899 = __ralloc.v0[371] + tmp3900 = __ralloc.v0[372] + tmp3901 = __ralloc.v0[373] + tmp3902 = __ralloc.v0[374] + tmp3904 = __ralloc.v0[375] + tmp3905 = __ralloc.v0[376] + tmp3906 = __ralloc.v0[377] + tmp3907 = __ralloc.v0[378] + tmp3909 = __ralloc.v0[379] + tmp3911 = __ralloc.v0[380] + tmp3912 = __ralloc.v0[381] + tmp3913 = __ralloc.v0[382] + tmp3914 = __ralloc.v0[383] + tmp3916 = __ralloc.v0[384] + tmp3917 = __ralloc.v0[385] + tmp3918 = __ralloc.v0[386] + tmp3919 = __ralloc.v0[387] + tmp3921 = __ralloc.v0[388] + tmp3922 = __ralloc.v0[389] + tmp3923 = __ralloc.v0[390] + tmp3924 = __ralloc.v0[391] + tmp3929 = __ralloc.v0[392] + tmp3930 = __ralloc.v0[393] + tmp3932 = __ralloc.v0[394] + tmp3933 = __ralloc.v0[395] + tmp3935 = __ralloc.v0[396] + tmp3936 = __ralloc.v0[397] + tmp3941 = __ralloc.v0[398] + tmp3942 = __ralloc.v0[399] + tmp3943 = __ralloc.v0[400] + tmp3944 = __ralloc.v0[401] + tmp3945 = __ralloc.v0[402] + tmp3946 = __ralloc.v0[403] + tmp3948 = __ralloc.v0[404] + tmp3949 = __ralloc.v0[405] + tmp3950 = __ralloc.v0[406] + tmp3951 = __ralloc.v0[407] + tmp3953 = __ralloc.v0[408] + tmp3954 = __ralloc.v0[409] + tmp3956 = __ralloc.v0[410] + tmp3957 = __ralloc.v0[411] + tmp3958 = __ralloc.v0[412] + tmp3959 = __ralloc.v0[413] + tmp3961 = __ralloc.v0[414] + tmp3962 = __ralloc.v0[415] + tmp3963 = __ralloc.v0[416] + tmp3964 = __ralloc.v0[417] + tmp3966 = __ralloc.v0[418] + tmp3967 = __ralloc.v0[419] + tmp3968 = __ralloc.v0[420] + tmp3969 = __ralloc.v0[421] + tmp3971 = __ralloc.v0[422] + tmp3972 = __ralloc.v0[423] + tmp3974 = __ralloc.v0[424] + tmp3975 = __ralloc.v0[425] + tmp3980 = __ralloc.v0[426] + tmp3983 = __ralloc.v0[427] + tmp3984 = __ralloc.v0[428] + tmp3985 = __ralloc.v0[429] + tmp3987 = __ralloc.v0[430] + tmp3990 = __ralloc.v0[431] + tmp3991 = __ralloc.v0[432] + tmp3998 = __ralloc.v0[433] + tmp4000 = __ralloc.v0[434] + tmp4024 = __ralloc.v0[435] + tmp4025 = __ralloc.v0[436] + tmp4026 = __ralloc.v0[437] + tmp4027 = __ralloc.v0[438] + tmp4028 = __ralloc.v0[439] + tmp4029 = __ralloc.v0[440] ϕ_m = __ralloc.v0[441] θ_m = __ralloc.v0[442] ψ_m = __ralloc.v0[443] - tmp4571 = __ralloc.v0[444] - tmp4572 = __ralloc.v0[445] - tmp4573 = __ralloc.v0[446] - tmp4574 = __ralloc.v0[447] - tmp4575 = __ralloc.v0[448] - tmp4576 = __ralloc.v0[449] - tmp4577 = __ralloc.v0[450] - tmp4578 = __ralloc.v0[451] - tmp4579 = __ralloc.v0[452] - tmp4580 = __ralloc.v0[453] - tmp4581 = __ralloc.v0[454] - tmp4582 = __ralloc.v0[455] - tmp4583 = __ralloc.v0[456] - tmp4584 = __ralloc.v0[457] - tmp4585 = __ralloc.v0[458] - tmp4586 = __ralloc.v0[459] - tmp4587 = __ralloc.v0[460] - tmp4588 = __ralloc.v0[461] - tmp4589 = __ralloc.v0[462] - tmp4590 = __ralloc.v0[463] - tmp4591 = __ralloc.v0[464] - tmp4592 = __ralloc.v0[465] - tmp4593 = __ralloc.v0[466] - tmp4594 = __ralloc.v0[467] - tmp4595 = __ralloc.v0[468] - tmp4596 = __ralloc.v0[469] - tmp4597 = __ralloc.v0[470] - tmp4598 = __ralloc.v0[471] - tmp4599 = __ralloc.v0[472] + tmp4031 = __ralloc.v0[444] + tmp4032 = __ralloc.v0[445] + tmp4033 = __ralloc.v0[446] + tmp4034 = __ralloc.v0[447] + tmp4035 = __ralloc.v0[448] + tmp4036 = __ralloc.v0[449] + tmp4037 = __ralloc.v0[450] + tmp4038 = __ralloc.v0[451] + tmp4039 = __ralloc.v0[452] + tmp4040 = __ralloc.v0[453] + tmp4041 = __ralloc.v0[454] + tmp4042 = __ralloc.v0[455] + tmp4043 = __ralloc.v0[456] + tmp4044 = __ralloc.v0[457] + tmp4045 = __ralloc.v0[458] + tmp4046 = __ralloc.v0[459] + tmp4047 = __ralloc.v0[460] + tmp4048 = __ralloc.v0[461] + tmp4049 = __ralloc.v0[462] + tmp4050 = __ralloc.v0[463] + tmp4051 = __ralloc.v0[464] + tmp4052 = __ralloc.v0[465] + tmp4053 = __ralloc.v0[466] + tmp4054 = __ralloc.v0[467] + tmp4055 = __ralloc.v0[468] + tmp4056 = __ralloc.v0[469] + tmp4057 = __ralloc.v0[470] + tmp4058 = __ralloc.v0[471] + tmp4059 = __ralloc.v0[472] ϕ_c = __ralloc.v0[473] - tmp4600 = __ralloc.v0[474] - tmp4601 = __ralloc.v0[475] - tmp4602 = __ralloc.v0[476] - tmp4603 = __ralloc.v0[477] - tmp4604 = __ralloc.v0[478] - tmp4605 = __ralloc.v0[479] - tmp4606 = __ralloc.v0[480] - tmp4607 = __ralloc.v0[481] - tmp4608 = __ralloc.v0[482] - tmp4609 = __ralloc.v0[483] - tmp4610 = __ralloc.v0[484] - tmp4611 = __ralloc.v0[485] + tmp4060 = __ralloc.v0[474] + tmp4061 = __ralloc.v0[475] + tmp4062 = __ralloc.v0[476] + tmp4063 = __ralloc.v0[477] + tmp4064 = __ralloc.v0[478] + tmp4065 = __ralloc.v0[479] + tmp4066 = __ralloc.v0[480] + tmp4067 = __ralloc.v0[481] + tmp4068 = __ralloc.v0[482] + tmp4069 = __ralloc.v0[483] + tmp4070 = __ralloc.v0[484] + tmp4071 = __ralloc.v0[485] ω_c_CE_1 = __ralloc.v0[486] ω_c_CE_2 = __ralloc.v0[487] ω_c_CE_3 = __ralloc.v0[488] @@ -7237,14 +8053,14 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract Ic_dωc_1 = __ralloc.v0[657] Ic_dωc_2 = __ralloc.v0[658] Ic_dωc_3 = __ralloc.v0[659] - tmp4612 = __ralloc.v0[660] - tmp4613 = __ralloc.v0[661] - tmp4614 = __ralloc.v0[662] - tmp4615 = __ralloc.v0[663] - tmp4616 = __ralloc.v0[664] - tmp4617 = __ralloc.v0[665] - tmp4618 = __ralloc.v0[666] - tmp4619 = __ralloc.v0[667] + tmp4072 = __ralloc.v0[660] + tmp4073 = __ralloc.v0[661] + tmp4074 = __ralloc.v0[662] + tmp4075 = __ralloc.v0[663] + tmp4076 = __ralloc.v0[664] + tmp4077 = __ralloc.v0[665] + tmp4078 = __ralloc.v0[666] + tmp4079 = __ralloc.v0[667] w_LE = __ralloc.v0[668] α_TTmTDB = __ralloc.v0[669] v4E = __ralloc.v0[670] @@ -7272,19 +8088,19 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract temp_N_M_z = __ralloc.v1[20] N_MfigM = __ralloc.v1[21] J2_t = __ralloc.v1[22] - tmp3607 = __ralloc.v1[23] - tmp3609 = __ralloc.v1[24] - tmp3612 = __ralloc.v1[25] - tmp3614 = __ralloc.v1[26] - tmp3617 = __ralloc.v1[27] - tmp3619 = __ralloc.v1[28] - tmp3663 = __ralloc.v1[29] - tmp3665 = __ralloc.v1[30] - tmp3666 = __ralloc.v1[31] - tmp3668 = __ralloc.v1[32] - tmp4545 = __ralloc.v1[33] - tmp4547 = __ralloc.v1[34] - tmp4548 = __ralloc.v1[35] + tmp3067 = __ralloc.v1[23] + tmp3069 = __ralloc.v1[24] + tmp3072 = __ralloc.v1[25] + tmp3074 = __ralloc.v1[26] + tmp3077 = __ralloc.v1[27] + tmp3079 = __ralloc.v1[28] + tmp3123 = __ralloc.v1[29] + tmp3125 = __ralloc.v1[30] + tmp3126 = __ralloc.v1[31] + tmp3128 = __ralloc.v1[32] + tmp4005 = __ralloc.v1[33] + tmp4007 = __ralloc.v1[34] + tmp4008 = __ralloc.v1[35] β_TTmTDB_i_2 = __ralloc.v1[36] X = __ralloc.v2[1] Y = __ralloc.v2[2] @@ -7375,80 +8191,80 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract pn2x = __ralloc.v2[87] pn2y = __ralloc.v2[88] pn2z = __ralloc.v2[89] - tmp3627 = __ralloc.v2[90] - tmp3630 = __ralloc.v2[91] - tmp3632 = __ralloc.v2[92] - tmp3633 = __ralloc.v2[93] - tmp3635 = __ralloc.v2[94] - tmp3643 = __ralloc.v2[95] - tmp3644 = __ralloc.v2[96] - tmp3655 = __ralloc.v2[97] + tmp3087 = __ralloc.v2[90] + tmp3090 = __ralloc.v2[91] + tmp3092 = __ralloc.v2[92] + tmp3093 = __ralloc.v2[93] + tmp3095 = __ralloc.v2[94] + tmp3103 = __ralloc.v2[95] + tmp3104 = __ralloc.v2[96] + tmp3115 = __ralloc.v2[97] temp_001 = __ralloc.v2[98] - tmp3657 = __ralloc.v2[99] + tmp3117 = __ralloc.v2[99] temp_002 = __ralloc.v2[100] - tmp3659 = __ralloc.v2[101] + tmp3119 = __ralloc.v2[101] temp_003 = __ralloc.v2[102] temp_004 = __ralloc.v2[103] - tmp3696 = __ralloc.v2[104] - tmp3698 = __ralloc.v2[105] - tmp3700 = __ralloc.v2[106] - tmp3704 = __ralloc.v2[107] - tmp3706 = __ralloc.v2[108] - tmp3707 = __ralloc.v2[109] - tmp3813 = __ralloc.v2[110] - tmp3814 = __ralloc.v2[111] - tmp3817 = __ralloc.v2[112] - tmp3818 = __ralloc.v2[113] - tmp3824 = __ralloc.v2[114] - tmp3827 = __ralloc.v2[115] - tmp3889 = __ralloc.v2[116] - tmp3891 = __ralloc.v2[117] - tmp3893 = __ralloc.v2[118] - tmp3895 = __ralloc.v2[119] - tmp3897 = __ralloc.v2[120] - tmp3899 = __ralloc.v2[121] - tmp3901 = __ralloc.v2[122] - tmp3902 = __ralloc.v2[123] - tmp3903 = __ralloc.v2[124] - tmp3905 = __ralloc.v2[125] - tmp3906 = __ralloc.v2[126] - tmp3907 = __ralloc.v2[127] - tmp3909 = __ralloc.v2[128] - tmp3910 = __ralloc.v2[129] - tmp3911 = __ralloc.v2[130] - tmp3923 = __ralloc.v2[131] + tmp3156 = __ralloc.v2[104] + tmp3158 = __ralloc.v2[105] + tmp3160 = __ralloc.v2[106] + tmp3164 = __ralloc.v2[107] + tmp3166 = __ralloc.v2[108] + tmp3167 = __ralloc.v2[109] + tmp3273 = __ralloc.v2[110] + tmp3274 = __ralloc.v2[111] + tmp3277 = __ralloc.v2[112] + tmp3278 = __ralloc.v2[113] + tmp3284 = __ralloc.v2[114] + tmp3287 = __ralloc.v2[115] + tmp3349 = __ralloc.v2[116] + tmp3351 = __ralloc.v2[117] + tmp3353 = __ralloc.v2[118] + tmp3355 = __ralloc.v2[119] + tmp3357 = __ralloc.v2[120] + tmp3359 = __ralloc.v2[121] + tmp3361 = __ralloc.v2[122] + tmp3362 = __ralloc.v2[123] + tmp3363 = __ralloc.v2[124] + tmp3365 = __ralloc.v2[125] + tmp3366 = __ralloc.v2[126] + tmp3367 = __ralloc.v2[127] + tmp3369 = __ralloc.v2[128] + tmp3370 = __ralloc.v2[129] + tmp3371 = __ralloc.v2[130] + tmp3383 = __ralloc.v2[131] Xij_t_Ui = __ralloc.v2[132] Yij_t_Vi = __ralloc.v2[133] Zij_t_Wi = __ralloc.v2[134] - tmp3929 = __ralloc.v2[135] + tmp3389 = __ralloc.v2[135] Rij_dot_Vi = __ralloc.v2[136] - tmp3932 = __ralloc.v2[137] - tmp3935 = __ralloc.v2[138] + tmp3392 = __ralloc.v2[137] + tmp3395 = __ralloc.v2[138] pn1t2_7 = __ralloc.v2[139] - tmp3942 = __ralloc.v2[140] - tmp3943 = __ralloc.v2[141] - tmp3944 = __ralloc.v2[142] - tmp3952 = __ralloc.v2[143] + tmp3402 = __ralloc.v2[140] + tmp3403 = __ralloc.v2[141] + tmp3404 = __ralloc.v2[142] + tmp3412 = __ralloc.v2[143] termpnx = __ralloc.v2[144] sumpnx = __ralloc.v2[145] - tmp3955 = __ralloc.v2[146] + tmp3415 = __ralloc.v2[146] termpny = __ralloc.v2[147] sumpny = __ralloc.v2[148] - tmp3958 = __ralloc.v2[149] + tmp3418 = __ralloc.v2[149] termpnz = __ralloc.v2[150] sumpnz = __ralloc.v2[151] β_TTmTDB_i_1 = __ralloc.v2[152] - tmp4550 = __ralloc.v2[153] - tmp4551 = __ralloc.v2[154] - tmp4552 = __ralloc.v2[155] - tmp4553 = __ralloc.v2[156] - tmp4554 = __ralloc.v2[157] + tmp4010 = __ralloc.v2[153] + tmp4011 = __ralloc.v2[154] + tmp4012 = __ralloc.v2[155] + tmp4013 = __ralloc.v2[156] + tmp4014 = __ralloc.v2[157] β_TTmTDB_i_3 = __ralloc.v2[158] β_TTmTDB_i_4 = __ralloc.v2[159] - tmp4559 = __ralloc.v2[160] - tmp4560 = __ralloc.v2[161] + tmp4019 = __ralloc.v2[160] + tmp4020 = __ralloc.v2[161] β_TTmTDB_i = __ralloc.v2[162] - tmp4562 = __ralloc.v2[163] + tmp4022 = __ralloc.v2[163] temp_β_TTmTDB = __ralloc.v2[164] P_n = __ralloc.v3[1] dP_n = __ralloc.v3[2] @@ -7458,45 +8274,45 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract sin_mλ = __ralloc.v3[6] cos_mλ = __ralloc.v3[7] RotM = __ralloc.v3[8] - tmp3712 = __ralloc.v3[9] - tmp3713 = __ralloc.v3[10] - tmp3714 = __ralloc.v3[11] - tmp3716 = __ralloc.v3[12] - tmp3717 = __ralloc.v3[13] - tmp3722 = __ralloc.v3[14] - tmp3723 = __ralloc.v3[15] - tmp3725 = __ralloc.v3[16] - tmp3726 = __ralloc.v3[17] - tmp3727 = __ralloc.v3[18] - tmp3729 = __ralloc.v3[19] - tmp3730 = __ralloc.v3[20] - tmp3731 = __ralloc.v3[21] - tmp3733 = __ralloc.v3[22] - tmp3734 = __ralloc.v3[23] - tmp3735 = __ralloc.v3[24] - tmp3736 = __ralloc.v3[25] - tmp3739 = __ralloc.v3[26] - tmp3740 = __ralloc.v3[27] - tmp3742 = __ralloc.v3[28] - tmp3743 = __ralloc.v3[29] - tmp3762 = __ralloc.v3[30] - tmp3763 = __ralloc.v3[31] - tmp3764 = __ralloc.v3[32] - tmp3767 = __ralloc.v3[33] - tmp3768 = __ralloc.v3[34] - tmp3769 = __ralloc.v3[35] - tmp3774 = __ralloc.v3[36] - tmp3775 = __ralloc.v3[37] - tmp3776 = __ralloc.v3[38] - tmp3779 = __ralloc.v3[39] - tmp3780 = __ralloc.v3[40] - tmp3781 = __ralloc.v3[41] - tmp3785 = __ralloc.v3[42] - tmp3786 = __ralloc.v3[43] - tmp3787 = __ralloc.v3[44] - tmp3789 = __ralloc.v3[45] - tmp3790 = __ralloc.v3[46] - tmp3791 = __ralloc.v3[47] + tmp3172 = __ralloc.v3[9] + tmp3173 = __ralloc.v3[10] + tmp3174 = __ralloc.v3[11] + tmp3176 = __ralloc.v3[12] + tmp3177 = __ralloc.v3[13] + tmp3182 = __ralloc.v3[14] + tmp3183 = __ralloc.v3[15] + tmp3185 = __ralloc.v3[16] + tmp3186 = __ralloc.v3[17] + tmp3187 = __ralloc.v3[18] + tmp3189 = __ralloc.v3[19] + tmp3190 = __ralloc.v3[20] + tmp3191 = __ralloc.v3[21] + tmp3193 = __ralloc.v3[22] + tmp3194 = __ralloc.v3[23] + tmp3195 = __ralloc.v3[24] + tmp3196 = __ralloc.v3[25] + tmp3199 = __ralloc.v3[26] + tmp3200 = __ralloc.v3[27] + tmp3202 = __ralloc.v3[28] + tmp3203 = __ralloc.v3[29] + tmp3222 = __ralloc.v3[30] + tmp3223 = __ralloc.v3[31] + tmp3224 = __ralloc.v3[32] + tmp3227 = __ralloc.v3[33] + tmp3228 = __ralloc.v3[34] + tmp3229 = __ralloc.v3[35] + tmp3234 = __ralloc.v3[36] + tmp3235 = __ralloc.v3[37] + tmp3236 = __ralloc.v3[38] + tmp3239 = __ralloc.v3[39] + tmp3240 = __ralloc.v3[40] + tmp3241 = __ralloc.v3[41] + tmp3245 = __ralloc.v3[42] + tmp3246 = __ralloc.v3[43] + tmp3247 = __ralloc.v3[44] + tmp3249 = __ralloc.v3[45] + tmp3250 = __ralloc.v3[46] + tmp3251 = __ralloc.v3[47] temp_CS_ξ = __ralloc.v4[1] temp_CS_η = __ralloc.v4[2] temp_CS_ζ = __ralloc.v4[3] @@ -7509,87 +8325,87 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract cosϕ_dP_nm = __ralloc.v4[10] Rb2p = __ralloc.v4[11] Gc2p = __ralloc.v4[12] - tmp3745 = __ralloc.v4[13] - tmp3748 = __ralloc.v4[14] - tmp3750 = __ralloc.v4[15] - tmp3752 = __ralloc.v4[16] - tmp3753 = __ralloc.v4[17] - tmp3754 = __ralloc.v4[18] - tmp3757 = __ralloc.v4[19] - tmp3758 = __ralloc.v4[20] - tmp3759 = __ralloc.v4[21] - tmp3761 = __ralloc.v4[22] - tmp3765 = __ralloc.v4[23] - tmp3766 = __ralloc.v4[24] - tmp3770 = __ralloc.v4[25] - tmp3771 = __ralloc.v4[26] - tmp3773 = __ralloc.v4[27] - tmp3777 = __ralloc.v4[28] - tmp3778 = __ralloc.v4[29] - tmp3782 = __ralloc.v4[30] - tmp3783 = __ralloc.v4[31] - tmp3788 = __ralloc.v4[32] - tmp3792 = __ralloc.v4[33] - tmp3793 = __ralloc.v4[34] - tmp3799 = __ralloc.v4[35] - tmp3800 = __ralloc.v4[36] - tmp3801 = __ralloc.v4[37] - tmp3802 = __ralloc.v4[38] - tmp3804 = __ralloc.v4[39] - tmp3805 = __ralloc.v4[40] - tmp3806 = __ralloc.v4[41] - tmp3807 = __ralloc.v4[42] - tmp3809 = __ralloc.v4[43] - tmp3810 = __ralloc.v4[44] - tmp3811 = __ralloc.v4[45] - tmp3829 = __ralloc.v4[46] - tmp3830 = __ralloc.v4[47] - tmp3831 = __ralloc.v4[48] - tmp3832 = __ralloc.v4[49] - tmp3834 = __ralloc.v4[50] - tmp3835 = __ralloc.v4[51] - tmp3836 = __ralloc.v4[52] - tmp3837 = __ralloc.v4[53] - tmp3839 = __ralloc.v4[54] - tmp3840 = __ralloc.v4[55] - tmp3841 = __ralloc.v4[56] - tmp3842 = __ralloc.v4[57] - tmp3844 = __ralloc.v4[58] - tmp3845 = __ralloc.v4[59] - tmp3846 = __ralloc.v4[60] - tmp3847 = __ralloc.v4[61] - tmp3849 = __ralloc.v4[62] - tmp3850 = __ralloc.v4[63] - tmp3851 = __ralloc.v4[64] - tmp3852 = __ralloc.v4[65] - tmp3854 = __ralloc.v4[66] - tmp3855 = __ralloc.v4[67] - tmp3856 = __ralloc.v4[68] - tmp3857 = __ralloc.v4[69] - tmp3859 = __ralloc.v4[70] - tmp3860 = __ralloc.v4[71] - tmp3861 = __ralloc.v4[72] - tmp3862 = __ralloc.v4[73] - tmp3864 = __ralloc.v4[74] - tmp3865 = __ralloc.v4[75] - tmp3866 = __ralloc.v4[76] - tmp3867 = __ralloc.v4[77] - tmp3869 = __ralloc.v4[78] - tmp3870 = __ralloc.v4[79] - tmp3871 = __ralloc.v4[80] - tmp3872 = __ralloc.v4[81] - tmp3874 = __ralloc.v4[82] - tmp3875 = __ralloc.v4[83] - tmp3876 = __ralloc.v4[84] - tmp3877 = __ralloc.v4[85] - tmp3879 = __ralloc.v4[86] - tmp3880 = __ralloc.v4[87] - tmp3881 = __ralloc.v4[88] - tmp3882 = __ralloc.v4[89] - tmp3884 = __ralloc.v4[90] - tmp3885 = __ralloc.v4[91] - tmp3886 = __ralloc.v4[92] - tmp3887 = __ralloc.v4[93] + tmp3205 = __ralloc.v4[13] + tmp3208 = __ralloc.v4[14] + tmp3210 = __ralloc.v4[15] + tmp3212 = __ralloc.v4[16] + tmp3213 = __ralloc.v4[17] + tmp3214 = __ralloc.v4[18] + tmp3217 = __ralloc.v4[19] + tmp3218 = __ralloc.v4[20] + tmp3219 = __ralloc.v4[21] + tmp3221 = __ralloc.v4[22] + tmp3225 = __ralloc.v4[23] + tmp3226 = __ralloc.v4[24] + tmp3230 = __ralloc.v4[25] + tmp3231 = __ralloc.v4[26] + tmp3233 = __ralloc.v4[27] + tmp3237 = __ralloc.v4[28] + tmp3238 = __ralloc.v4[29] + tmp3242 = __ralloc.v4[30] + tmp3243 = __ralloc.v4[31] + tmp3248 = __ralloc.v4[32] + tmp3252 = __ralloc.v4[33] + tmp3253 = __ralloc.v4[34] + tmp3259 = __ralloc.v4[35] + tmp3260 = __ralloc.v4[36] + tmp3261 = __ralloc.v4[37] + tmp3262 = __ralloc.v4[38] + tmp3264 = __ralloc.v4[39] + tmp3265 = __ralloc.v4[40] + tmp3266 = __ralloc.v4[41] + tmp3267 = __ralloc.v4[42] + tmp3269 = __ralloc.v4[43] + tmp3270 = __ralloc.v4[44] + tmp3271 = __ralloc.v4[45] + tmp3289 = __ralloc.v4[46] + tmp3290 = __ralloc.v4[47] + tmp3291 = __ralloc.v4[48] + tmp3292 = __ralloc.v4[49] + tmp3294 = __ralloc.v4[50] + tmp3295 = __ralloc.v4[51] + tmp3296 = __ralloc.v4[52] + tmp3297 = __ralloc.v4[53] + tmp3299 = __ralloc.v4[54] + tmp3300 = __ralloc.v4[55] + tmp3301 = __ralloc.v4[56] + tmp3302 = __ralloc.v4[57] + tmp3304 = __ralloc.v4[58] + tmp3305 = __ralloc.v4[59] + tmp3306 = __ralloc.v4[60] + tmp3307 = __ralloc.v4[61] + tmp3309 = __ralloc.v4[62] + tmp3310 = __ralloc.v4[63] + tmp3311 = __ralloc.v4[64] + tmp3312 = __ralloc.v4[65] + tmp3314 = __ralloc.v4[66] + tmp3315 = __ralloc.v4[67] + tmp3316 = __ralloc.v4[68] + tmp3317 = __ralloc.v4[69] + tmp3319 = __ralloc.v4[70] + tmp3320 = __ralloc.v4[71] + tmp3321 = __ralloc.v4[72] + tmp3322 = __ralloc.v4[73] + tmp3324 = __ralloc.v4[74] + tmp3325 = __ralloc.v4[75] + tmp3326 = __ralloc.v4[76] + tmp3327 = __ralloc.v4[77] + tmp3329 = __ralloc.v4[78] + tmp3330 = __ralloc.v4[79] + tmp3331 = __ralloc.v4[80] + tmp3332 = __ralloc.v4[81] + tmp3334 = __ralloc.v4[82] + tmp3335 = __ralloc.v4[83] + tmp3336 = __ralloc.v4[84] + tmp3337 = __ralloc.v4[85] + tmp3339 = __ralloc.v4[86] + tmp3340 = __ralloc.v4[87] + tmp3341 = __ralloc.v4[88] + tmp3342 = __ralloc.v4[89] + tmp3344 = __ralloc.v4[90] + tmp3345 = __ralloc.v4[91] + tmp3346 = __ralloc.v4[92] + tmp3347 = __ralloc.v4[93] local (N, jd0) = params local __t = Taylor1(numtype(t), t.order) local S = eltype(q) @@ -7613,316 +8429,316 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract local I_c_t = I_c .* one_t local inv_I_c_t = inv(I_c_t) local I_M_t = I_m_t + I_c_t + TaylorSeries.zero!(N_MfigM[1]) (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[2]) (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[3]) (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) - (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) local αs = deg2rad(α_p_sun * one_t) local δs = deg2rad(δ_p_sun * one_t) local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) local RotM[:, :, su] = pole_rotation(αs, δs) + TaylorSeries.zero!(ϕ_m) ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) - ϕ_m.coeffs[2:order + 1] .= zero(ϕ_m.coeffs[1]) + TaylorSeries.zero!(θ_m) θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) - θ_m.coeffs[2:order + 1] .= zero(θ_m.coeffs[1]) + TaylorSeries.zero!(ψ_m) ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) - ψ_m.coeffs[2:order + 1] .= zero(ψ_m.coeffs[1]) - tmp3501.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3501.coeffs[2:order + 1] .= zero(tmp3501.coeffs[1]) - tmp4571.coeffs[1] = sin(constant_term(ϕ_m)) - tmp4571.coeffs[2:order + 1] .= zero(tmp4571.coeffs[1]) - tmp3502.coeffs[1] = cos(constant_term(ψ_m)) - tmp3502.coeffs[2:order + 1] .= zero(tmp3502.coeffs[1]) - tmp4572.coeffs[1] = sin(constant_term(ψ_m)) - tmp4572.coeffs[2:order + 1] .= zero(tmp4572.coeffs[1]) - tmp3503.coeffs[1] = constant_term(tmp3501) * constant_term(tmp3502) - tmp3503.coeffs[2:order + 1] .= zero(tmp3503.coeffs[1]) - tmp3504.coeffs[1] = cos(constant_term(θ_m)) - tmp3504.coeffs[2:order + 1] .= zero(tmp3504.coeffs[1]) - tmp4573.coeffs[1] = sin(constant_term(θ_m)) - tmp4573.coeffs[2:order + 1] .= zero(tmp4573.coeffs[1]) - tmp3505.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3505.coeffs[2:order + 1] .= zero(tmp3505.coeffs[1]) - tmp4574.coeffs[1] = cos(constant_term(ϕ_m)) - tmp4574.coeffs[2:order + 1] .= zero(tmp4574.coeffs[1]) - tmp3506.coeffs[1] = constant_term(tmp3504) * constant_term(tmp3505) - tmp3506.coeffs[2:order + 1] .= zero(tmp3506.coeffs[1]) - tmp3507.coeffs[1] = sin(constant_term(ψ_m)) - tmp3507.coeffs[2:order + 1] .= zero(tmp3507.coeffs[1]) - tmp4575.coeffs[1] = cos(constant_term(ψ_m)) - tmp4575.coeffs[2:order + 1] .= zero(tmp4575.coeffs[1]) - tmp3508.coeffs[1] = constant_term(tmp3506) * constant_term(tmp3507) - tmp3508.coeffs[2:order + 1] .= zero(tmp3508.coeffs[1]) - (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp3503) - constant_term(tmp3508) - (RotM[1, 1, mo]).coeffs[2:order + 1] .= zero((RotM[1, 1, mo]).coeffs[1]) - tmp3510.coeffs[1] = cos(constant_term(θ_m)) - tmp3510.coeffs[2:order + 1] .= zero(tmp3510.coeffs[1]) - tmp4576.coeffs[1] = sin(constant_term(θ_m)) - tmp4576.coeffs[2:order + 1] .= zero(tmp4576.coeffs[1]) - tmp3511.coeffs[1] = -(constant_term(tmp3510)) - tmp3511.coeffs[2:order + 1] .= zero(tmp3511.coeffs[1]) - tmp3512.coeffs[1] = cos(constant_term(ψ_m)) - tmp3512.coeffs[2:order + 1] .= zero(tmp3512.coeffs[1]) - tmp4577.coeffs[1] = sin(constant_term(ψ_m)) - tmp4577.coeffs[2:order + 1] .= zero(tmp4577.coeffs[1]) - tmp3513.coeffs[1] = constant_term(tmp3511) * constant_term(tmp3512) - tmp3513.coeffs[2:order + 1] .= zero(tmp3513.coeffs[1]) - tmp3514.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3514.coeffs[2:order + 1] .= zero(tmp3514.coeffs[1]) - tmp4578.coeffs[1] = cos(constant_term(ϕ_m)) - tmp4578.coeffs[2:order + 1] .= zero(tmp4578.coeffs[1]) - tmp3515.coeffs[1] = constant_term(tmp3513) * constant_term(tmp3514) - tmp3515.coeffs[2:order + 1] .= zero(tmp3515.coeffs[1]) - tmp3516.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3516.coeffs[2:order + 1] .= zero(tmp3516.coeffs[1]) - tmp4579.coeffs[1] = sin(constant_term(ϕ_m)) - tmp4579.coeffs[2:order + 1] .= zero(tmp4579.coeffs[1]) - tmp3517.coeffs[1] = sin(constant_term(ψ_m)) - tmp3517.coeffs[2:order + 1] .= zero(tmp3517.coeffs[1]) - tmp4580.coeffs[1] = cos(constant_term(ψ_m)) - tmp4580.coeffs[2:order + 1] .= zero(tmp4580.coeffs[1]) - tmp3518.coeffs[1] = constant_term(tmp3516) * constant_term(tmp3517) - tmp3518.coeffs[2:order + 1] .= zero(tmp3518.coeffs[1]) - (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp3515) - constant_term(tmp3518) - (RotM[2, 1, mo]).coeffs[2:order + 1] .= zero((RotM[2, 1, mo]).coeffs[1]) - tmp3520.coeffs[1] = sin(constant_term(θ_m)) - tmp3520.coeffs[2:order + 1] .= zero(tmp3520.coeffs[1]) - tmp4581.coeffs[1] = cos(constant_term(θ_m)) - tmp4581.coeffs[2:order + 1] .= zero(tmp4581.coeffs[1]) - tmp3521.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3521.coeffs[2:order + 1] .= zero(tmp3521.coeffs[1]) - tmp4582.coeffs[1] = cos(constant_term(ϕ_m)) - tmp4582.coeffs[2:order + 1] .= zero(tmp4582.coeffs[1]) - (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp3520) * constant_term(tmp3521) - (RotM[3, 1, mo]).coeffs[2:order + 1] .= zero((RotM[3, 1, mo]).coeffs[1]) - tmp3523.coeffs[1] = cos(constant_term(ψ_m)) - tmp3523.coeffs[2:order + 1] .= zero(tmp3523.coeffs[1]) - tmp4583.coeffs[1] = sin(constant_term(ψ_m)) - tmp4583.coeffs[2:order + 1] .= zero(tmp4583.coeffs[1]) - tmp3524.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3524.coeffs[2:order + 1] .= zero(tmp3524.coeffs[1]) - tmp4584.coeffs[1] = cos(constant_term(ϕ_m)) - tmp4584.coeffs[2:order + 1] .= zero(tmp4584.coeffs[1]) - tmp3525.coeffs[1] = constant_term(tmp3523) * constant_term(tmp3524) - tmp3525.coeffs[2:order + 1] .= zero(tmp3525.coeffs[1]) - tmp3526.coeffs[1] = cos(constant_term(θ_m)) - tmp3526.coeffs[2:order + 1] .= zero(tmp3526.coeffs[1]) - tmp4585.coeffs[1] = sin(constant_term(θ_m)) - tmp4585.coeffs[2:order + 1] .= zero(tmp4585.coeffs[1]) - tmp3527.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3527.coeffs[2:order + 1] .= zero(tmp3527.coeffs[1]) - tmp4586.coeffs[1] = sin(constant_term(ϕ_m)) - tmp4586.coeffs[2:order + 1] .= zero(tmp4586.coeffs[1]) - tmp3528.coeffs[1] = constant_term(tmp3526) * constant_term(tmp3527) - tmp3528.coeffs[2:order + 1] .= zero(tmp3528.coeffs[1]) - tmp3529.coeffs[1] = sin(constant_term(ψ_m)) - tmp3529.coeffs[2:order + 1] .= zero(tmp3529.coeffs[1]) - tmp4587.coeffs[1] = cos(constant_term(ψ_m)) - tmp4587.coeffs[2:order + 1] .= zero(tmp4587.coeffs[1]) - tmp3530.coeffs[1] = constant_term(tmp3528) * constant_term(tmp3529) - tmp3530.coeffs[2:order + 1] .= zero(tmp3530.coeffs[1]) - (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp3525) + constant_term(tmp3530) - (RotM[1, 2, mo]).coeffs[2:order + 1] .= zero((RotM[1, 2, mo]).coeffs[1]) - tmp3532.coeffs[1] = cos(constant_term(θ_m)) - tmp3532.coeffs[2:order + 1] .= zero(tmp3532.coeffs[1]) - tmp4588.coeffs[1] = sin(constant_term(θ_m)) - tmp4588.coeffs[2:order + 1] .= zero(tmp4588.coeffs[1]) - tmp3533.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3533.coeffs[2:order + 1] .= zero(tmp3533.coeffs[1]) - tmp4589.coeffs[1] = sin(constant_term(ϕ_m)) - tmp4589.coeffs[2:order + 1] .= zero(tmp4589.coeffs[1]) - tmp3534.coeffs[1] = constant_term(tmp3532) * constant_term(tmp3533) - tmp3534.coeffs[2:order + 1] .= zero(tmp3534.coeffs[1]) - tmp3535.coeffs[1] = cos(constant_term(ψ_m)) - tmp3535.coeffs[2:order + 1] .= zero(tmp3535.coeffs[1]) - tmp4590.coeffs[1] = sin(constant_term(ψ_m)) - tmp4590.coeffs[2:order + 1] .= zero(tmp4590.coeffs[1]) - tmp3536.coeffs[1] = constant_term(tmp3534) * constant_term(tmp3535) - tmp3536.coeffs[2:order + 1] .= zero(tmp3536.coeffs[1]) - tmp3537.coeffs[1] = sin(constant_term(ϕ_m)) - tmp3537.coeffs[2:order + 1] .= zero(tmp3537.coeffs[1]) - tmp4591.coeffs[1] = cos(constant_term(ϕ_m)) - tmp4591.coeffs[2:order + 1] .= zero(tmp4591.coeffs[1]) - tmp3538.coeffs[1] = sin(constant_term(ψ_m)) - tmp3538.coeffs[2:order + 1] .= zero(tmp3538.coeffs[1]) - tmp4592.coeffs[1] = cos(constant_term(ψ_m)) - tmp4592.coeffs[2:order + 1] .= zero(tmp4592.coeffs[1]) - tmp3539.coeffs[1] = constant_term(tmp3537) * constant_term(tmp3538) - tmp3539.coeffs[2:order + 1] .= zero(tmp3539.coeffs[1]) - (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp3536) - constant_term(tmp3539) - (RotM[2, 2, mo]).coeffs[2:order + 1] .= zero((RotM[2, 2, mo]).coeffs[1]) - tmp3541.coeffs[1] = cos(constant_term(ϕ_m)) - tmp3541.coeffs[2:order + 1] .= zero(tmp3541.coeffs[1]) - tmp4593.coeffs[1] = sin(constant_term(ϕ_m)) - tmp4593.coeffs[2:order + 1] .= zero(tmp4593.coeffs[1]) - tmp3542.coeffs[1] = -(constant_term(tmp3541)) - tmp3542.coeffs[2:order + 1] .= zero(tmp3542.coeffs[1]) - tmp3543.coeffs[1] = sin(constant_term(θ_m)) - tmp3543.coeffs[2:order + 1] .= zero(tmp3543.coeffs[1]) - tmp4594.coeffs[1] = cos(constant_term(θ_m)) - tmp4594.coeffs[2:order + 1] .= zero(tmp4594.coeffs[1]) - (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp3542) * constant_term(tmp3543) - (RotM[3, 2, mo]).coeffs[2:order + 1] .= zero((RotM[3, 2, mo]).coeffs[1]) - tmp3545.coeffs[1] = sin(constant_term(θ_m)) - tmp3545.coeffs[2:order + 1] .= zero(tmp3545.coeffs[1]) - tmp4595.coeffs[1] = cos(constant_term(θ_m)) - tmp4595.coeffs[2:order + 1] .= zero(tmp4595.coeffs[1]) - tmp3546.coeffs[1] = sin(constant_term(ψ_m)) - tmp3546.coeffs[2:order + 1] .= zero(tmp3546.coeffs[1]) - tmp4596.coeffs[1] = cos(constant_term(ψ_m)) - tmp4596.coeffs[2:order + 1] .= zero(tmp4596.coeffs[1]) - (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp3545) * constant_term(tmp3546) - (RotM[1, 3, mo]).coeffs[2:order + 1] .= zero((RotM[1, 3, mo]).coeffs[1]) - tmp3548.coeffs[1] = cos(constant_term(ψ_m)) - tmp3548.coeffs[2:order + 1] .= zero(tmp3548.coeffs[1]) - tmp4597.coeffs[1] = sin(constant_term(ψ_m)) - tmp4597.coeffs[2:order + 1] .= zero(tmp4597.coeffs[1]) - tmp3549.coeffs[1] = sin(constant_term(θ_m)) - tmp3549.coeffs[2:order + 1] .= zero(tmp3549.coeffs[1]) - tmp4598.coeffs[1] = cos(constant_term(θ_m)) - tmp4598.coeffs[2:order + 1] .= zero(tmp4598.coeffs[1]) - (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp3548) * constant_term(tmp3549) - (RotM[2, 3, mo]).coeffs[2:order + 1] .= zero((RotM[2, 3, mo]).coeffs[1]) + TaylorSeries.zero!(tmp2961) + tmp2961.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4031) + tmp4031.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2962) + tmp2962.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4032) + tmp4032.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2963) + tmp2963.coeffs[1] = constant_term(tmp2961) * constant_term(tmp2962) + TaylorSeries.zero!(tmp2964) + tmp2964.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp4033) + tmp4033.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp2965) + tmp2965.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4034) + tmp4034.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2966) + tmp2966.coeffs[1] = constant_term(tmp2964) * constant_term(tmp2965) + TaylorSeries.zero!(tmp2967) + tmp2967.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4035) + tmp4035.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2968) + tmp2968.coeffs[1] = constant_term(tmp2966) * constant_term(tmp2967) + TaylorSeries.zero!(RotM[1, 1, mo]) + (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp2963) - constant_term(tmp2968) + TaylorSeries.zero!(tmp2970) + tmp2970.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp4036) + tmp4036.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp2971) + tmp2971.coeffs[1] = -(constant_term(tmp2970)) + TaylorSeries.zero!(tmp2972) + tmp2972.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4037) + tmp4037.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2973) + tmp2973.coeffs[1] = constant_term(tmp2971) * constant_term(tmp2972) + TaylorSeries.zero!(tmp2974) + tmp2974.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4038) + tmp4038.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2975) + tmp2975.coeffs[1] = constant_term(tmp2973) * constant_term(tmp2974) + TaylorSeries.zero!(tmp2976) + tmp2976.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4039) + tmp4039.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2977) + tmp2977.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4040) + tmp4040.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2978) + tmp2978.coeffs[1] = constant_term(tmp2976) * constant_term(tmp2977) + TaylorSeries.zero!(RotM[2, 1, mo]) + (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp2975) - constant_term(tmp2978) + TaylorSeries.zero!(tmp2980) + tmp2980.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp4041) + tmp4041.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp2981) + tmp2981.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4042) + tmp4042.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(RotM[3, 1, mo]) + (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp2980) * constant_term(tmp2981) + TaylorSeries.zero!(tmp2983) + tmp2983.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4043) + tmp4043.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2984) + tmp2984.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4044) + tmp4044.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2985) + tmp2985.coeffs[1] = constant_term(tmp2983) * constant_term(tmp2984) + TaylorSeries.zero!(tmp2986) + tmp2986.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp4045) + tmp4045.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp2987) + tmp2987.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4046) + tmp4046.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2988) + tmp2988.coeffs[1] = constant_term(tmp2986) * constant_term(tmp2987) + TaylorSeries.zero!(tmp2989) + tmp2989.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4047) + tmp4047.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2990) + tmp2990.coeffs[1] = constant_term(tmp2988) * constant_term(tmp2989) + TaylorSeries.zero!(RotM[1, 2, mo]) + (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp2985) + constant_term(tmp2990) + TaylorSeries.zero!(tmp2992) + tmp2992.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp4048) + tmp4048.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp2993) + tmp2993.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4049) + tmp4049.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2994) + tmp2994.coeffs[1] = constant_term(tmp2992) * constant_term(tmp2993) + TaylorSeries.zero!(tmp2995) + tmp2995.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4050) + tmp4050.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2996) + tmp2996.coeffs[1] = constant_term(tmp2994) * constant_term(tmp2995) + TaylorSeries.zero!(tmp2997) + tmp2997.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4051) + tmp4051.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp2998) + tmp2998.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4052) + tmp4052.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp2999) + tmp2999.coeffs[1] = constant_term(tmp2997) * constant_term(tmp2998) + TaylorSeries.zero!(RotM[2, 2, mo]) + (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp2996) - constant_term(tmp2999) + TaylorSeries.zero!(tmp3001) + tmp3001.coeffs[1] = cos(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp4053) + tmp4053.coeffs[1] = sin(constant_term(ϕ_m)) + TaylorSeries.zero!(tmp3002) + tmp3002.coeffs[1] = -(constant_term(tmp3001)) + TaylorSeries.zero!(tmp3003) + tmp3003.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp4054) + tmp4054.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(RotM[3, 2, mo]) + (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp3002) * constant_term(tmp3003) + TaylorSeries.zero!(tmp3005) + tmp3005.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp4055) + tmp4055.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(tmp3006) + tmp3006.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4056) + tmp4056.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(RotM[1, 3, mo]) + (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp3005) * constant_term(tmp3006) + TaylorSeries.zero!(tmp3008) + tmp3008.coeffs[1] = cos(constant_term(ψ_m)) + TaylorSeries.zero!(tmp4057) + tmp4057.coeffs[1] = sin(constant_term(ψ_m)) + TaylorSeries.zero!(tmp3009) + tmp3009.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(tmp4058) + tmp4058.coeffs[1] = cos(constant_term(θ_m)) + TaylorSeries.zero!(RotM[2, 3, mo]) + (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp3008) * constant_term(tmp3009) + TaylorSeries.zero!(RotM[3, 3, mo]) (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) - (RotM[3, 3, mo]).coeffs[2:order + 1] .= zero((RotM[3, 3, mo]).coeffs[1]) - tmp4599.coeffs[1] = sin(constant_term(θ_m)) - tmp4599.coeffs[2:order + 1] .= zero(tmp4599.coeffs[1]) + TaylorSeries.zero!(tmp4059) + tmp4059.coeffs[1] = sin(constant_term(θ_m)) + TaylorSeries.zero!(ϕ_c) ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) - ϕ_c.coeffs[2:order + 1] .= zero(ϕ_c.coeffs[1]) - tmp3552.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3552.coeffs[2:order + 1] .= zero(tmp3552.coeffs[1]) - tmp4600.coeffs[1] = sin(constant_term(ϕ_c)) - tmp4600.coeffs[2:order + 1] .= zero(tmp4600.coeffs[1]) - tmp3553.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp3552) - tmp3553.coeffs[2:order + 1] .= zero(tmp3553.coeffs[1]) - tmp3554.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3554.coeffs[2:order + 1] .= zero(tmp3554.coeffs[1]) - tmp4601.coeffs[1] = cos(constant_term(ϕ_c)) - tmp4601.coeffs[2:order + 1] .= zero(tmp4601.coeffs[1]) - tmp3555.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp3554) - tmp3555.coeffs[2:order + 1] .= zero(tmp3555.coeffs[1]) - (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp3553) + constant_term(tmp3555) - (mantlef2coref[1, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 1]).coeffs[1]) - tmp3557.coeffs[1] = -(constant_term(RotM[1, 1, mo])) - tmp3557.coeffs[2:order + 1] .= zero(tmp3557.coeffs[1]) - tmp3558.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3558.coeffs[2:order + 1] .= zero(tmp3558.coeffs[1]) - tmp4602.coeffs[1] = cos(constant_term(ϕ_c)) - tmp4602.coeffs[2:order + 1] .= zero(tmp4602.coeffs[1]) - tmp3559.coeffs[1] = constant_term(tmp3557) * constant_term(tmp3558) - tmp3559.coeffs[2:order + 1] .= zero(tmp3559.coeffs[1]) - tmp3560.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3560.coeffs[2:order + 1] .= zero(tmp3560.coeffs[1]) - tmp4603.coeffs[1] = sin(constant_term(ϕ_c)) - tmp4603.coeffs[2:order + 1] .= zero(tmp4603.coeffs[1]) - tmp3561.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp3560) - tmp3561.coeffs[2:order + 1] .= zero(tmp3561.coeffs[1]) - (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp3559) + constant_term(tmp3561) - (mantlef2coref[2, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 1]).coeffs[1]) + TaylorSeries.zero!(tmp3012) + tmp3012.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4060) + tmp4060.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3013) + tmp3013.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp3012) + TaylorSeries.zero!(tmp3014) + tmp3014.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4061) + tmp4061.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3015) + tmp3015.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp3014) + TaylorSeries.zero!(mantlef2coref[1, 1]) + (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp3013) + constant_term(tmp3015) + TaylorSeries.zero!(tmp3017) + tmp3017.coeffs[1] = -(constant_term(RotM[1, 1, mo])) + TaylorSeries.zero!(tmp3018) + tmp3018.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4062) + tmp4062.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3019) + tmp3019.coeffs[1] = constant_term(tmp3017) * constant_term(tmp3018) + TaylorSeries.zero!(tmp3020) + tmp3020.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4063) + tmp4063.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3021) + tmp3021.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp3020) + TaylorSeries.zero!(mantlef2coref[2, 1]) + (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp3019) + constant_term(tmp3021) + TaylorSeries.zero!(mantlef2coref[3, 1]) (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) - (mantlef2coref[3, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 1]).coeffs[1]) - tmp3563.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3563.coeffs[2:order + 1] .= zero(tmp3563.coeffs[1]) - tmp4604.coeffs[1] = sin(constant_term(ϕ_c)) - tmp4604.coeffs[2:order + 1] .= zero(tmp4604.coeffs[1]) - tmp3564.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp3563) - tmp3564.coeffs[2:order + 1] .= zero(tmp3564.coeffs[1]) - tmp3565.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3565.coeffs[2:order + 1] .= zero(tmp3565.coeffs[1]) - tmp4605.coeffs[1] = cos(constant_term(ϕ_c)) - tmp4605.coeffs[2:order + 1] .= zero(tmp4605.coeffs[1]) - tmp3566.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp3565) - tmp3566.coeffs[2:order + 1] .= zero(tmp3566.coeffs[1]) - (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp3564) + constant_term(tmp3566) - (mantlef2coref[1, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 2]).coeffs[1]) - tmp3568.coeffs[1] = -(constant_term(RotM[2, 1, mo])) - tmp3568.coeffs[2:order + 1] .= zero(tmp3568.coeffs[1]) - tmp3569.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3569.coeffs[2:order + 1] .= zero(tmp3569.coeffs[1]) - tmp4606.coeffs[1] = cos(constant_term(ϕ_c)) - tmp4606.coeffs[2:order + 1] .= zero(tmp4606.coeffs[1]) - tmp3570.coeffs[1] = constant_term(tmp3568) * constant_term(tmp3569) - tmp3570.coeffs[2:order + 1] .= zero(tmp3570.coeffs[1]) - tmp3571.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3571.coeffs[2:order + 1] .= zero(tmp3571.coeffs[1]) - tmp4607.coeffs[1] = sin(constant_term(ϕ_c)) - tmp4607.coeffs[2:order + 1] .= zero(tmp4607.coeffs[1]) - tmp3572.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp3571) - tmp3572.coeffs[2:order + 1] .= zero(tmp3572.coeffs[1]) - (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp3570) + constant_term(tmp3572) - (mantlef2coref[2, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 2]).coeffs[1]) + TaylorSeries.zero!(tmp3023) + tmp3023.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4064) + tmp4064.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3024) + tmp3024.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp3023) + TaylorSeries.zero!(tmp3025) + tmp3025.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4065) + tmp4065.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3026) + tmp3026.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp3025) + TaylorSeries.zero!(mantlef2coref[1, 2]) + (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp3024) + constant_term(tmp3026) + TaylorSeries.zero!(tmp3028) + tmp3028.coeffs[1] = -(constant_term(RotM[2, 1, mo])) + TaylorSeries.zero!(tmp3029) + tmp3029.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4066) + tmp4066.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3030) + tmp3030.coeffs[1] = constant_term(tmp3028) * constant_term(tmp3029) + TaylorSeries.zero!(tmp3031) + tmp3031.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4067) + tmp4067.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3032) + tmp3032.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp3031) + TaylorSeries.zero!(mantlef2coref[2, 2]) + (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp3030) + constant_term(tmp3032) + TaylorSeries.zero!(mantlef2coref[3, 2]) (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) - (mantlef2coref[3, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 2]).coeffs[1]) - tmp3574.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3574.coeffs[2:order + 1] .= zero(tmp3574.coeffs[1]) - tmp4608.coeffs[1] = sin(constant_term(ϕ_c)) - tmp4608.coeffs[2:order + 1] .= zero(tmp4608.coeffs[1]) - tmp3575.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp3574) - tmp3575.coeffs[2:order + 1] .= zero(tmp3575.coeffs[1]) - tmp3576.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3576.coeffs[2:order + 1] .= zero(tmp3576.coeffs[1]) - tmp4609.coeffs[1] = cos(constant_term(ϕ_c)) - tmp4609.coeffs[2:order + 1] .= zero(tmp4609.coeffs[1]) - tmp3577.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp3576) - tmp3577.coeffs[2:order + 1] .= zero(tmp3577.coeffs[1]) - (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp3575) + constant_term(tmp3577) - (mantlef2coref[1, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 3]).coeffs[1]) - tmp3579.coeffs[1] = -(constant_term(RotM[3, 1, mo])) - tmp3579.coeffs[2:order + 1] .= zero(tmp3579.coeffs[1]) - tmp3580.coeffs[1] = sin(constant_term(ϕ_c)) - tmp3580.coeffs[2:order + 1] .= zero(tmp3580.coeffs[1]) - tmp4610.coeffs[1] = cos(constant_term(ϕ_c)) - tmp4610.coeffs[2:order + 1] .= zero(tmp4610.coeffs[1]) - tmp3581.coeffs[1] = constant_term(tmp3579) * constant_term(tmp3580) - tmp3581.coeffs[2:order + 1] .= zero(tmp3581.coeffs[1]) - tmp3582.coeffs[1] = cos(constant_term(ϕ_c)) - tmp3582.coeffs[2:order + 1] .= zero(tmp3582.coeffs[1]) - tmp4611.coeffs[1] = sin(constant_term(ϕ_c)) - tmp4611.coeffs[2:order + 1] .= zero(tmp4611.coeffs[1]) - tmp3583.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp3582) - tmp3583.coeffs[2:order + 1] .= zero(tmp3583.coeffs[1]) - (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp3581) + constant_term(tmp3583) - (mantlef2coref[2, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 3]).coeffs[1]) + TaylorSeries.zero!(tmp3034) + tmp3034.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4068) + tmp4068.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3035) + tmp3035.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp3034) + TaylorSeries.zero!(tmp3036) + tmp3036.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4069) + tmp4069.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3037) + tmp3037.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp3036) + TaylorSeries.zero!(mantlef2coref[1, 3]) + (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp3035) + constant_term(tmp3037) + TaylorSeries.zero!(tmp3039) + tmp3039.coeffs[1] = -(constant_term(RotM[3, 1, mo])) + TaylorSeries.zero!(tmp3040) + tmp3040.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4070) + tmp4070.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3041) + tmp3041.coeffs[1] = constant_term(tmp3039) * constant_term(tmp3040) + TaylorSeries.zero!(tmp3042) + tmp3042.coeffs[1] = cos(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp4071) + tmp4071.coeffs[1] = sin(constant_term(ϕ_c)) + TaylorSeries.zero!(tmp3043) + tmp3043.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp3042) + TaylorSeries.zero!(mantlef2coref[2, 3]) + (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp3041) + constant_term(tmp3043) + TaylorSeries.zero!(mantlef2coref[3, 3]) (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) - (mantlef2coref[3, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 3]).coeffs[1]) - tmp3585.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) - tmp3585.coeffs[2:order + 1] .= zero(tmp3585.coeffs[1]) - tmp3586.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) - tmp3586.coeffs[2:order + 1] .= zero(tmp3586.coeffs[1]) - tmp3587.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) - tmp3587.coeffs[2:order + 1] .= zero(tmp3587.coeffs[1]) - tmp3588.coeffs[1] = constant_term(tmp3586) + constant_term(tmp3587) - tmp3588.coeffs[2:order + 1] .= zero(tmp3588.coeffs[1]) - ω_c_CE_1.coeffs[1] = constant_term(tmp3585) + constant_term(tmp3588) - ω_c_CE_1.coeffs[2:order + 1] .= zero(ω_c_CE_1.coeffs[1]) - tmp3590.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) - tmp3590.coeffs[2:order + 1] .= zero(tmp3590.coeffs[1]) - tmp3591.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) - tmp3591.coeffs[2:order + 1] .= zero(tmp3591.coeffs[1]) - tmp3592.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) - tmp3592.coeffs[2:order + 1] .= zero(tmp3592.coeffs[1]) - tmp3593.coeffs[1] = constant_term(tmp3591) + constant_term(tmp3592) - tmp3593.coeffs[2:order + 1] .= zero(tmp3593.coeffs[1]) - ω_c_CE_2.coeffs[1] = constant_term(tmp3590) + constant_term(tmp3593) - ω_c_CE_2.coeffs[2:order + 1] .= zero(ω_c_CE_2.coeffs[1]) - tmp3595.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) - tmp3595.coeffs[2:order + 1] .= zero(tmp3595.coeffs[1]) - tmp3596.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) - tmp3596.coeffs[2:order + 1] .= zero(tmp3596.coeffs[1]) - tmp3597.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) - tmp3597.coeffs[2:order + 1] .= zero(tmp3597.coeffs[1]) - tmp3598.coeffs[1] = constant_term(tmp3596) + constant_term(tmp3597) - tmp3598.coeffs[2:order + 1] .= zero(tmp3598.coeffs[1]) - ω_c_CE_3.coeffs[1] = constant_term(tmp3595) + constant_term(tmp3598) - ω_c_CE_3.coeffs[2:order + 1] .= zero(ω_c_CE_3.coeffs[1]) + TaylorSeries.zero!(tmp3045) + tmp3045.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) + TaylorSeries.zero!(tmp3046) + tmp3046.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) + TaylorSeries.zero!(tmp3047) + tmp3047.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp3048) + tmp3048.coeffs[1] = constant_term(tmp3046) + constant_term(tmp3047) + TaylorSeries.zero!(ω_c_CE_1) + ω_c_CE_1.coeffs[1] = constant_term(tmp3045) + constant_term(tmp3048) + TaylorSeries.zero!(tmp3050) + tmp3050.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) + TaylorSeries.zero!(tmp3051) + tmp3051.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) + TaylorSeries.zero!(tmp3052) + tmp3052.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp3053) + tmp3053.coeffs[1] = constant_term(tmp3051) + constant_term(tmp3052) + TaylorSeries.zero!(ω_c_CE_2) + ω_c_CE_2.coeffs[1] = constant_term(tmp3050) + constant_term(tmp3053) + TaylorSeries.zero!(tmp3055) + tmp3055.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) + TaylorSeries.zero!(tmp3056) + tmp3056.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) + TaylorSeries.zero!(tmp3057) + tmp3057.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp3058) + tmp3058.coeffs[1] = constant_term(tmp3056) + constant_term(tmp3057) + TaylorSeries.zero!(ω_c_CE_3) + ω_c_CE_3.coeffs[1] = constant_term(tmp3055) + constant_term(tmp3058) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t + TaylorSeries.zero!(J2_t[su]) (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) - (J2_t[su]).coeffs[2:order + 1] .= zero((J2_t[su]).coeffs[1]) + TaylorSeries.zero!(J2_t[ea]) (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) - (J2_t[ea]).coeffs[2:order + 1] .= zero((J2_t[ea]).coeffs[1]) local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t local q_ME_τ_0 = q_del_τ_0[3mo - 2:3mo] .- q_del_τ_0[3 * ea - 2:3 * ea] local q_ME_τ_1 = q_del_τ_1[3mo - 2:3mo] .- q_del_τ_1[3 * ea - 2:3 * ea] @@ -7940,656 +8756,656 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract local r_star_S_1 = R31 * q_SE_τ_1 local r_star_S_2 = R32 * q_SE_τ_2 for j = 1:N + TaylorSeries.zero!(newtonX[j]) (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + TaylorSeries.zero!(newtonY[j]) (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + TaylorSeries.zero!(newtonZ[j]) (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + TaylorSeries.zero!(newtonianNb_Potential[j]) (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + TaylorSeries.zero!(dq[3j - 2]) (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) - (dq[3j - 2]).coeffs[2:order + 1] .= zero((dq[3j - 2]).coeffs[1]) + TaylorSeries.zero!(dq[3j - 1]) (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) - (dq[3j - 1]).coeffs[2:order + 1] .= zero((dq[3j - 1]).coeffs[1]) + TaylorSeries.zero!(dq[3j]) (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) - (dq[3j]).coeffs[2:order + 1] .= zero((dq[3j]).coeffs[1]) end for j = 1:N_ext + TaylorSeries.zero!(accX[j]) (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + TaylorSeries.zero!(accY[j]) (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + TaylorSeries.zero!(accZ[j]) (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) end - #= In[6]:380 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1286 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue else + TaylorSeries.zero!(X[i, j]) (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) - (X[i, j]).coeffs[2:order + 1] .= zero((X[i, j]).coeffs[1]) + TaylorSeries.zero!(Y[i, j]) (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) - (Y[i, j]).coeffs[2:order + 1] .= zero((Y[i, j]).coeffs[1]) + TaylorSeries.zero!(Z[i, j]) (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) - (Z[i, j]).coeffs[2:order + 1] .= zero((Z[i, j]).coeffs[1]) + TaylorSeries.zero!(U[i, j]) (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) - (U[i, j]).coeffs[2:order + 1] .= zero((U[i, j]).coeffs[1]) + TaylorSeries.zero!(V[i, j]) (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) - (V[i, j]).coeffs[2:order + 1] .= zero((V[i, j]).coeffs[1]) + TaylorSeries.zero!(W[i, j]) (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) - (W[i, j]).coeffs[2:order + 1] .= zero((W[i, j]).coeffs[1]) - (tmp3607[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) - (tmp3607[3j - 2]).coeffs[2:order + 1] .= zero((tmp3607[3j - 2]).coeffs[1]) - (tmp3609[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) - (tmp3609[3i - 2]).coeffs[2:order + 1] .= zero((tmp3609[3i - 2]).coeffs[1]) - (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp3607[3j - 2]) - constant_term(tmp3609[3i - 2]) - (_4U_m_3X[i, j]).coeffs[2:order + 1] .= zero((_4U_m_3X[i, j]).coeffs[1]) - (tmp3612[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) - (tmp3612[3j - 1]).coeffs[2:order + 1] .= zero((tmp3612[3j - 1]).coeffs[1]) - (tmp3614[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) - (tmp3614[3i - 1]).coeffs[2:order + 1] .= zero((tmp3614[3i - 1]).coeffs[1]) - (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp3612[3j - 1]) - constant_term(tmp3614[3i - 1]) - (_4V_m_3Y[i, j]).coeffs[2:order + 1] .= zero((_4V_m_3Y[i, j]).coeffs[1]) - (tmp3617[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) - (tmp3617[3j]).coeffs[2:order + 1] .= zero((tmp3617[3j]).coeffs[1]) - (tmp3619[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) - (tmp3619[3i]).coeffs[2:order + 1] .= zero((tmp3619[3i]).coeffs[1]) - (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp3617[3j]) - constant_term(tmp3619[3i]) - (_4W_m_3Z[i, j]).coeffs[2:order + 1] .= zero((_4W_m_3Z[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3067[3j - 2]) + (tmp3067[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) + TaylorSeries.zero!(tmp3069[3i - 2]) + (tmp3069[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) + TaylorSeries.zero!(_4U_m_3X[i, j]) + (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp3067[3j - 2]) - constant_term(tmp3069[3i - 2]) + TaylorSeries.zero!(tmp3072[3j - 1]) + (tmp3072[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) + TaylorSeries.zero!(tmp3074[3i - 1]) + (tmp3074[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) + TaylorSeries.zero!(_4V_m_3Y[i, j]) + (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp3072[3j - 1]) - constant_term(tmp3074[3i - 1]) + TaylorSeries.zero!(tmp3077[3j]) + (tmp3077[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) + TaylorSeries.zero!(tmp3079[3i]) + (tmp3079[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) + TaylorSeries.zero!(_4W_m_3Z[i, j]) + (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp3077[3j]) - constant_term(tmp3079[3i]) + TaylorSeries.zero!(pn2x[i, j]) (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) - (pn2x[i, j]).coeffs[2:order + 1] .= zero((pn2x[i, j]).coeffs[1]) + TaylorSeries.zero!(pn2y[i, j]) (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) - (pn2y[i, j]).coeffs[2:order + 1] .= zero((pn2y[i, j]).coeffs[1]) + TaylorSeries.zero!(pn2z[i, j]) (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) - (pn2z[i, j]).coeffs[2:order + 1] .= zero((pn2z[i, j]).coeffs[1]) + TaylorSeries.zero!(UU[i, j]) (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) - (UU[i, j]).coeffs[2:order + 1] .= zero((UU[i, j]).coeffs[1]) + TaylorSeries.zero!(VV[i, j]) (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) - (VV[i, j]).coeffs[2:order + 1] .= zero((VV[i, j]).coeffs[1]) + TaylorSeries.zero!(WW[i, j]) (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) - (WW[i, j]).coeffs[2:order + 1] .= zero((WW[i, j]).coeffs[1]) - (tmp3627[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) - (tmp3627[i, j]).coeffs[2:order + 1] .= zero((tmp3627[i, j]).coeffs[1]) - (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp3627[i, j]) + constant_term(WW[i, j]) - (vi_dot_vj[i, j]).coeffs[2:order + 1] .= zero((vi_dot_vj[i, j]).coeffs[1]) - (tmp3630[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) - (tmp3630[i, j]).coeffs[2:order + 1] .= zero((tmp3630[i, j]).coeffs[1]) - (tmp3632[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) - (tmp3632[i, j]).coeffs[2:order + 1] .= zero((tmp3632[i, j]).coeffs[1]) - (tmp3633[i, j]).coeffs[1] = constant_term(tmp3630[i, j]) + constant_term(tmp3632[i, j]) - (tmp3633[i, j]).coeffs[2:order + 1] .= zero((tmp3633[i, j]).coeffs[1]) - (tmp3635[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) - (tmp3635[i, j]).coeffs[2:order + 1] .= zero((tmp3635[i, j]).coeffs[1]) - (r_p2[i, j]).coeffs[1] = constant_term(tmp3633[i, j]) + constant_term(tmp3635[i, j]) - (r_p2[i, j]).coeffs[2:order + 1] .= zero((r_p2[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3087[i, j]) + (tmp3087[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) + TaylorSeries.zero!(vi_dot_vj[i, j]) + (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp3087[i, j]) + constant_term(WW[i, j]) + TaylorSeries.zero!(tmp3090[i, j]) + (tmp3090[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3092[i, j]) + (tmp3092[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3093[i, j]) + (tmp3093[i, j]).coeffs[1] = constant_term(tmp3090[i, j]) + constant_term(tmp3092[i, j]) + TaylorSeries.zero!(tmp3095[i, j]) + (tmp3095[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(r_p2[i, j]) + (r_p2[i, j]).coeffs[1] = constant_term(tmp3093[i, j]) + constant_term(tmp3095[i, j]) + TaylorSeries.zero!(r_p1d2[i, j]) (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) - (r_p1d2[i, j]).coeffs[2:order + 1] .= zero((r_p1d2[i, j]).coeffs[1]) + TaylorSeries.zero!(r_p3d2[i, j]) (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) - (r_p3d2[i, j]).coeffs[2:order + 1] .= zero((r_p3d2[i, j]).coeffs[1]) + TaylorSeries.zero!(r_p7d2[i, j]) (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) - (r_p7d2[i, j]).coeffs[2:order + 1] .= zero((r_p7d2[i, j]).coeffs[1]) + TaylorSeries.zero!(newtonianCoeff[i, j]) (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) - (newtonianCoeff[i, j]).coeffs[2:order + 1] .= zero((newtonianCoeff[i, j]).coeffs[1]) - (tmp3643[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) - (tmp3643[i, j]).coeffs[2:order + 1] .= zero((tmp3643[i, j]).coeffs[1]) - (tmp3644[i, j]).coeffs[1] = constant_term(tmp3643[i, j]) + constant_term(pn2z[i, j]) - (tmp3644[i, j]).coeffs[2:order + 1] .= zero((tmp3644[i, j]).coeffs[1]) - (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp3644[i, j]) - (pn2[i, j]).coeffs[2:order + 1] .= zero((pn2[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3103[i, j]) + (tmp3103[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) + TaylorSeries.zero!(tmp3104[i, j]) + (tmp3104[i, j]).coeffs[1] = constant_term(tmp3103[i, j]) + constant_term(pn2z[i, j]) + TaylorSeries.zero!(pn2[i, j]) + (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp3104[i, j]) + TaylorSeries.zero!(newton_acc_X[i, j]) (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_X[i, j]).coeffs[2:order + 1] .= zero((newton_acc_X[i, j]).coeffs[1]) + TaylorSeries.zero!(newton_acc_Y[i, j]) (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_Y[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Y[i, j]).coeffs[1]) + TaylorSeries.zero!(newton_acc_Z[i, j]) (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - (newton_acc_Z[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Z[i, j]).coeffs[1]) + TaylorSeries.zero!(newtonian1b_Potential[i, j]) (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) - (newtonian1b_Potential[i, j]).coeffs[2:order + 1] .= zero((newtonian1b_Potential[i, j]).coeffs[1]) + TaylorSeries.zero!(pn3[i, j]) (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) - (pn3[i, j]).coeffs[2:order + 1] .= zero((pn3[i, j]).coeffs[1]) + TaylorSeries.zero!(U_t_pn2[i, j]) (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) - (U_t_pn2[i, j]).coeffs[2:order + 1] .= zero((U_t_pn2[i, j]).coeffs[1]) + TaylorSeries.zero!(V_t_pn2[i, j]) (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) - (V_t_pn2[i, j]).coeffs[2:order + 1] .= zero((V_t_pn2[i, j]).coeffs[1]) + TaylorSeries.zero!(W_t_pn2[i, j]) (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) - (W_t_pn2[i, j]).coeffs[2:order + 1] .= zero((W_t_pn2[i, j]).coeffs[1]) - (tmp3655[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp3655[i, j]).coeffs[2:order + 1] .= zero((tmp3655[i, j]).coeffs[1]) - (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp3655[i, j]) - (temp_001[i, j]).coeffs[2:order + 1] .= zero((temp_001[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3115[i, j]) + (tmp3115[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + TaylorSeries.zero!(temp_001[i, j]) + (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp3115[i, j]) + TaylorSeries.zero!(newtonX[j]) (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) - (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) - (tmp3657[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp3657[i, j]).coeffs[2:order + 1] .= zero((tmp3657[i, j]).coeffs[1]) - (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp3657[i, j]) - (temp_002[i, j]).coeffs[2:order + 1] .= zero((temp_002[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3117[i, j]) + (tmp3117[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + TaylorSeries.zero!(temp_002[i, j]) + (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp3117[i, j]) + TaylorSeries.zero!(newtonY[j]) (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) - (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) - (tmp3659[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - (tmp3659[i, j]).coeffs[2:order + 1] .= zero((tmp3659[i, j]).coeffs[1]) - (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp3659[i, j]) - (temp_003[i, j]).coeffs[2:order + 1] .= zero((temp_003[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3119[i, j]) + (tmp3119[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + TaylorSeries.zero!(temp_003[i, j]) + (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp3119[i, j]) + TaylorSeries.zero!(newtonZ[j]) (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) - (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + TaylorSeries.zero!(temp_004[i, j]) (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) - (temp_004[i, j]).coeffs[2:order + 1] .= zero((temp_004[i, j]).coeffs[1]) + TaylorSeries.zero!(newtonianNb_Potential[j]) (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) - (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) end end - (tmp3663[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) - (tmp3663[3j - 2]).coeffs[2:order + 1] .= zero((tmp3663[3j - 2]).coeffs[1]) - (tmp3665[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) - (tmp3665[3j - 1]).coeffs[2:order + 1] .= zero((tmp3665[3j - 1]).coeffs[1]) - (tmp3666[3j - 2]).coeffs[1] = constant_term(tmp3663[3j - 2]) + constant_term(tmp3665[3j - 1]) - (tmp3666[3j - 2]).coeffs[2:order + 1] .= zero((tmp3666[3j - 2]).coeffs[1]) - (tmp3668[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) - (tmp3668[3j]).coeffs[2:order + 1] .= zero((tmp3668[3j]).coeffs[1]) - (v2[j]).coeffs[1] = constant_term(tmp3666[3j - 2]) + constant_term(tmp3668[3j]) - (v2[j]).coeffs[2:order + 1] .= zero((v2[j]).coeffs[1]) + TaylorSeries.zero!(tmp3123[3j - 2]) + (tmp3123[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3125[3j - 1]) + (tmp3125[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3126[3j - 2]) + (tmp3126[3j - 2]).coeffs[1] = constant_term(tmp3123[3j - 2]) + constant_term(tmp3125[3j - 1]) + TaylorSeries.zero!(tmp3128[3j]) + (tmp3128[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) + TaylorSeries.zero!(v2[j]) + (v2[j]).coeffs[1] = constant_term(tmp3126[3j - 2]) + constant_term(tmp3128[3j]) end - tmp3670.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) - tmp3670.coeffs[2:order + 1] .= zero(tmp3670.coeffs[1]) - tmp3672.coeffs[1] = constant_term(tmp3670) / constant_term(2) - tmp3672.coeffs[2:order + 1] .= zero(tmp3672.coeffs[1]) - tmp3673.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp3672) - tmp3673.coeffs[2:order + 1] .= zero(tmp3673.coeffs[1]) - J2M_t.coeffs[1] = constant_term(tmp3673) / constant_term(μ[mo]) - J2M_t.coeffs[2:order + 1] .= zero(J2M_t.coeffs[1]) - tmp3675.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) - tmp3675.coeffs[2:order + 1] .= zero(tmp3675.coeffs[1]) - tmp3676.coeffs[1] = constant_term(tmp3675) / constant_term(μ[mo]) - tmp3676.coeffs[2:order + 1] .= zero(tmp3676.coeffs[1]) - C22M_t.coeffs[1] = constant_term(tmp3676) / constant_term(4) - C22M_t.coeffs[2:order + 1] .= zero(C22M_t.coeffs[1]) - tmp3679.coeffs[1] = -(constant_term(I_M_t[1, 3])) - tmp3679.coeffs[2:order + 1] .= zero(tmp3679.coeffs[1]) - C21M_t.coeffs[1] = constant_term(tmp3679) / constant_term(μ[mo]) - C21M_t.coeffs[2:order + 1] .= zero(C21M_t.coeffs[1]) - tmp3681.coeffs[1] = -(constant_term(I_M_t[3, 2])) - tmp3681.coeffs[2:order + 1] .= zero(tmp3681.coeffs[1]) - S21M_t.coeffs[1] = constant_term(tmp3681) / constant_term(μ[mo]) - S21M_t.coeffs[2:order + 1] .= zero(S21M_t.coeffs[1]) - tmp3683.coeffs[1] = -(constant_term(I_M_t[2, 1])) - tmp3683.coeffs[2:order + 1] .= zero(tmp3683.coeffs[1]) - tmp3684.coeffs[1] = constant_term(tmp3683) / constant_term(μ[mo]) - tmp3684.coeffs[2:order + 1] .= zero(tmp3684.coeffs[1]) - S22M_t.coeffs[1] = constant_term(tmp3684) / constant_term(2) - S22M_t.coeffs[2:order + 1] .= zero(S22M_t.coeffs[1]) + TaylorSeries.zero!(tmp3130) + tmp3130.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) + TaylorSeries.zero!(tmp3132) + tmp3132.coeffs[1] = constant_term(tmp3130) / constant_term(2) + TaylorSeries.zero!(tmp3133) + tmp3133.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp3132) + TaylorSeries.zero!(J2M_t) + J2M_t.coeffs[1] = constant_term(tmp3133) / constant_term(μ[mo]) + TaylorSeries.zero!(tmp3135) + tmp3135.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) + TaylorSeries.zero!(tmp3136) + tmp3136.coeffs[1] = constant_term(tmp3135) / constant_term(μ[mo]) + TaylorSeries.zero!(C22M_t) + C22M_t.coeffs[1] = constant_term(tmp3136) / constant_term(4) + TaylorSeries.zero!(tmp3139) + tmp3139.coeffs[1] = -(constant_term(I_M_t[1, 3])) + TaylorSeries.zero!(C21M_t) + C21M_t.coeffs[1] = constant_term(tmp3139) / constant_term(μ[mo]) + TaylorSeries.zero!(tmp3141) + tmp3141.coeffs[1] = -(constant_term(I_M_t[3, 2])) + TaylorSeries.zero!(S21M_t) + S21M_t.coeffs[1] = constant_term(tmp3141) / constant_term(μ[mo]) + TaylorSeries.zero!(tmp3143) + tmp3143.coeffs[1] = -(constant_term(I_M_t[2, 1])) + TaylorSeries.zero!(tmp3144) + tmp3144.coeffs[1] = constant_term(tmp3143) / constant_term(μ[mo]) + TaylorSeries.zero!(S22M_t) + S22M_t.coeffs[1] = constant_term(tmp3144) / constant_term(2) + TaylorSeries.zero!(J2_t[mo]) (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) - (J2_t[mo]).coeffs[2:order + 1] .= zero((J2_t[mo]).coeffs[1]) - #= In[6]:474 =# Threads.@threads for j = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1380 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue else if UJ_interaction[i, j] + TaylorSeries.zero!(X_bf_1[i, j]) (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) - (X_bf_1[i, j]).coeffs[2:order + 1] .= zero((X_bf_1[i, j]).coeffs[1]) + TaylorSeries.zero!(X_bf_2[i, j]) (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) - (X_bf_2[i, j]).coeffs[2:order + 1] .= zero((X_bf_2[i, j]).coeffs[1]) + TaylorSeries.zero!(X_bf_3[i, j]) (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) - (X_bf_3[i, j]).coeffs[2:order + 1] .= zero((X_bf_3[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_bf_1[i, j]) (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) - (Y_bf_1[i, j]).coeffs[2:order + 1] .= zero((Y_bf_1[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_bf_2[i, j]) (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) - (Y_bf_2[i, j]).coeffs[2:order + 1] .= zero((Y_bf_2[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_bf_3[i, j]) (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) - (Y_bf_3[i, j]).coeffs[2:order + 1] .= zero((Y_bf_3[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_bf_1[i, j]) (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) - (Z_bf_1[i, j]).coeffs[2:order + 1] .= zero((Z_bf_1[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_bf_2[i, j]) (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) - (Z_bf_2[i, j]).coeffs[2:order + 1] .= zero((Z_bf_2[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_bf_3[i, j]) (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) - (Z_bf_3[i, j]).coeffs[2:order + 1] .= zero((Z_bf_3[i, j]).coeffs[1]) - (tmp3696[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) - (tmp3696[i, j]).coeffs[2:order + 1] .= zero((tmp3696[i, j]).coeffs[1]) - (X_bf[i, j]).coeffs[1] = constant_term(tmp3696[i, j]) + constant_term(X_bf_3[i, j]) - (X_bf[i, j]).coeffs[2:order + 1] .= zero((X_bf[i, j]).coeffs[1]) - (tmp3698[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) - (tmp3698[i, j]).coeffs[2:order + 1] .= zero((tmp3698[i, j]).coeffs[1]) - (Y_bf[i, j]).coeffs[1] = constant_term(tmp3698[i, j]) + constant_term(Y_bf_3[i, j]) - (Y_bf[i, j]).coeffs[2:order + 1] .= zero((Y_bf[i, j]).coeffs[1]) - (tmp3700[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) - (tmp3700[i, j]).coeffs[2:order + 1] .= zero((tmp3700[i, j]).coeffs[1]) - (Z_bf[i, j]).coeffs[1] = constant_term(tmp3700[i, j]) + constant_term(Z_bf_3[i, j]) - (Z_bf[i, j]).coeffs[2:order + 1] .= zero((Z_bf[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3156[i, j]) + (tmp3156[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) + TaylorSeries.zero!(X_bf[i, j]) + (X_bf[i, j]).coeffs[1] = constant_term(tmp3156[i, j]) + constant_term(X_bf_3[i, j]) + TaylorSeries.zero!(tmp3158[i, j]) + (tmp3158[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) + TaylorSeries.zero!(Y_bf[i, j]) + (Y_bf[i, j]).coeffs[1] = constant_term(tmp3158[i, j]) + constant_term(Y_bf_3[i, j]) + TaylorSeries.zero!(tmp3160[i, j]) + (tmp3160[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) + TaylorSeries.zero!(Z_bf[i, j]) + (Z_bf[i, j]).coeffs[1] = constant_term(tmp3160[i, j]) + constant_term(Z_bf_3[i, j]) + TaylorSeries.zero!(sin_ϕ[i, j]) (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) - (sin_ϕ[i, j]).coeffs[2:order + 1] .= zero((sin_ϕ[i, j]).coeffs[1]) - (tmp3704[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) - (tmp3704[i, j]).coeffs[2:order + 1] .= zero((tmp3704[i, j]).coeffs[1]) - (tmp3706[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) - (tmp3706[i, j]).coeffs[2:order + 1] .= zero((tmp3706[i, j]).coeffs[1]) - (tmp3707[i, j]).coeffs[1] = constant_term(tmp3704[i, j]) + constant_term(tmp3706[i, j]) - (tmp3707[i, j]).coeffs[2:order + 1] .= zero((tmp3707[i, j]).coeffs[1]) - (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp3707[i, j])) - (r_xy[i, j]).coeffs[2:order + 1] .= zero((r_xy[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3164[i, j]) + (tmp3164[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3166[i, j]) + (tmp3166[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3167[i, j]) + (tmp3167[i, j]).coeffs[1] = constant_term(tmp3164[i, j]) + constant_term(tmp3166[i, j]) + TaylorSeries.zero!(r_xy[i, j]) + (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp3167[i, j])) + TaylorSeries.zero!(cos_ϕ[i, j]) (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) - (cos_ϕ[i, j]).coeffs[2:order + 1] .= zero((cos_ϕ[i, j]).coeffs[1]) + TaylorSeries.zero!(sin_λ[i, j]) (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) - (sin_λ[i, j]).coeffs[2:order + 1] .= zero((sin_λ[i, j]).coeffs[1]) + TaylorSeries.zero!(cos_λ[i, j]) (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) - (cos_λ[i, j]).coeffs[2:order + 1] .= zero((cos_λ[i, j]).coeffs[1]) + TaylorSeries.zero!(P_n[i, j, 1]) (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) - (P_n[i, j, 1]).coeffs[2:order + 1] .= zero((P_n[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(P_n[i, j, 2]) (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - (P_n[i, j, 2]).coeffs[2:order + 1] .= zero((P_n[i, j, 2]).coeffs[1]) + TaylorSeries.zero!(dP_n[i, j, 1]) (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) - (dP_n[i, j, 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(dP_n[i, j, 2]) (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) - (dP_n[i, j, 2]).coeffs[2:order + 1] .= zero((dP_n[i, j, 2]).coeffs[1]) for n = 2:n1SEM[j] - (tmp3712[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - (tmp3712[i, j, n]).coeffs[2:order + 1] .= zero((tmp3712[i, j, n]).coeffs[1]) - (tmp3713[i, j, n]).coeffs[1] = constant_term(tmp3712[i, j, n]) * constant_term(fact1_jsem[n]) - (tmp3713[i, j, n]).coeffs[2:order + 1] .= zero((tmp3713[i, j, n]).coeffs[1]) - (tmp3714[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) - (tmp3714[i, j, n - 1]).coeffs[2:order + 1] .= zero((tmp3714[i, j, n - 1]).coeffs[1]) - (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3713[i, j, n]) - constant_term(tmp3714[i, j, n - 1]) - (P_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((P_n[i, j, n + 1]).coeffs[1]) - (tmp3716[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - (tmp3716[i, j, n]).coeffs[2:order + 1] .= zero((tmp3716[i, j, n]).coeffs[1]) - (tmp3717[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) - (tmp3717[i, j, n]).coeffs[2:order + 1] .= zero((tmp3717[i, j, n]).coeffs[1]) - (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3716[i, j, n]) + constant_term(tmp3717[i, j, n]) - (dP_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, n + 1]).coeffs[1]) + TaylorSeries.zero!(tmp3172[i, j, n]) + (tmp3172[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp3173[i, j, n]) + (tmp3173[i, j, n]).coeffs[1] = constant_term(tmp3172[i, j, n]) * constant_term(fact1_jsem[n]) + TaylorSeries.zero!(tmp3174[i, j, n - 1]) + (tmp3174[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) + TaylorSeries.zero!(P_n[i, j, n + 1]) + (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3173[i, j, n]) - constant_term(tmp3174[i, j, n - 1]) + TaylorSeries.zero!(tmp3176[i, j, n]) + (tmp3176[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp3177[i, j, n]) + (tmp3177[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) + TaylorSeries.zero!(dP_n[i, j, n + 1]) + (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3176[i, j, n]) + constant_term(tmp3177[i, j, n]) + TaylorSeries.zero!(temp_rn[i, j, n]) (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) - (temp_rn[i, j, n]).coeffs[2:order + 1] .= zero((temp_rn[i, j, n]).coeffs[1]) end + TaylorSeries.zero!(r_p4[i, j]) (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) - (r_p4[i, j]).coeffs[2:order + 1] .= zero((r_p4[i, j]).coeffs[1]) - (tmp3722[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) - (tmp3722[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3722[i, j, 3]).coeffs[1]) - (tmp3723[i, j, 3]).coeffs[1] = constant_term(tmp3722[i, j, 3]) * constant_term(J2_t[j]) - (tmp3723[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3723[i, j, 3]).coeffs[1]) - (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp3723[i, j, 3]) / constant_term(r_p4[i, j]) - (F_J_ξ[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ[i, j]).coeffs[1]) - (tmp3725[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) - (tmp3725[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3725[i, j, 3]).coeffs[1]) - (tmp3726[i, j, 3]).coeffs[1] = constant_term(tmp3725[i, j, 3]) * constant_term(cos_ϕ[i, j]) - (tmp3726[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3726[i, j, 3]).coeffs[1]) - (tmp3727[i, j, 3]).coeffs[1] = constant_term(tmp3726[i, j, 3]) * constant_term(J2_t[j]) - (tmp3727[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3727[i, j, 3]).coeffs[1]) - (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp3727[i, j, 3]) / constant_term(r_p4[i, j]) - (F_J_ζ[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3182[i, j, 3]) + (tmp3182[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) + TaylorSeries.zero!(tmp3183[i, j, 3]) + (tmp3183[i, j, 3]).coeffs[1] = constant_term(tmp3182[i, j, 3]) * constant_term(J2_t[j]) + TaylorSeries.zero!(F_J_ξ[i, j]) + (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp3183[i, j, 3]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(tmp3185[i, j, 3]) + (tmp3185[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) + TaylorSeries.zero!(tmp3186[i, j, 3]) + (tmp3186[i, j, 3]).coeffs[1] = constant_term(tmp3185[i, j, 3]) * constant_term(cos_ϕ[i, j]) + TaylorSeries.zero!(tmp3187[i, j, 3]) + (tmp3187[i, j, 3]).coeffs[1] = constant_term(tmp3186[i, j, 3]) * constant_term(J2_t[j]) + TaylorSeries.zero!(F_J_ζ[i, j]) + (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp3187[i, j, 3]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(F_J_ξ_36[i, j]) (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_J_ζ_36[i, j]) (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) for n = 3:n1SEM[j] - (tmp3729[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) - (tmp3729[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3729[i, j, n + 1]).coeffs[1]) - (tmp3730[i, j, n + 1]).coeffs[1] = constant_term(tmp3729[i, j, n + 1]) * constant_term(JSEM[j, n]) - (tmp3730[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3730[i, j, n + 1]).coeffs[1]) - (tmp3731[i, j, n + 1]).coeffs[1] = constant_term(tmp3730[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - (tmp3731[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3731[i, j, n + 1]).coeffs[1]) - (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp3731[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) - (temp_fjξ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjξ[i, j, n]).coeffs[1]) - (tmp3733[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) - (tmp3733[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3733[i, j, n + 1]).coeffs[1]) - (tmp3734[i, j, n + 1]).coeffs[1] = constant_term(tmp3733[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) - (tmp3734[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3734[i, j, n + 1]).coeffs[1]) - (tmp3735[i, j, n + 1]).coeffs[1] = constant_term(tmp3734[i, j, n + 1]) * constant_term(JSEM[j, n]) - (tmp3735[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3735[i, j, n + 1]).coeffs[1]) - (tmp3736[i, j, n + 1]).coeffs[1] = constant_term(tmp3735[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - (tmp3736[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3736[i, j, n + 1]).coeffs[1]) - (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp3736[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) - (temp_fjζ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjζ[i, j, n]).coeffs[1]) + TaylorSeries.zero!(tmp3189[i, j, n + 1]) + (tmp3189[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) + TaylorSeries.zero!(tmp3190[i, j, n + 1]) + (tmp3190[i, j, n + 1]).coeffs[1] = constant_term(tmp3189[i, j, n + 1]) * constant_term(JSEM[j, n]) + TaylorSeries.zero!(tmp3191[i, j, n + 1]) + (tmp3191[i, j, n + 1]).coeffs[1] = constant_term(tmp3190[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_fjξ[i, j, n]) + (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp3191[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) + TaylorSeries.zero!(tmp3193[i, j, n + 1]) + (tmp3193[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) + TaylorSeries.zero!(tmp3194[i, j, n + 1]) + (tmp3194[i, j, n + 1]).coeffs[1] = constant_term(tmp3193[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) + TaylorSeries.zero!(tmp3195[i, j, n + 1]) + (tmp3195[i, j, n + 1]).coeffs[1] = constant_term(tmp3194[i, j, n + 1]) * constant_term(JSEM[j, n]) + TaylorSeries.zero!(tmp3196[i, j, n + 1]) + (tmp3196[i, j, n + 1]).coeffs[1] = constant_term(tmp3195[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_fjζ[i, j, n]) + (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp3196[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) + TaylorSeries.zero!(F_J_ξ_36[i, j]) (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) - (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_J_ζ_36[i, j]) (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) - (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) end if j == mo for m = 1:n1SEM[mo] if m == 1 + TaylorSeries.zero!(sin_mλ[i, j, 1]) (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) - (sin_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(cos_mλ[i, j, 1]) (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - (cos_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, 1]).coeffs[1]) + TaylorSeries.zero!(secϕ_P_nm[i, j, 1, 1]) (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) - (secϕ_P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, 1, 1]).coeffs[1]) + TaylorSeries.zero!(P_nm[i, j, 1, 1]) (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - (P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((P_nm[i, j, 1, 1]).coeffs[1]) + TaylorSeries.zero!(cosϕ_dP_nm[i, j, 1, 1]) (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) - (cosϕ_dP_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, 1, 1]).coeffs[1]) else - (tmp3739[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - (tmp3739[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3739[i, j, m - 1]).coeffs[1]) - (tmp3740[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - (tmp3740[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3740[i, j, m - 1]).coeffs[1]) - (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp3739[i, j, m - 1]) + constant_term(tmp3740[i, j, m - 1]) - (sin_mλ[i, j, m]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, m]).coeffs[1]) - (tmp3742[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - (tmp3742[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3742[i, j, m - 1]).coeffs[1]) - (tmp3743[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - (tmp3743[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3743[i, j, m - 1]).coeffs[1]) - (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp3742[i, j, m - 1]) - constant_term(tmp3743[i, j, m - 1]) - (cos_mλ[i, j, m]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, m]).coeffs[1]) - (tmp3745[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) - (tmp3745[i, j, m - 1, m - 1]).coeffs[2:order + 1] .= zero((tmp3745[i, j, m - 1, m - 1]).coeffs[1]) - (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3745[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) - (secϕ_P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, m, m]).coeffs[1]) + TaylorSeries.zero!(tmp3199[i, j, m - 1]) + (tmp3199[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3200[i, j, m - 1]) + (tmp3200[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(sin_mλ[i, j, m]) + (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp3199[i, j, m - 1]) + constant_term(tmp3200[i, j, m - 1]) + TaylorSeries.zero!(tmp3202[i, j, m - 1]) + (tmp3202[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3203[i, j, m - 1]) + (tmp3203[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(cos_mλ[i, j, m]) + (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp3202[i, j, m - 1]) - constant_term(tmp3203[i, j, m - 1]) + TaylorSeries.zero!(tmp3205[i, j, m - 1, m - 1]) + (tmp3205[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) + TaylorSeries.zero!(secϕ_P_nm[i, j, m, m]) + (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3205[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) + TaylorSeries.zero!(P_nm[i, j, m, m]) (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) - (P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, m, m]).coeffs[1]) - (tmp3748[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) - (tmp3748[i, j, m, m]).coeffs[2:order + 1] .= zero((tmp3748[i, j, m, m]).coeffs[1]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3748[i, j, m, m]) * constant_term(lnm3[m]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, m, m]).coeffs[1]) + TaylorSeries.zero!(tmp3208[i, j, m, m]) + (tmp3208[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(cosϕ_dP_nm[i, j, m, m]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3208[i, j, m, m]) * constant_term(lnm3[m]) end for n = m + 1:n1SEM[mo] if n == m + 1 - (tmp3750[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - (tmp3750[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3750[i, j, n - 1, m]).coeffs[1]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3750[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp3210[i, j, n - 1, m]) + (tmp3210[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3210[i, j, n - 1, m]) * constant_term(lnm1[n, m]) else - (tmp3752[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - (tmp3752[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3752[i, j, n - 1, m]).coeffs[1]) - (tmp3753[i, j, n - 1, m]).coeffs[1] = constant_term(tmp3752[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - (tmp3753[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3753[i, j, n - 1, m]).coeffs[1]) - (tmp3754[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) - (tmp3754[i, j, n - 2, m]).coeffs[2:order + 1] .= zero((tmp3754[i, j, n - 2, m]).coeffs[1]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3753[i, j, n - 1, m]) + constant_term(tmp3754[i, j, n - 2, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp3212[i, j, n - 1, m]) + (tmp3212[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp3213[i, j, n - 1, m]) + (tmp3213[i, j, n - 1, m]).coeffs[1] = constant_term(tmp3212[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + TaylorSeries.zero!(tmp3214[i, j, n - 2, m]) + (tmp3214[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) + TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3213[i, j, n - 1, m]) + constant_term(tmp3214[i, j, n - 2, m]) end + TaylorSeries.zero!(P_nm[i, j, n, m]) (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) - (P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, n, m]).coeffs[1]) - (tmp3757[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) - (tmp3757[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3757[i, j, n, m]).coeffs[1]) - (tmp3758[i, j, n, m]).coeffs[1] = constant_term(tmp3757[i, j, n, m]) * constant_term(lnm3[n]) - (tmp3758[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3758[i, j, n, m]).coeffs[1]) - (tmp3759[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) - (tmp3759[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3759[i, j, n - 1, m]).coeffs[1]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3758[i, j, n, m]) + constant_term(tmp3759[i, j, n - 1, m]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp3217[i, j, n, m]) + (tmp3217[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) + TaylorSeries.zero!(tmp3218[i, j, n, m]) + (tmp3218[i, j, n, m]).coeffs[1] = constant_term(tmp3217[i, j, n, m]) * constant_term(lnm3[n]) + TaylorSeries.zero!(tmp3219[i, j, n - 1, m]) + (tmp3219[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) + TaylorSeries.zero!(cosϕ_dP_nm[i, j, n, m]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3218[i, j, n, m]) + constant_term(tmp3219[i, j, n - 1, m]) end end - (tmp3761[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) - (tmp3761[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3761[i, j, 2, 1]).coeffs[1]) - (tmp3762[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp3762[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3762[i, j, 1]).coeffs[1]) - (tmp3763[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp3763[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3763[i, j, 1]).coeffs[1]) - (tmp3764[i, j, 1]).coeffs[1] = constant_term(tmp3762[i, j, 1]) + constant_term(tmp3763[i, j, 1]) - (tmp3764[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3764[i, j, 1]).coeffs[1]) - (tmp3765[i, j, 2, 1]).coeffs[1] = constant_term(tmp3761[i, j, 2, 1]) * constant_term(tmp3764[i, j, 1]) - (tmp3765[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3765[i, j, 2, 1]).coeffs[1]) - (tmp3766[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) - (tmp3766[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3766[i, j, 2, 2]).coeffs[1]) - (tmp3767[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp3767[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3767[i, j, 2]).coeffs[1]) - (tmp3768[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp3768[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3768[i, j, 2]).coeffs[1]) - (tmp3769[i, j, 2]).coeffs[1] = constant_term(tmp3767[i, j, 2]) + constant_term(tmp3768[i, j, 2]) - (tmp3769[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3769[i, j, 2]).coeffs[1]) - (tmp3770[i, j, 2, 2]).coeffs[1] = constant_term(tmp3766[i, j, 2, 2]) * constant_term(tmp3769[i, j, 2]) - (tmp3770[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3770[i, j, 2, 2]).coeffs[1]) - (tmp3771[i, j, 2, 1]).coeffs[1] = constant_term(tmp3765[i, j, 2, 1]) + constant_term(tmp3770[i, j, 2, 2]) - (tmp3771[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3771[i, j, 2, 1]).coeffs[1]) - (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp3771[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ[i, j]).coeffs[1]) - (tmp3773[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) - (tmp3773[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3773[i, j, 2, 1]).coeffs[1]) - (tmp3774[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp3774[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3774[i, j, 1]).coeffs[1]) - (tmp3775[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp3775[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3775[i, j, 1]).coeffs[1]) - (tmp3776[i, j, 1]).coeffs[1] = constant_term(tmp3774[i, j, 1]) - constant_term(tmp3775[i, j, 1]) - (tmp3776[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3776[i, j, 1]).coeffs[1]) - (tmp3777[i, j, 2, 1]).coeffs[1] = constant_term(tmp3773[i, j, 2, 1]) * constant_term(tmp3776[i, j, 1]) - (tmp3777[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3777[i, j, 2, 1]).coeffs[1]) - (tmp3778[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) - (tmp3778[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3778[i, j, 2, 2]).coeffs[1]) - (tmp3779[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp3779[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3779[i, j, 2]).coeffs[1]) - (tmp3780[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp3780[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3780[i, j, 2]).coeffs[1]) - (tmp3781[i, j, 2]).coeffs[1] = constant_term(tmp3779[i, j, 2]) - constant_term(tmp3780[i, j, 2]) - (tmp3781[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3781[i, j, 2]).coeffs[1]) - (tmp3782[i, j, 2, 2]).coeffs[1] = constant_term(tmp3778[i, j, 2, 2]) * constant_term(tmp3781[i, j, 2]) - (tmp3782[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3782[i, j, 2, 2]).coeffs[1]) - (tmp3783[i, j, 2, 1]).coeffs[1] = constant_term(tmp3777[i, j, 2, 1]) + constant_term(tmp3782[i, j, 2, 2]) - (tmp3783[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3783[i, j, 2, 1]).coeffs[1]) - (F_CS_η[i, j]).coeffs[1] = constant_term(tmp3783[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_η[i, j]).coeffs[2:order + 1] .= zero((F_CS_η[i, j]).coeffs[1]) - (tmp3785[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - (tmp3785[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3785[i, j, 1]).coeffs[1]) - (tmp3786[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - (tmp3786[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3786[i, j, 1]).coeffs[1]) - (tmp3787[i, j, 1]).coeffs[1] = constant_term(tmp3785[i, j, 1]) + constant_term(tmp3786[i, j, 1]) - (tmp3787[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3787[i, j, 1]).coeffs[1]) - (tmp3788[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3787[i, j, 1]) - (tmp3788[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3788[i, j, 2, 1]).coeffs[1]) - (tmp3789[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - (tmp3789[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3789[i, j, 2]).coeffs[1]) - (tmp3790[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - (tmp3790[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3790[i, j, 2]).coeffs[1]) - (tmp3791[i, j, 2]).coeffs[1] = constant_term(tmp3789[i, j, 2]) + constant_term(tmp3790[i, j, 2]) - (tmp3791[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3791[i, j, 2]).coeffs[1]) - (tmp3792[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3791[i, j, 2]) - (tmp3792[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3792[i, j, 2, 2]).coeffs[1]) - (tmp3793[i, j, 2, 1]).coeffs[1] = constant_term(tmp3788[i, j, 2, 1]) + constant_term(tmp3792[i, j, 2, 2]) - (tmp3793[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3793[i, j, 2, 1]).coeffs[1]) - (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp3793[i, j, 2, 1]) / constant_term(r_p4[i, j]) - (F_CS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3221[i, j, 2, 1]) + (tmp3221[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) + TaylorSeries.zero!(tmp3222[i, j, 1]) + (tmp3222[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3223[i, j, 1]) + (tmp3223[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3224[i, j, 1]) + (tmp3224[i, j, 1]).coeffs[1] = constant_term(tmp3222[i, j, 1]) + constant_term(tmp3223[i, j, 1]) + TaylorSeries.zero!(tmp3225[i, j, 2, 1]) + (tmp3225[i, j, 2, 1]).coeffs[1] = constant_term(tmp3221[i, j, 2, 1]) * constant_term(tmp3224[i, j, 1]) + TaylorSeries.zero!(tmp3226[i, j, 2, 2]) + (tmp3226[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) + TaylorSeries.zero!(tmp3227[i, j, 2]) + (tmp3227[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + TaylorSeries.zero!(tmp3228[i, j, 2]) + (tmp3228[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + TaylorSeries.zero!(tmp3229[i, j, 2]) + (tmp3229[i, j, 2]).coeffs[1] = constant_term(tmp3227[i, j, 2]) + constant_term(tmp3228[i, j, 2]) + TaylorSeries.zero!(tmp3230[i, j, 2, 2]) + (tmp3230[i, j, 2, 2]).coeffs[1] = constant_term(tmp3226[i, j, 2, 2]) * constant_term(tmp3229[i, j, 2]) + TaylorSeries.zero!(tmp3231[i, j, 2, 1]) + (tmp3231[i, j, 2, 1]).coeffs[1] = constant_term(tmp3225[i, j, 2, 1]) + constant_term(tmp3230[i, j, 2, 2]) + TaylorSeries.zero!(F_CS_ξ[i, j]) + (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp3231[i, j, 2, 1]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(tmp3233[i, j, 2, 1]) + (tmp3233[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) + TaylorSeries.zero!(tmp3234[i, j, 1]) + (tmp3234[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3235[i, j, 1]) + (tmp3235[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3236[i, j, 1]) + (tmp3236[i, j, 1]).coeffs[1] = constant_term(tmp3234[i, j, 1]) - constant_term(tmp3235[i, j, 1]) + TaylorSeries.zero!(tmp3237[i, j, 2, 1]) + (tmp3237[i, j, 2, 1]).coeffs[1] = constant_term(tmp3233[i, j, 2, 1]) * constant_term(tmp3236[i, j, 1]) + TaylorSeries.zero!(tmp3238[i, j, 2, 2]) + (tmp3238[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) + TaylorSeries.zero!(tmp3239[i, j, 2]) + (tmp3239[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) + TaylorSeries.zero!(tmp3240[i, j, 2]) + (tmp3240[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) + TaylorSeries.zero!(tmp3241[i, j, 2]) + (tmp3241[i, j, 2]).coeffs[1] = constant_term(tmp3239[i, j, 2]) - constant_term(tmp3240[i, j, 2]) + TaylorSeries.zero!(tmp3242[i, j, 2, 2]) + (tmp3242[i, j, 2, 2]).coeffs[1] = constant_term(tmp3238[i, j, 2, 2]) * constant_term(tmp3241[i, j, 2]) + TaylorSeries.zero!(tmp3243[i, j, 2, 1]) + (tmp3243[i, j, 2, 1]).coeffs[1] = constant_term(tmp3237[i, j, 2, 1]) + constant_term(tmp3242[i, j, 2, 2]) + TaylorSeries.zero!(F_CS_η[i, j]) + (F_CS_η[i, j]).coeffs[1] = constant_term(tmp3243[i, j, 2, 1]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(tmp3245[i, j, 1]) + (tmp3245[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3246[i, j, 1]) + (tmp3246[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + TaylorSeries.zero!(tmp3247[i, j, 1]) + (tmp3247[i, j, 1]).coeffs[1] = constant_term(tmp3245[i, j, 1]) + constant_term(tmp3246[i, j, 1]) + TaylorSeries.zero!(tmp3248[i, j, 2, 1]) + (tmp3248[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3247[i, j, 1]) + TaylorSeries.zero!(tmp3249[i, j, 2]) + (tmp3249[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + TaylorSeries.zero!(tmp3250[i, j, 2]) + (tmp3250[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + TaylorSeries.zero!(tmp3251[i, j, 2]) + (tmp3251[i, j, 2]).coeffs[1] = constant_term(tmp3249[i, j, 2]) + constant_term(tmp3250[i, j, 2]) + TaylorSeries.zero!(tmp3252[i, j, 2, 2]) + (tmp3252[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3251[i, j, 2]) + TaylorSeries.zero!(tmp3253[i, j, 2, 1]) + (tmp3253[i, j, 2, 1]).coeffs[1] = constant_term(tmp3248[i, j, 2, 1]) + constant_term(tmp3252[i, j, 2, 2]) + TaylorSeries.zero!(F_CS_ζ[i, j]) + (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp3253[i, j, 2, 1]) / constant_term(r_p4[i, j]) + TaylorSeries.zero!(F_CS_ξ_36[i, j]) (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_η_36[i, j]) (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_ζ_36[i, j]) (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) for n = 3:n2M for m = 1:n + TaylorSeries.zero!(Cnm_cosmλ[i, j, n, m]) (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) - (Cnm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_cosmλ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(Cnm_sinmλ[i, j, n, m]) (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) - (Cnm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_sinmλ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(Snm_cosmλ[i, j, n, m]) (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) - (Snm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_cosmλ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(Snm_sinmλ[i, j, n, m]) (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) - (Snm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_sinmλ[i, j, n, m]).coeffs[1]) - (tmp3799[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) - (tmp3799[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3799[i, j, n, m]).coeffs[1]) - (tmp3800[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - (tmp3800[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3800[i, j, n, m]).coeffs[1]) - (tmp3801[i, j, n, m]).coeffs[1] = constant_term(tmp3799[i, j, n, m]) * constant_term(tmp3800[i, j, n, m]) - (tmp3801[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3801[i, j, n, m]).coeffs[1]) - (tmp3802[i, j, n, m]).coeffs[1] = constant_term(tmp3801[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp3802[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3802[i, j, n, m]).coeffs[1]) - (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp3802[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) - (temp_CS_ξ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ξ[i, j, n, m]).coeffs[1]) - (tmp3804[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) - (tmp3804[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3804[i, j, n, m]).coeffs[1]) - (tmp3805[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) - (tmp3805[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3805[i, j, n, m]).coeffs[1]) - (tmp3806[i, j, n, m]).coeffs[1] = constant_term(tmp3804[i, j, n, m]) * constant_term(tmp3805[i, j, n, m]) - (tmp3806[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3806[i, j, n, m]).coeffs[1]) - (tmp3807[i, j, n, m]).coeffs[1] = constant_term(tmp3806[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp3807[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3807[i, j, n, m]).coeffs[1]) - (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp3807[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) - (temp_CS_η[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_η[i, j, n, m]).coeffs[1]) - (tmp3809[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - (tmp3809[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3809[i, j, n, m]).coeffs[1]) - (tmp3810[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3809[i, j, n, m]) - (tmp3810[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3810[i, j, n, m]).coeffs[1]) - (tmp3811[i, j, n, m]).coeffs[1] = constant_term(tmp3810[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - (tmp3811[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3811[i, j, n, m]).coeffs[1]) - (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp3811[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) - (temp_CS_ζ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ζ[i, j, n, m]).coeffs[1]) + TaylorSeries.zero!(tmp3259[i, j, n, m]) + (tmp3259[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) + TaylorSeries.zero!(tmp3260[i, j, n, m]) + (tmp3260[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + TaylorSeries.zero!(tmp3261[i, j, n, m]) + (tmp3261[i, j, n, m]).coeffs[1] = constant_term(tmp3259[i, j, n, m]) * constant_term(tmp3260[i, j, n, m]) + TaylorSeries.zero!(tmp3262[i, j, n, m]) + (tmp3262[i, j, n, m]).coeffs[1] = constant_term(tmp3261[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_CS_ξ[i, j, n, m]) + (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp3262[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) + TaylorSeries.zero!(tmp3264[i, j, n, m]) + (tmp3264[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) + TaylorSeries.zero!(tmp3265[i, j, n, m]) + (tmp3265[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) + TaylorSeries.zero!(tmp3266[i, j, n, m]) + (tmp3266[i, j, n, m]).coeffs[1] = constant_term(tmp3264[i, j, n, m]) * constant_term(tmp3265[i, j, n, m]) + TaylorSeries.zero!(tmp3267[i, j, n, m]) + (tmp3267[i, j, n, m]).coeffs[1] = constant_term(tmp3266[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_CS_η[i, j, n, m]) + (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp3267[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) + TaylorSeries.zero!(tmp3269[i, j, n, m]) + (tmp3269[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + TaylorSeries.zero!(tmp3270[i, j, n, m]) + (tmp3270[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3269[i, j, n, m]) + TaylorSeries.zero!(tmp3271[i, j, n, m]) + (tmp3271[i, j, n, m]).coeffs[1] = constant_term(tmp3270[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + TaylorSeries.zero!(temp_CS_ζ[i, j, n, m]) + (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp3271[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) + TaylorSeries.zero!(F_CS_ξ_36[i, j]) (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) - (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_η_36[i, j]) (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) - (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + TaylorSeries.zero!(F_CS_ζ_36[i, j]) (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) - (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) end end - (tmp3813[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - (tmp3813[i, j]).coeffs[2:order + 1] .= zero((tmp3813[i, j]).coeffs[1]) - (tmp3814[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) - (tmp3814[i, j]).coeffs[2:order + 1] .= zero((tmp3814[i, j]).coeffs[1]) - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp3813[i, j]) + constant_term(tmp3814[i, j]) - (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3273[i, j]) + (tmp3273[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + TaylorSeries.zero!(tmp3274[i, j]) + (tmp3274[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) + TaylorSeries.zero!(F_JCS_ξ[i, j]) + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp3273[i, j]) + constant_term(tmp3274[i, j]) + TaylorSeries.zero!(F_JCS_η[i, j]) (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) - (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) - (tmp3817[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - (tmp3817[i, j]).coeffs[2:order + 1] .= zero((tmp3817[i, j]).coeffs[1]) - (tmp3818[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) - (tmp3818[i, j]).coeffs[2:order + 1] .= zero((tmp3818[i, j]).coeffs[1]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp3817[i, j]) + constant_term(tmp3818[i, j]) - (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3277[i, j]) + (tmp3277[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + TaylorSeries.zero!(tmp3278[i, j]) + (tmp3278[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) + TaylorSeries.zero!(F_JCS_ζ[i, j]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp3277[i, j]) + constant_term(tmp3278[i, j]) else + TaylorSeries.zero!(F_JCS_ξ[i, j]) (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + TaylorSeries.zero!(F_JCS_η[i, j]) (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + TaylorSeries.zero!(F_JCS_ζ[i, j]) (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) end + TaylorSeries.zero!(Rb2p[i, j, 1, 1]) (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) - (Rb2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 1]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 2, 1]) (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) - (Rb2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 1]).coeffs[1]) - (tmp3824[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - (tmp3824[i, j]).coeffs[2:order + 1] .= zero((tmp3824[i, j]).coeffs[1]) - (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3824[i, j]) * constant_term(cos_λ[i, j]) - (Rb2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 1]).coeffs[1]) + TaylorSeries.zero!(tmp3284[i, j]) + (tmp3284[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + TaylorSeries.zero!(Rb2p[i, j, 3, 1]) + (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3284[i, j]) * constant_term(cos_λ[i, j]) + TaylorSeries.zero!(Rb2p[i, j, 1, 2]) (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) - (Rb2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 2]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 2, 2]) (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - (Rb2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 2]).coeffs[1]) - (tmp3827[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - (tmp3827[i, j]).coeffs[2:order + 1] .= zero((tmp3827[i, j]).coeffs[1]) - (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3827[i, j]) * constant_term(sin_λ[i, j]) - (Rb2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 2]).coeffs[1]) + TaylorSeries.zero!(tmp3287[i, j]) + (tmp3287[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + TaylorSeries.zero!(Rb2p[i, j, 3, 2]) + (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3287[i, j]) * constant_term(sin_λ[i, j]) + TaylorSeries.zero!(Rb2p[i, j, 1, 3]) (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - (Rb2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 3]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 2, 3]) (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) - (Rb2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 3]).coeffs[1]) + TaylorSeries.zero!(Rb2p[i, j, 3, 3]) (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - (Rb2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 3]).coeffs[1]) - (tmp3829[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) - (tmp3829[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3829[i, j, 1, 1]).coeffs[1]) - (tmp3830[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) - (tmp3830[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3830[i, j, 1, 2]).coeffs[1]) - (tmp3831[i, j, 1, 1]).coeffs[1] = constant_term(tmp3829[i, j, 1, 1]) + constant_term(tmp3830[i, j, 1, 2]) - (tmp3831[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3831[i, j, 1, 1]).coeffs[1]) - (tmp3832[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) - (tmp3832[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3832[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp3831[i, j, 1, 1]) + constant_term(tmp3832[i, j, 1, 3]) - (Gc2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 1]).coeffs[1]) - (tmp3834[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) - (tmp3834[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3834[i, j, 2, 1]).coeffs[1]) - (tmp3835[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) - (tmp3835[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3835[i, j, 2, 2]).coeffs[1]) - (tmp3836[i, j, 2, 1]).coeffs[1] = constant_term(tmp3834[i, j, 2, 1]) + constant_term(tmp3835[i, j, 2, 2]) - (tmp3836[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3836[i, j, 2, 1]).coeffs[1]) - (tmp3837[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) - (tmp3837[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3837[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp3836[i, j, 2, 1]) + constant_term(tmp3837[i, j, 2, 3]) - (Gc2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 1]).coeffs[1]) - (tmp3839[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) - (tmp3839[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3839[i, j, 3, 1]).coeffs[1]) - (tmp3840[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) - (tmp3840[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3840[i, j, 3, 2]).coeffs[1]) - (tmp3841[i, j, 3, 1]).coeffs[1] = constant_term(tmp3839[i, j, 3, 1]) + constant_term(tmp3840[i, j, 3, 2]) - (tmp3841[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3841[i, j, 3, 1]).coeffs[1]) - (tmp3842[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) - (tmp3842[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3842[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3841[i, j, 3, 1]) + constant_term(tmp3842[i, j, 3, 3]) - (Gc2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 1]).coeffs[1]) - (tmp3844[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) - (tmp3844[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3844[i, j, 1, 1]).coeffs[1]) - (tmp3845[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) - (tmp3845[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3845[i, j, 1, 2]).coeffs[1]) - (tmp3846[i, j, 1, 1]).coeffs[1] = constant_term(tmp3844[i, j, 1, 1]) + constant_term(tmp3845[i, j, 1, 2]) - (tmp3846[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3846[i, j, 1, 1]).coeffs[1]) - (tmp3847[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) - (tmp3847[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3847[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp3846[i, j, 1, 1]) + constant_term(tmp3847[i, j, 1, 3]) - (Gc2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 2]).coeffs[1]) - (tmp3849[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) - (tmp3849[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3849[i, j, 2, 1]).coeffs[1]) - (tmp3850[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) - (tmp3850[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3850[i, j, 2, 2]).coeffs[1]) - (tmp3851[i, j, 2, 1]).coeffs[1] = constant_term(tmp3849[i, j, 2, 1]) + constant_term(tmp3850[i, j, 2, 2]) - (tmp3851[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3851[i, j, 2, 1]).coeffs[1]) - (tmp3852[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) - (tmp3852[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3852[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp3851[i, j, 2, 1]) + constant_term(tmp3852[i, j, 2, 3]) - (Gc2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 2]).coeffs[1]) - (tmp3854[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) - (tmp3854[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3854[i, j, 3, 1]).coeffs[1]) - (tmp3855[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) - (tmp3855[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3855[i, j, 3, 2]).coeffs[1]) - (tmp3856[i, j, 3, 1]).coeffs[1] = constant_term(tmp3854[i, j, 3, 1]) + constant_term(tmp3855[i, j, 3, 2]) - (tmp3856[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3856[i, j, 3, 1]).coeffs[1]) - (tmp3857[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) - (tmp3857[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3857[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3856[i, j, 3, 1]) + constant_term(tmp3857[i, j, 3, 3]) - (Gc2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 2]).coeffs[1]) - (tmp3859[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) - (tmp3859[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3859[i, j, 1, 1]).coeffs[1]) - (tmp3860[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) - (tmp3860[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3860[i, j, 1, 2]).coeffs[1]) - (tmp3861[i, j, 1, 1]).coeffs[1] = constant_term(tmp3859[i, j, 1, 1]) + constant_term(tmp3860[i, j, 1, 2]) - (tmp3861[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3861[i, j, 1, 1]).coeffs[1]) - (tmp3862[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) - (tmp3862[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3862[i, j, 1, 3]).coeffs[1]) - (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp3861[i, j, 1, 1]) + constant_term(tmp3862[i, j, 1, 3]) - (Gc2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 3]).coeffs[1]) - (tmp3864[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) - (tmp3864[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3864[i, j, 2, 1]).coeffs[1]) - (tmp3865[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) - (tmp3865[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3865[i, j, 2, 2]).coeffs[1]) - (tmp3866[i, j, 2, 1]).coeffs[1] = constant_term(tmp3864[i, j, 2, 1]) + constant_term(tmp3865[i, j, 2, 2]) - (tmp3866[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3866[i, j, 2, 1]).coeffs[1]) - (tmp3867[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) - (tmp3867[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3867[i, j, 2, 3]).coeffs[1]) - (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp3866[i, j, 2, 1]) + constant_term(tmp3867[i, j, 2, 3]) - (Gc2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 3]).coeffs[1]) - (tmp3869[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) - (tmp3869[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3869[i, j, 3, 1]).coeffs[1]) - (tmp3870[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) - (tmp3870[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3870[i, j, 3, 2]).coeffs[1]) - (tmp3871[i, j, 3, 1]).coeffs[1] = constant_term(tmp3869[i, j, 3, 1]) + constant_term(tmp3870[i, j, 3, 2]) - (tmp3871[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3871[i, j, 3, 1]).coeffs[1]) - (tmp3872[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) - (tmp3872[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3872[i, j, 3, 3]).coeffs[1]) - (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp3871[i, j, 3, 1]) + constant_term(tmp3872[i, j, 3, 3]) - (Gc2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 3]).coeffs[1]) - (tmp3874[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) - (tmp3874[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3874[i, j, 1, 1]).coeffs[1]) - (tmp3875[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) - (tmp3875[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3875[i, j, 2, 1]).coeffs[1]) - (tmp3876[i, j, 1, 1]).coeffs[1] = constant_term(tmp3874[i, j, 1, 1]) + constant_term(tmp3875[i, j, 2, 1]) - (tmp3876[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3876[i, j, 1, 1]).coeffs[1]) - (tmp3877[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) - (tmp3877[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3877[i, j, 3, 1]).coeffs[1]) - (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp3876[i, j, 1, 1]) + constant_term(tmp3877[i, j, 3, 1]) - (F_JCS_x[i, j]).coeffs[2:order + 1] .= zero((F_JCS_x[i, j]).coeffs[1]) - (tmp3879[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) - (tmp3879[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3879[i, j, 1, 2]).coeffs[1]) - (tmp3880[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) - (tmp3880[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3880[i, j, 2, 2]).coeffs[1]) - (tmp3881[i, j, 1, 2]).coeffs[1] = constant_term(tmp3879[i, j, 1, 2]) + constant_term(tmp3880[i, j, 2, 2]) - (tmp3881[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3881[i, j, 1, 2]).coeffs[1]) - (tmp3882[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) - (tmp3882[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3882[i, j, 3, 2]).coeffs[1]) - (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp3881[i, j, 1, 2]) + constant_term(tmp3882[i, j, 3, 2]) - (F_JCS_y[i, j]).coeffs[2:order + 1] .= zero((F_JCS_y[i, j]).coeffs[1]) - (tmp3884[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) - (tmp3884[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3884[i, j, 1, 3]).coeffs[1]) - (tmp3885[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) - (tmp3885[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3885[i, j, 2, 3]).coeffs[1]) - (tmp3886[i, j, 1, 3]).coeffs[1] = constant_term(tmp3884[i, j, 1, 3]) + constant_term(tmp3885[i, j, 2, 3]) - (tmp3886[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3886[i, j, 1, 3]).coeffs[1]) - (tmp3887[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) - (tmp3887[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3887[i, j, 3, 3]).coeffs[1]) - (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp3886[i, j, 1, 3]) + constant_term(tmp3887[i, j, 3, 3]) - (F_JCS_z[i, j]).coeffs[2:order + 1] .= zero((F_JCS_z[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3289[i, j, 1, 1]) + (tmp3289[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) + TaylorSeries.zero!(tmp3290[i, j, 1, 2]) + (tmp3290[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) + TaylorSeries.zero!(tmp3291[i, j, 1, 1]) + (tmp3291[i, j, 1, 1]).coeffs[1] = constant_term(tmp3289[i, j, 1, 1]) + constant_term(tmp3290[i, j, 1, 2]) + TaylorSeries.zero!(tmp3292[i, j, 1, 3]) + (tmp3292[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) + TaylorSeries.zero!(Gc2p[i, j, 1, 1]) + (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp3291[i, j, 1, 1]) + constant_term(tmp3292[i, j, 1, 3]) + TaylorSeries.zero!(tmp3294[i, j, 2, 1]) + (tmp3294[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) + TaylorSeries.zero!(tmp3295[i, j, 2, 2]) + (tmp3295[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) + TaylorSeries.zero!(tmp3296[i, j, 2, 1]) + (tmp3296[i, j, 2, 1]).coeffs[1] = constant_term(tmp3294[i, j, 2, 1]) + constant_term(tmp3295[i, j, 2, 2]) + TaylorSeries.zero!(tmp3297[i, j, 2, 3]) + (tmp3297[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) + TaylorSeries.zero!(Gc2p[i, j, 2, 1]) + (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp3296[i, j, 2, 1]) + constant_term(tmp3297[i, j, 2, 3]) + TaylorSeries.zero!(tmp3299[i, j, 3, 1]) + (tmp3299[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) + TaylorSeries.zero!(tmp3300[i, j, 3, 2]) + (tmp3300[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) + TaylorSeries.zero!(tmp3301[i, j, 3, 1]) + (tmp3301[i, j, 3, 1]).coeffs[1] = constant_term(tmp3299[i, j, 3, 1]) + constant_term(tmp3300[i, j, 3, 2]) + TaylorSeries.zero!(tmp3302[i, j, 3, 3]) + (tmp3302[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) + TaylorSeries.zero!(Gc2p[i, j, 3, 1]) + (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3301[i, j, 3, 1]) + constant_term(tmp3302[i, j, 3, 3]) + TaylorSeries.zero!(tmp3304[i, j, 1, 1]) + (tmp3304[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) + TaylorSeries.zero!(tmp3305[i, j, 1, 2]) + (tmp3305[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) + TaylorSeries.zero!(tmp3306[i, j, 1, 1]) + (tmp3306[i, j, 1, 1]).coeffs[1] = constant_term(tmp3304[i, j, 1, 1]) + constant_term(tmp3305[i, j, 1, 2]) + TaylorSeries.zero!(tmp3307[i, j, 1, 3]) + (tmp3307[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) + TaylorSeries.zero!(Gc2p[i, j, 1, 2]) + (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp3306[i, j, 1, 1]) + constant_term(tmp3307[i, j, 1, 3]) + TaylorSeries.zero!(tmp3309[i, j, 2, 1]) + (tmp3309[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) + TaylorSeries.zero!(tmp3310[i, j, 2, 2]) + (tmp3310[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) + TaylorSeries.zero!(tmp3311[i, j, 2, 1]) + (tmp3311[i, j, 2, 1]).coeffs[1] = constant_term(tmp3309[i, j, 2, 1]) + constant_term(tmp3310[i, j, 2, 2]) + TaylorSeries.zero!(tmp3312[i, j, 2, 3]) + (tmp3312[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) + TaylorSeries.zero!(Gc2p[i, j, 2, 2]) + (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp3311[i, j, 2, 1]) + constant_term(tmp3312[i, j, 2, 3]) + TaylorSeries.zero!(tmp3314[i, j, 3, 1]) + (tmp3314[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) + TaylorSeries.zero!(tmp3315[i, j, 3, 2]) + (tmp3315[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) + TaylorSeries.zero!(tmp3316[i, j, 3, 1]) + (tmp3316[i, j, 3, 1]).coeffs[1] = constant_term(tmp3314[i, j, 3, 1]) + constant_term(tmp3315[i, j, 3, 2]) + TaylorSeries.zero!(tmp3317[i, j, 3, 3]) + (tmp3317[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) + TaylorSeries.zero!(Gc2p[i, j, 3, 2]) + (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3316[i, j, 3, 1]) + constant_term(tmp3317[i, j, 3, 3]) + TaylorSeries.zero!(tmp3319[i, j, 1, 1]) + (tmp3319[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) + TaylorSeries.zero!(tmp3320[i, j, 1, 2]) + (tmp3320[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) + TaylorSeries.zero!(tmp3321[i, j, 1, 1]) + (tmp3321[i, j, 1, 1]).coeffs[1] = constant_term(tmp3319[i, j, 1, 1]) + constant_term(tmp3320[i, j, 1, 2]) + TaylorSeries.zero!(tmp3322[i, j, 1, 3]) + (tmp3322[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) + TaylorSeries.zero!(Gc2p[i, j, 1, 3]) + (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp3321[i, j, 1, 1]) + constant_term(tmp3322[i, j, 1, 3]) + TaylorSeries.zero!(tmp3324[i, j, 2, 1]) + (tmp3324[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) + TaylorSeries.zero!(tmp3325[i, j, 2, 2]) + (tmp3325[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) + TaylorSeries.zero!(tmp3326[i, j, 2, 1]) + (tmp3326[i, j, 2, 1]).coeffs[1] = constant_term(tmp3324[i, j, 2, 1]) + constant_term(tmp3325[i, j, 2, 2]) + TaylorSeries.zero!(tmp3327[i, j, 2, 3]) + (tmp3327[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) + TaylorSeries.zero!(Gc2p[i, j, 2, 3]) + (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp3326[i, j, 2, 1]) + constant_term(tmp3327[i, j, 2, 3]) + TaylorSeries.zero!(tmp3329[i, j, 3, 1]) + (tmp3329[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) + TaylorSeries.zero!(tmp3330[i, j, 3, 2]) + (tmp3330[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) + TaylorSeries.zero!(tmp3331[i, j, 3, 1]) + (tmp3331[i, j, 3, 1]).coeffs[1] = constant_term(tmp3329[i, j, 3, 1]) + constant_term(tmp3330[i, j, 3, 2]) + TaylorSeries.zero!(tmp3332[i, j, 3, 3]) + (tmp3332[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) + TaylorSeries.zero!(Gc2p[i, j, 3, 3]) + (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp3331[i, j, 3, 1]) + constant_term(tmp3332[i, j, 3, 3]) + TaylorSeries.zero!(tmp3334[i, j, 1, 1]) + (tmp3334[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) + TaylorSeries.zero!(tmp3335[i, j, 2, 1]) + (tmp3335[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) + TaylorSeries.zero!(tmp3336[i, j, 1, 1]) + (tmp3336[i, j, 1, 1]).coeffs[1] = constant_term(tmp3334[i, j, 1, 1]) + constant_term(tmp3335[i, j, 2, 1]) + TaylorSeries.zero!(tmp3337[i, j, 3, 1]) + (tmp3337[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) + TaylorSeries.zero!(F_JCS_x[i, j]) + (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp3336[i, j, 1, 1]) + constant_term(tmp3337[i, j, 3, 1]) + TaylorSeries.zero!(tmp3339[i, j, 1, 2]) + (tmp3339[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) + TaylorSeries.zero!(tmp3340[i, j, 2, 2]) + (tmp3340[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) + TaylorSeries.zero!(tmp3341[i, j, 1, 2]) + (tmp3341[i, j, 1, 2]).coeffs[1] = constant_term(tmp3339[i, j, 1, 2]) + constant_term(tmp3340[i, j, 2, 2]) + TaylorSeries.zero!(tmp3342[i, j, 3, 2]) + (tmp3342[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) + TaylorSeries.zero!(F_JCS_y[i, j]) + (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp3341[i, j, 1, 2]) + constant_term(tmp3342[i, j, 3, 2]) + TaylorSeries.zero!(tmp3344[i, j, 1, 3]) + (tmp3344[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) + TaylorSeries.zero!(tmp3345[i, j, 2, 3]) + (tmp3345[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) + TaylorSeries.zero!(tmp3346[i, j, 1, 3]) + (tmp3346[i, j, 1, 3]).coeffs[1] = constant_term(tmp3344[i, j, 1, 3]) + constant_term(tmp3345[i, j, 2, 3]) + TaylorSeries.zero!(tmp3347[i, j, 3, 3]) + (tmp3347[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) + TaylorSeries.zero!(F_JCS_z[i, j]) + (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp3346[i, j, 1, 3]) + constant_term(tmp3347[i, j, 3, 3]) end end end @@ -8600,1344 +9416,1344 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract continue else if UJ_interaction[i, j] - (tmp3889[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) - (tmp3889[i, j]).coeffs[2:order + 1] .= zero((tmp3889[i, j]).coeffs[1]) - (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp3889[i, j]) - (temp_accX_j[i, j]).coeffs[2:order + 1] .= zero((temp_accX_j[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3349[i, j]) + (tmp3349[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(temp_accX_j[i, j]) + (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp3349[i, j]) + TaylorSeries.zero!(accX[j]) (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) - (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) - (tmp3891[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) - (tmp3891[i, j]).coeffs[2:order + 1] .= zero((tmp3891[i, j]).coeffs[1]) - (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp3891[i, j]) - (temp_accY_j[i, j]).coeffs[2:order + 1] .= zero((temp_accY_j[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3351[i, j]) + (tmp3351[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(temp_accY_j[i, j]) + (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp3351[i, j]) + TaylorSeries.zero!(accY[j]) (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) - (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) - (tmp3893[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) - (tmp3893[i, j]).coeffs[2:order + 1] .= zero((tmp3893[i, j]).coeffs[1]) - (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp3893[i, j]) - (temp_accZ_j[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_j[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3353[i, j]) + (tmp3353[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(temp_accZ_j[i, j]) + (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp3353[i, j]) + TaylorSeries.zero!(accZ[j]) (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) - (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) - (tmp3895[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) - (tmp3895[i, j]).coeffs[2:order + 1] .= zero((tmp3895[i, j]).coeffs[1]) - (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp3895[i, j]) - (temp_accX_i[i, j]).coeffs[2:order + 1] .= zero((temp_accX_i[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3355[i, j]) + (tmp3355[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(temp_accX_i[i, j]) + (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp3355[i, j]) + TaylorSeries.zero!(accX[i]) (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) - (accX[i]).coeffs[2:order + 1] .= zero((accX[i]).coeffs[1]) - (tmp3897[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) - (tmp3897[i, j]).coeffs[2:order + 1] .= zero((tmp3897[i, j]).coeffs[1]) - (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp3897[i, j]) - (temp_accY_i[i, j]).coeffs[2:order + 1] .= zero((temp_accY_i[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3357[i, j]) + (tmp3357[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(temp_accY_i[i, j]) + (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp3357[i, j]) + TaylorSeries.zero!(accY[i]) (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) - (accY[i]).coeffs[2:order + 1] .= zero((accY[i]).coeffs[1]) - (tmp3899[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) - (tmp3899[i, j]).coeffs[2:order + 1] .= zero((tmp3899[i, j]).coeffs[1]) - (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp3899[i, j]) - (temp_accZ_i[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_i[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3359[i, j]) + (tmp3359[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(temp_accZ_i[i, j]) + (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp3359[i, j]) + TaylorSeries.zero!(accZ[i]) (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) - (accZ[i]).coeffs[2:order + 1] .= zero((accZ[i]).coeffs[1]) if j == mo - (tmp3901[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) - (tmp3901[i, j]).coeffs[2:order + 1] .= zero((tmp3901[i, j]).coeffs[1]) - (tmp3902[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) - (tmp3902[i, j]).coeffs[2:order + 1] .= zero((tmp3902[i, j]).coeffs[1]) - (tmp3903[i, j]).coeffs[1] = constant_term(tmp3901[i, j]) - constant_term(tmp3902[i, j]) - (tmp3903[i, j]).coeffs[2:order + 1] .= zero((tmp3903[i, j]).coeffs[1]) - (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3903[i, j]) - (N_MfigM_pmA_x[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_x[i]).coeffs[1]) - (tmp3905[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) - (tmp3905[i, j]).coeffs[2:order + 1] .= zero((tmp3905[i, j]).coeffs[1]) - (tmp3906[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) - (tmp3906[i, j]).coeffs[2:order + 1] .= zero((tmp3906[i, j]).coeffs[1]) - (tmp3907[i, j]).coeffs[1] = constant_term(tmp3905[i, j]) - constant_term(tmp3906[i, j]) - (tmp3907[i, j]).coeffs[2:order + 1] .= zero((tmp3907[i, j]).coeffs[1]) - (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3907[i, j]) - (N_MfigM_pmA_y[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_y[i]).coeffs[1]) - (tmp3909[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) - (tmp3909[i, j]).coeffs[2:order + 1] .= zero((tmp3909[i, j]).coeffs[1]) - (tmp3910[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) - (tmp3910[i, j]).coeffs[2:order + 1] .= zero((tmp3910[i, j]).coeffs[1]) - (tmp3911[i, j]).coeffs[1] = constant_term(tmp3909[i, j]) - constant_term(tmp3910[i, j]) - (tmp3911[i, j]).coeffs[2:order + 1] .= zero((tmp3911[i, j]).coeffs[1]) - (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3911[i, j]) - (N_MfigM_pmA_z[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_z[i]).coeffs[1]) + TaylorSeries.zero!(tmp3361[i, j]) + (tmp3361[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(tmp3362[i, j]) + (tmp3362[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(tmp3363[i, j]) + (tmp3363[i, j]).coeffs[1] = constant_term(tmp3361[i, j]) - constant_term(tmp3362[i, j]) + TaylorSeries.zero!(N_MfigM_pmA_x[i]) + (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3363[i, j]) + TaylorSeries.zero!(tmp3365[i, j]) + (tmp3365[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(tmp3366[i, j]) + (tmp3366[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) + TaylorSeries.zero!(tmp3367[i, j]) + (tmp3367[i, j]).coeffs[1] = constant_term(tmp3365[i, j]) - constant_term(tmp3366[i, j]) + TaylorSeries.zero!(N_MfigM_pmA_y[i]) + (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3367[i, j]) + TaylorSeries.zero!(tmp3369[i, j]) + (tmp3369[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) + TaylorSeries.zero!(tmp3370[i, j]) + (tmp3370[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) + TaylorSeries.zero!(tmp3371[i, j]) + (tmp3371[i, j]).coeffs[1] = constant_term(tmp3369[i, j]) - constant_term(tmp3370[i, j]) + TaylorSeries.zero!(N_MfigM_pmA_z[i]) + (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3371[i, j]) + TaylorSeries.zero!(temp_N_M_x[i]) (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]) - (temp_N_M_x[i]).coeffs[2:order + 1] .= zero((temp_N_M_x[i]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[1]) (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) - (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + TaylorSeries.zero!(temp_N_M_y[i]) (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]) - (temp_N_M_y[i]).coeffs[2:order + 1] .= zero((temp_N_M_y[i]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[2]) (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) - (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + TaylorSeries.zero!(temp_N_M_z[i]) (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(N_MfigM_pmA_z[i]) - (temp_N_M_z[i]).coeffs[2:order + 1] .= zero((temp_N_M_z[i]).coeffs[1]) + TaylorSeries.zero!(N_MfigM[3]) (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) - (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) end end end end end - #= In[6]:713 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1619 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue else + TaylorSeries.zero!(_4ϕj[i, j]) (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) - (_4ϕj[i, j]).coeffs[2:order + 1] .= zero((_4ϕj[i, j]).coeffs[1]) + TaylorSeries.zero!(ϕi_plus_4ϕj[i, j]) (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) - (ϕi_plus_4ϕj[i, j]).coeffs[2:order + 1] .= zero((ϕi_plus_4ϕj[i, j]).coeffs[1]) + TaylorSeries.zero!(_2v2[i, j]) (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) - (_2v2[i, j]).coeffs[2:order + 1] .= zero((_2v2[i, j]).coeffs[1]) + TaylorSeries.zero!(sj2_plus_2si2[i, j]) (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) - (sj2_plus_2si2[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2[i, j]).coeffs[1]) - (tmp3923[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) - (tmp3923[i, j]).coeffs[2:order + 1] .= zero((tmp3923[i, j]).coeffs[1]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3923[i, j]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3383[i, j]) + (tmp3383[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) + TaylorSeries.zero!(sj2_plus_2si2_minus_4vivj[i, j]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3383[i, j]) + TaylorSeries.zero!(ϕs_and_vs[i, j]) (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) - (ϕs_and_vs[i, j]).coeffs[2:order + 1] .= zero((ϕs_and_vs[i, j]).coeffs[1]) + TaylorSeries.zero!(Xij_t_Ui[i, j]) (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) - (Xij_t_Ui[i, j]).coeffs[2:order + 1] .= zero((Xij_t_Ui[i, j]).coeffs[1]) + TaylorSeries.zero!(Yij_t_Vi[i, j]) (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) - (Yij_t_Vi[i, j]).coeffs[2:order + 1] .= zero((Yij_t_Vi[i, j]).coeffs[1]) + TaylorSeries.zero!(Zij_t_Wi[i, j]) (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) - (Zij_t_Wi[i, j]).coeffs[2:order + 1] .= zero((Zij_t_Wi[i, j]).coeffs[1]) - (tmp3929[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) - (tmp3929[i, j]).coeffs[2:order + 1] .= zero((tmp3929[i, j]).coeffs[1]) - (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp3929[i, j]) + constant_term(Zij_t_Wi[i, j]) - (Rij_dot_Vi[i, j]).coeffs[2:order + 1] .= zero((Rij_dot_Vi[i, j]).coeffs[1]) - (tmp3932[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) - (tmp3932[i, j]).coeffs[2:order + 1] .= zero((tmp3932[i, j]).coeffs[1]) - (rij_dot_vi_div_rij_sq[i, j]).coeffs[1] = constant_term(tmp3932[i, j]) / constant_term(r_p2[i, j]) - (rij_dot_vi_div_rij_sq[i, j]).coeffs[2:order + 1] .= zero((rij_dot_vi_div_rij_sq[i, j]).coeffs[1]) - (tmp3935[i, j]).coeffs[1] = constant_term(1.5) * constant_term(rij_dot_vi_div_rij_sq[i, j]) - (tmp3935[i, j]).coeffs[2:order + 1] .= zero((tmp3935[i, j]).coeffs[1]) - (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3935[i, j]) - (pn1t2_7[i, j]).coeffs[2:order + 1] .= zero((pn1t2_7[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3389[i, j]) + (tmp3389[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) + TaylorSeries.zero!(Rij_dot_Vi[i, j]) + (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp3389[i, j]) + constant_term(Zij_t_Wi[i, j]) + TaylorSeries.zero!(tmp3392[i, j]) + (tmp3392[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) + TaylorSeries.zero!(rij_dot_vi_div_rij_sq[i, j]) + (rij_dot_vi_div_rij_sq[i, j]).coeffs[1] = constant_term(tmp3392[i, j]) / constant_term(r_p2[i, j]) + TaylorSeries.zero!(tmp3395[i, j]) + (tmp3395[i, j]).coeffs[1] = constant_term(1.5) * constant_term(rij_dot_vi_div_rij_sq[i, j]) + TaylorSeries.zero!(pn1t2_7[i, j]) + (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3395[i, j]) + TaylorSeries.zero!(pn1t1_7[i, j]) (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) - (pn1t1_7[i, j]).coeffs[2:order + 1] .= zero((pn1t1_7[i, j]).coeffs[1]) end end + TaylorSeries.zero!(pntempX[j]) (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + TaylorSeries.zero!(pntempY[j]) (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + TaylorSeries.zero!(pntempZ[j]) (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) end - #= In[6]:752 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1658 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue else + TaylorSeries.zero!(pNX_t_X[i, j]) (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) - (pNX_t_X[i, j]).coeffs[2:order + 1] .= zero((pNX_t_X[i, j]).coeffs[1]) + TaylorSeries.zero!(pNY_t_Y[i, j]) (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) - (pNY_t_Y[i, j]).coeffs[2:order + 1] .= zero((pNY_t_Y[i, j]).coeffs[1]) + TaylorSeries.zero!(pNZ_t_Z[i, j]) (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) - (pNZ_t_Z[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_Z[i, j]).coeffs[1]) - (tmp3942[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) - (tmp3942[i, j]).coeffs[2:order + 1] .= zero((tmp3942[i, j]).coeffs[1]) - (tmp3943[i, j]).coeffs[1] = constant_term(tmp3942[i, j]) + constant_term(pNZ_t_Z[i, j]) - (tmp3943[i, j]).coeffs[2:order + 1] .= zero((tmp3943[i, j]).coeffs[1]) - (tmp3944[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp3943[i, j]) - (tmp3944[i, j]).coeffs[2:order + 1] .= zero((tmp3944[i, j]).coeffs[1]) - (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp3944[i, j]) - (pn1[i, j]).coeffs[2:order + 1] .= zero((pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3402[i, j]) + (tmp3402[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) + TaylorSeries.zero!(tmp3403[i, j]) + (tmp3403[i, j]).coeffs[1] = constant_term(tmp3402[i, j]) + constant_term(pNZ_t_Z[i, j]) + TaylorSeries.zero!(tmp3404[i, j]) + (tmp3404[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp3403[i, j]) + TaylorSeries.zero!(pn1[i, j]) + (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp3404[i, j]) + TaylorSeries.zero!(X_t_pn1[i, j]) (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) - (X_t_pn1[i, j]).coeffs[2:order + 1] .= zero((X_t_pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(Y_t_pn1[i, j]) (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) - (Y_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Y_t_pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(Z_t_pn1[i, j]) (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) - (Z_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Z_t_pn1[i, j]).coeffs[1]) + TaylorSeries.zero!(pNX_t_pn3[i, j]) (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) - (pNX_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNX_t_pn3[i, j]).coeffs[1]) + TaylorSeries.zero!(pNY_t_pn3[i, j]) (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) - (pNY_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNY_t_pn3[i, j]).coeffs[1]) + TaylorSeries.zero!(pNZ_t_pn3[i, j]) (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) - (pNZ_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_pn3[i, j]).coeffs[1]) - (tmp3952[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) - (tmp3952[i, j]).coeffs[2:order + 1] .= zero((tmp3952[i, j]).coeffs[1]) - (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp3952[i, j]) - (termpnx[i, j]).coeffs[2:order + 1] .= zero((termpnx[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3412[i, j]) + (tmp3412[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) + TaylorSeries.zero!(termpnx[i, j]) + (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp3412[i, j]) + TaylorSeries.zero!(sumpnx[i, j]) (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) - (sumpnx[i, j]).coeffs[2:order + 1] .= zero((sumpnx[i, j]).coeffs[1]) + TaylorSeries.zero!(pntempX[j]) (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) - (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) - (tmp3955[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) - (tmp3955[i, j]).coeffs[2:order + 1] .= zero((tmp3955[i, j]).coeffs[1]) - (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp3955[i, j]) - (termpny[i, j]).coeffs[2:order + 1] .= zero((termpny[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3415[i, j]) + (tmp3415[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) + TaylorSeries.zero!(termpny[i, j]) + (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp3415[i, j]) + TaylorSeries.zero!(sumpny[i, j]) (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) - (sumpny[i, j]).coeffs[2:order + 1] .= zero((sumpny[i, j]).coeffs[1]) + TaylorSeries.zero!(pntempY[j]) (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) - (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) - (tmp3958[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) - (tmp3958[i, j]).coeffs[2:order + 1] .= zero((tmp3958[i, j]).coeffs[1]) - (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp3958[i, j]) - (termpnz[i, j]).coeffs[2:order + 1] .= zero((termpnz[i, j]).coeffs[1]) + TaylorSeries.zero!(tmp3418[i, j]) + (tmp3418[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) + TaylorSeries.zero!(termpnz[i, j]) + (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp3418[i, j]) + TaylorSeries.zero!(sumpnz[i, j]) (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) - (sumpnz[i, j]).coeffs[2:order + 1] .= zero((sumpnz[i, j]).coeffs[1]) + TaylorSeries.zero!(pntempZ[j]) (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) - (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) end end + TaylorSeries.zero!(postNewtonX[j]) (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) - (postNewtonX[j]).coeffs[2:order + 1] .= zero((postNewtonX[j]).coeffs[1]) + TaylorSeries.zero!(postNewtonY[j]) (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) - (postNewtonY[j]).coeffs[2:order + 1] .= zero((postNewtonY[j]).coeffs[1]) + TaylorSeries.zero!(postNewtonZ[j]) (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) - (postNewtonZ[j]).coeffs[2:order + 1] .= zero((postNewtonZ[j]).coeffs[1]) end + TaylorSeries.zero!(x0s_M) x0s_M.coeffs[1] = identity(constant_term(r_star_M_0[1])) - x0s_M.coeffs[2:order + 1] .= zero(x0s_M.coeffs[1]) + TaylorSeries.zero!(y0s_M) y0s_M.coeffs[1] = identity(constant_term(r_star_M_0[2])) - y0s_M.coeffs[2:order + 1] .= zero(y0s_M.coeffs[1]) + TaylorSeries.zero!(z0s_M) z0s_M.coeffs[1] = identity(constant_term(r_star_M_0[3])) - z0s_M.coeffs[2:order + 1] .= zero(z0s_M.coeffs[1]) - tmp3965.coeffs[1] = constant_term(x0s_M) ^ float(constant_term(2)) - tmp3965.coeffs[2:order + 1] .= zero(tmp3965.coeffs[1]) - tmp3967.coeffs[1] = constant_term(y0s_M) ^ float(constant_term(2)) - tmp3967.coeffs[2:order + 1] .= zero(tmp3967.coeffs[1]) - ρ0s2_M.coeffs[1] = constant_term(tmp3965) + constant_term(tmp3967) - ρ0s2_M.coeffs[2:order + 1] .= zero(ρ0s2_M.coeffs[1]) + TaylorSeries.zero!(tmp3425) + tmp3425.coeffs[1] = constant_term(x0s_M) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3427) + tmp3427.coeffs[1] = constant_term(y0s_M) ^ float(constant_term(2)) + TaylorSeries.zero!(ρ0s2_M) + ρ0s2_M.coeffs[1] = constant_term(tmp3425) + constant_term(tmp3427) + TaylorSeries.zero!(ρ0s_M) ρ0s_M.coeffs[1] = sqrt(constant_term(ρ0s2_M)) - ρ0s_M.coeffs[2:order + 1] .= zero(ρ0s_M.coeffs[1]) + TaylorSeries.zero!(z0s2_M) z0s2_M.coeffs[1] = constant_term(z0s_M) ^ float(constant_term(2)) - z0s2_M.coeffs[2:order + 1] .= zero(z0s2_M.coeffs[1]) + TaylorSeries.zero!(r0s2_M) r0s2_M.coeffs[1] = constant_term(ρ0s2_M) + constant_term(z0s2_M) - r0s2_M.coeffs[2:order + 1] .= zero(r0s2_M.coeffs[1]) + TaylorSeries.zero!(r0s_M) r0s_M.coeffs[1] = sqrt(constant_term(r0s2_M)) - r0s_M.coeffs[2:order + 1] .= zero(r0s_M.coeffs[1]) + TaylorSeries.zero!(r0s5_M) r0s5_M.coeffs[1] = constant_term(r0s_M) ^ float(constant_term(5)) - r0s5_M.coeffs[2:order + 1] .= zero(r0s5_M.coeffs[1]) + TaylorSeries.zero!(x0s_S) x0s_S.coeffs[1] = identity(constant_term(r_star_S_0[1])) - x0s_S.coeffs[2:order + 1] .= zero(x0s_S.coeffs[1]) + TaylorSeries.zero!(y0s_S) y0s_S.coeffs[1] = identity(constant_term(r_star_S_0[2])) - y0s_S.coeffs[2:order + 1] .= zero(y0s_S.coeffs[1]) + TaylorSeries.zero!(z0s_S) z0s_S.coeffs[1] = identity(constant_term(r_star_S_0[3])) - z0s_S.coeffs[2:order + 1] .= zero(z0s_S.coeffs[1]) - tmp3977.coeffs[1] = constant_term(x0s_S) ^ float(constant_term(2)) - tmp3977.coeffs[2:order + 1] .= zero(tmp3977.coeffs[1]) - tmp3979.coeffs[1] = constant_term(y0s_S) ^ float(constant_term(2)) - tmp3979.coeffs[2:order + 1] .= zero(tmp3979.coeffs[1]) - ρ0s2_S.coeffs[1] = constant_term(tmp3977) + constant_term(tmp3979) - ρ0s2_S.coeffs[2:order + 1] .= zero(ρ0s2_S.coeffs[1]) + TaylorSeries.zero!(tmp3437) + tmp3437.coeffs[1] = constant_term(x0s_S) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3439) + tmp3439.coeffs[1] = constant_term(y0s_S) ^ float(constant_term(2)) + TaylorSeries.zero!(ρ0s2_S) + ρ0s2_S.coeffs[1] = constant_term(tmp3437) + constant_term(tmp3439) + TaylorSeries.zero!(ρ0s_S) ρ0s_S.coeffs[1] = sqrt(constant_term(ρ0s2_S)) - ρ0s_S.coeffs[2:order + 1] .= zero(ρ0s_S.coeffs[1]) + TaylorSeries.zero!(z0s2_S) z0s2_S.coeffs[1] = constant_term(z0s_S) ^ float(constant_term(2)) - z0s2_S.coeffs[2:order + 1] .= zero(z0s2_S.coeffs[1]) + TaylorSeries.zero!(r0s2_S) r0s2_S.coeffs[1] = constant_term(ρ0s2_S) + constant_term(z0s2_S) - r0s2_S.coeffs[2:order + 1] .= zero(r0s2_S.coeffs[1]) + TaylorSeries.zero!(r0s_S) r0s_S.coeffs[1] = sqrt(constant_term(r0s2_S)) - r0s_S.coeffs[2:order + 1] .= zero(r0s_S.coeffs[1]) + TaylorSeries.zero!(r0s5_S) r0s5_S.coeffs[1] = constant_term(r0s_S) ^ float(constant_term(5)) - r0s5_S.coeffs[2:order + 1] .= zero(r0s5_S.coeffs[1]) - tmp3989.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]) - tmp3989.coeffs[2:order + 1] .= zero(tmp3989.coeffs[1]) - tmp3991.coeffs[1] = constant_term(tmp3989) ^ float(constant_term(2)) - tmp3991.coeffs[2:order + 1] .= zero(tmp3991.coeffs[1]) - tmp3993.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M) - tmp3993.coeffs[2:order + 1] .= zero(tmp3993.coeffs[1]) - tmp3995.coeffs[1] = constant_term(tmp3993) ^ float(constant_term(2)) - tmp3995.coeffs[2:order + 1] .= zero(tmp3995.coeffs[1]) - tmp3996.coeffs[1] = constant_term(0.5) * constant_term(tmp3995) - tmp3996.coeffs[2:order + 1] .= zero(tmp3996.coeffs[1]) - tmp3997.coeffs[1] = constant_term(tmp3991) + constant_term(tmp3996) - tmp3997.coeffs[2:order + 1] .= zero(tmp3997.coeffs[1]) - tmp3998.coeffs[1] = constant_term(tmp3997) / constant_term(r_p2[mo, ea]) - tmp3998.coeffs[2:order + 1] .= zero(tmp3998.coeffs[1]) - tmp3999.coeffs[1] = constant_term(5) * constant_term(tmp3998) - tmp3999.coeffs[2:order + 1] .= zero(tmp3999.coeffs[1]) - coeff0_M.coeffs[1] = constant_term(r0s2_M) - constant_term(tmp3999) - coeff0_M.coeffs[2:order + 1] .= zero(coeff0_M.coeffs[1]) - tmp4002.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]) - tmp4002.coeffs[2:order + 1] .= zero(tmp4002.coeffs[1]) - tmp4004.coeffs[1] = constant_term(tmp4002) ^ float(constant_term(2)) - tmp4004.coeffs[2:order + 1] .= zero(tmp4004.coeffs[1]) - tmp4006.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S) - tmp4006.coeffs[2:order + 1] .= zero(tmp4006.coeffs[1]) - tmp4008.coeffs[1] = constant_term(tmp4006) ^ float(constant_term(2)) - tmp4008.coeffs[2:order + 1] .= zero(tmp4008.coeffs[1]) - tmp4009.coeffs[1] = constant_term(0.5) * constant_term(tmp4008) - tmp4009.coeffs[2:order + 1] .= zero(tmp4009.coeffs[1]) - tmp4010.coeffs[1] = constant_term(tmp4004) + constant_term(tmp4009) - tmp4010.coeffs[2:order + 1] .= zero(tmp4010.coeffs[1]) - tmp4011.coeffs[1] = constant_term(tmp4010) / constant_term(r_p2[mo, ea]) - tmp4011.coeffs[2:order + 1] .= zero(tmp4011.coeffs[1]) - tmp4012.coeffs[1] = constant_term(5) * constant_term(tmp4011) - tmp4012.coeffs[2:order + 1] .= zero(tmp4012.coeffs[1]) - coeff0_S.coeffs[1] = constant_term(r0s2_S) - constant_term(tmp4012) - coeff0_S.coeffs[2:order + 1] .= zero(coeff0_S.coeffs[1]) + TaylorSeries.zero!(tmp3449) + tmp3449.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]) + TaylorSeries.zero!(tmp3451) + tmp3451.coeffs[1] = constant_term(tmp3449) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3453) + tmp3453.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M) + TaylorSeries.zero!(tmp3455) + tmp3455.coeffs[1] = constant_term(tmp3453) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3456) + tmp3456.coeffs[1] = constant_term(0.5) * constant_term(tmp3455) + TaylorSeries.zero!(tmp3457) + tmp3457.coeffs[1] = constant_term(tmp3451) + constant_term(tmp3456) + TaylorSeries.zero!(tmp3458) + tmp3458.coeffs[1] = constant_term(tmp3457) / constant_term(r_p2[mo, ea]) + TaylorSeries.zero!(tmp3459) + tmp3459.coeffs[1] = constant_term(5) * constant_term(tmp3458) + TaylorSeries.zero!(coeff0_M) + coeff0_M.coeffs[1] = constant_term(r0s2_M) - constant_term(tmp3459) + TaylorSeries.zero!(tmp3462) + tmp3462.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]) + TaylorSeries.zero!(tmp3464) + tmp3464.coeffs[1] = constant_term(tmp3462) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3466) + tmp3466.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S) + TaylorSeries.zero!(tmp3468) + tmp3468.coeffs[1] = constant_term(tmp3466) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3469) + tmp3469.coeffs[1] = constant_term(0.5) * constant_term(tmp3468) + TaylorSeries.zero!(tmp3470) + tmp3470.coeffs[1] = constant_term(tmp3464) + constant_term(tmp3469) + TaylorSeries.zero!(tmp3471) + tmp3471.coeffs[1] = constant_term(tmp3470) / constant_term(r_p2[mo, ea]) + TaylorSeries.zero!(tmp3472) + tmp3472.coeffs[1] = constant_term(5) * constant_term(tmp3471) + TaylorSeries.zero!(coeff0_S) + coeff0_S.coeffs[1] = constant_term(r0s2_S) - constant_term(tmp3472) + TaylorSeries.zero!(k_20E_div_r0s5_M) k_20E_div_r0s5_M.coeffs[1] = constant_term(k_20E) / constant_term(r0s5_M) - k_20E_div_r0s5_M.coeffs[2:order + 1] .= zero(k_20E_div_r0s5_M.coeffs[1]) + TaylorSeries.zero!(k_20E_div_r0s5_S) k_20E_div_r0s5_S.coeffs[1] = constant_term(k_20E) / constant_term(r0s5_S) - k_20E_div_r0s5_S.coeffs[2:order + 1] .= zero(k_20E_div_r0s5_S.coeffs[1]) - tmp4016.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) - tmp4016.coeffs[2:order + 1] .= zero(tmp4016.coeffs[1]) - tmp4017.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp4016) - tmp4017.coeffs[2:order + 1] .= zero(tmp4017.coeffs[1]) - a_tid_0_M_x.coeffs[1] = constant_term(tmp4017) * constant_term(X_bf[mo, ea]) - a_tid_0_M_x.coeffs[2:order + 1] .= zero(a_tid_0_M_x.coeffs[1]) - tmp4019.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) - tmp4019.coeffs[2:order + 1] .= zero(tmp4019.coeffs[1]) - tmp4020.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp4019) - tmp4020.coeffs[2:order + 1] .= zero(tmp4020.coeffs[1]) - a_tid_0_M_y.coeffs[1] = constant_term(tmp4020) * constant_term(Y_bf[mo, ea]) - a_tid_0_M_y.coeffs[2:order + 1] .= zero(a_tid_0_M_y.coeffs[1]) - tmp4023.coeffs[1] = constant_term(2) * constant_term(z0s2_M) - tmp4023.coeffs[2:order + 1] .= zero(tmp4023.coeffs[1]) - tmp4024.coeffs[1] = constant_term(tmp4023) + constant_term(coeff0_M) - tmp4024.coeffs[2:order + 1] .= zero(tmp4024.coeffs[1]) - tmp4025.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp4024) - tmp4025.coeffs[2:order + 1] .= zero(tmp4025.coeffs[1]) - a_tid_0_M_z.coeffs[1] = constant_term(tmp4025) * constant_term(Z_bf[mo, ea]) - a_tid_0_M_z.coeffs[2:order + 1] .= zero(a_tid_0_M_z.coeffs[1]) - tmp4027.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) - tmp4027.coeffs[2:order + 1] .= zero(tmp4027.coeffs[1]) - tmp4028.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp4027) - tmp4028.coeffs[2:order + 1] .= zero(tmp4028.coeffs[1]) - a_tid_0_S_x.coeffs[1] = constant_term(tmp4028) * constant_term(X_bf[mo, ea]) - a_tid_0_S_x.coeffs[2:order + 1] .= zero(a_tid_0_S_x.coeffs[1]) - tmp4030.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) - tmp4030.coeffs[2:order + 1] .= zero(tmp4030.coeffs[1]) - tmp4031.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp4030) - tmp4031.coeffs[2:order + 1] .= zero(tmp4031.coeffs[1]) - a_tid_0_S_y.coeffs[1] = constant_term(tmp4031) * constant_term(Y_bf[mo, ea]) - a_tid_0_S_y.coeffs[2:order + 1] .= zero(a_tid_0_S_y.coeffs[1]) - tmp4034.coeffs[1] = constant_term(2) * constant_term(z0s2_S) - tmp4034.coeffs[2:order + 1] .= zero(tmp4034.coeffs[1]) - tmp4035.coeffs[1] = constant_term(tmp4034) + constant_term(coeff0_S) - tmp4035.coeffs[2:order + 1] .= zero(tmp4035.coeffs[1]) - tmp4036.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp4035) - tmp4036.coeffs[2:order + 1] .= zero(tmp4036.coeffs[1]) - a_tid_0_S_z.coeffs[1] = constant_term(tmp4036) * constant_term(Z_bf[mo, ea]) - a_tid_0_S_z.coeffs[2:order + 1] .= zero(a_tid_0_S_z.coeffs[1]) + TaylorSeries.zero!(tmp3476) + tmp3476.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) + TaylorSeries.zero!(tmp3477) + tmp3477.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp3476) + TaylorSeries.zero!(a_tid_0_M_x) + a_tid_0_M_x.coeffs[1] = constant_term(tmp3477) * constant_term(X_bf[mo, ea]) + TaylorSeries.zero!(tmp3479) + tmp3479.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) + TaylorSeries.zero!(tmp3480) + tmp3480.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp3479) + TaylorSeries.zero!(a_tid_0_M_y) + a_tid_0_M_y.coeffs[1] = constant_term(tmp3480) * constant_term(Y_bf[mo, ea]) + TaylorSeries.zero!(tmp3483) + tmp3483.coeffs[1] = constant_term(2) * constant_term(z0s2_M) + TaylorSeries.zero!(tmp3484) + tmp3484.coeffs[1] = constant_term(tmp3483) + constant_term(coeff0_M) + TaylorSeries.zero!(tmp3485) + tmp3485.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp3484) + TaylorSeries.zero!(a_tid_0_M_z) + a_tid_0_M_z.coeffs[1] = constant_term(tmp3485) * constant_term(Z_bf[mo, ea]) + TaylorSeries.zero!(tmp3487) + tmp3487.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) + TaylorSeries.zero!(tmp3488) + tmp3488.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp3487) + TaylorSeries.zero!(a_tid_0_S_x) + a_tid_0_S_x.coeffs[1] = constant_term(tmp3488) * constant_term(X_bf[mo, ea]) + TaylorSeries.zero!(tmp3490) + tmp3490.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) + TaylorSeries.zero!(tmp3491) + tmp3491.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp3490) + TaylorSeries.zero!(a_tid_0_S_y) + a_tid_0_S_y.coeffs[1] = constant_term(tmp3491) * constant_term(Y_bf[mo, ea]) + TaylorSeries.zero!(tmp3494) + tmp3494.coeffs[1] = constant_term(2) * constant_term(z0s2_S) + TaylorSeries.zero!(tmp3495) + tmp3495.coeffs[1] = constant_term(tmp3494) + constant_term(coeff0_S) + TaylorSeries.zero!(tmp3496) + tmp3496.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp3495) + TaylorSeries.zero!(a_tid_0_S_z) + a_tid_0_S_z.coeffs[1] = constant_term(tmp3496) * constant_term(Z_bf[mo, ea]) + TaylorSeries.zero!(x1s_M) x1s_M.coeffs[1] = identity(constant_term(r_star_M_1[1])) - x1s_M.coeffs[2:order + 1] .= zero(x1s_M.coeffs[1]) + TaylorSeries.zero!(y1s_M) y1s_M.coeffs[1] = identity(constant_term(r_star_M_1[2])) - y1s_M.coeffs[2:order + 1] .= zero(y1s_M.coeffs[1]) + TaylorSeries.zero!(z1s_M) z1s_M.coeffs[1] = identity(constant_term(r_star_M_1[3])) - z1s_M.coeffs[2:order + 1] .= zero(z1s_M.coeffs[1]) - tmp4039.coeffs[1] = constant_term(x1s_M) ^ float(constant_term(2)) - tmp4039.coeffs[2:order + 1] .= zero(tmp4039.coeffs[1]) - tmp4041.coeffs[1] = constant_term(y1s_M) ^ float(constant_term(2)) - tmp4041.coeffs[2:order + 1] .= zero(tmp4041.coeffs[1]) - ρ1s2_M.coeffs[1] = constant_term(tmp4039) + constant_term(tmp4041) - ρ1s2_M.coeffs[2:order + 1] .= zero(ρ1s2_M.coeffs[1]) + TaylorSeries.zero!(tmp3499) + tmp3499.coeffs[1] = constant_term(x1s_M) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3501) + tmp3501.coeffs[1] = constant_term(y1s_M) ^ float(constant_term(2)) + TaylorSeries.zero!(ρ1s2_M) + ρ1s2_M.coeffs[1] = constant_term(tmp3499) + constant_term(tmp3501) + TaylorSeries.zero!(ρ1s_M) ρ1s_M.coeffs[1] = sqrt(constant_term(ρ1s2_M)) - ρ1s_M.coeffs[2:order + 1] .= zero(ρ1s_M.coeffs[1]) + TaylorSeries.zero!(z1s2_M) z1s2_M.coeffs[1] = constant_term(z1s_M) ^ float(constant_term(2)) - z1s2_M.coeffs[2:order + 1] .= zero(z1s2_M.coeffs[1]) + TaylorSeries.zero!(r1s2_M) r1s2_M.coeffs[1] = constant_term(ρ1s2_M) + constant_term(z1s2_M) - r1s2_M.coeffs[2:order + 1] .= zero(r1s2_M.coeffs[1]) + TaylorSeries.zero!(r1s_M) r1s_M.coeffs[1] = sqrt(constant_term(r1s2_M)) - r1s_M.coeffs[2:order + 1] .= zero(r1s_M.coeffs[1]) + TaylorSeries.zero!(r1s5_M) r1s5_M.coeffs[1] = constant_term(r1s_M) ^ float(constant_term(5)) - r1s5_M.coeffs[2:order + 1] .= zero(r1s5_M.coeffs[1]) + TaylorSeries.zero!(x1s_S) x1s_S.coeffs[1] = identity(constant_term(r_star_S_1[1])) - x1s_S.coeffs[2:order + 1] .= zero(x1s_S.coeffs[1]) + TaylorSeries.zero!(y1s_S) y1s_S.coeffs[1] = identity(constant_term(r_star_S_1[2])) - y1s_S.coeffs[2:order + 1] .= zero(y1s_S.coeffs[1]) + TaylorSeries.zero!(z1s_S) z1s_S.coeffs[1] = identity(constant_term(r_star_S_1[3])) - z1s_S.coeffs[2:order + 1] .= zero(z1s_S.coeffs[1]) - tmp4051.coeffs[1] = constant_term(x1s_S) ^ float(constant_term(2)) - tmp4051.coeffs[2:order + 1] .= zero(tmp4051.coeffs[1]) - tmp4053.coeffs[1] = constant_term(y1s_S) ^ float(constant_term(2)) - tmp4053.coeffs[2:order + 1] .= zero(tmp4053.coeffs[1]) - ρ1s2_S.coeffs[1] = constant_term(tmp4051) + constant_term(tmp4053) - ρ1s2_S.coeffs[2:order + 1] .= zero(ρ1s2_S.coeffs[1]) + TaylorSeries.zero!(tmp3511) + tmp3511.coeffs[1] = constant_term(x1s_S) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3513) + tmp3513.coeffs[1] = constant_term(y1s_S) ^ float(constant_term(2)) + TaylorSeries.zero!(ρ1s2_S) + ρ1s2_S.coeffs[1] = constant_term(tmp3511) + constant_term(tmp3513) + TaylorSeries.zero!(ρ1s_S) ρ1s_S.coeffs[1] = sqrt(constant_term(ρ1s2_S)) - ρ1s_S.coeffs[2:order + 1] .= zero(ρ1s_S.coeffs[1]) + TaylorSeries.zero!(z1s2_S) z1s2_S.coeffs[1] = constant_term(z1s_S) ^ float(constant_term(2)) - z1s2_S.coeffs[2:order + 1] .= zero(z1s2_S.coeffs[1]) + TaylorSeries.zero!(r1s2_S) r1s2_S.coeffs[1] = constant_term(ρ1s2_S) + constant_term(z1s2_S) - r1s2_S.coeffs[2:order + 1] .= zero(r1s2_S.coeffs[1]) + TaylorSeries.zero!(r1s_S) r1s_S.coeffs[1] = sqrt(constant_term(r1s2_S)) - r1s_S.coeffs[2:order + 1] .= zero(r1s_S.coeffs[1]) + TaylorSeries.zero!(r1s5_S) r1s5_S.coeffs[1] = constant_term(r1s_S) ^ float(constant_term(5)) - r1s5_S.coeffs[2:order + 1] .= zero(r1s5_S.coeffs[1]) - tmp4062.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]) - tmp4062.coeffs[2:order + 1] .= zero(tmp4062.coeffs[1]) - tmp4063.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]) - tmp4063.coeffs[2:order + 1] .= zero(tmp4063.coeffs[1]) - coeff1_1_M.coeffs[1] = constant_term(tmp4062) + constant_term(tmp4063) - coeff1_1_M.coeffs[2:order + 1] .= zero(coeff1_1_M.coeffs[1]) - tmp4065.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]) - tmp4065.coeffs[2:order + 1] .= zero(tmp4065.coeffs[1]) - tmp4066.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]) - tmp4066.coeffs[2:order + 1] .= zero(tmp4066.coeffs[1]) - coeff1_1_S.coeffs[1] = constant_term(tmp4065) + constant_term(tmp4066) - coeff1_1_S.coeffs[2:order + 1] .= zero(coeff1_1_S.coeffs[1]) + TaylorSeries.zero!(tmp3522) + tmp3522.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]) + TaylorSeries.zero!(tmp3523) + tmp3523.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]) + TaylorSeries.zero!(coeff1_1_M) + coeff1_1_M.coeffs[1] = constant_term(tmp3522) + constant_term(tmp3523) + TaylorSeries.zero!(tmp3525) + tmp3525.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]) + TaylorSeries.zero!(tmp3526) + tmp3526.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]) + TaylorSeries.zero!(coeff1_1_S) + coeff1_1_S.coeffs[1] = constant_term(tmp3525) + constant_term(tmp3526) + TaylorSeries.zero!(coeff2_1_M) coeff2_1_M.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_1[3]) - coeff2_1_M.coeffs[2:order + 1] .= zero(coeff2_1_M.coeffs[1]) + TaylorSeries.zero!(coeff2_1_S) coeff2_1_S.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_1[3]) - coeff2_1_S.coeffs[2:order + 1] .= zero(coeff2_1_S.coeffs[1]) - tmp4071.coeffs[1] = constant_term(10) * constant_term(coeff1_1_M) - tmp4071.coeffs[2:order + 1] .= zero(tmp4071.coeffs[1]) - tmp4072.coeffs[1] = constant_term(tmp4071) * constant_term(coeff2_1_M) - tmp4072.coeffs[2:order + 1] .= zero(tmp4072.coeffs[1]) - coeff3_1_M.coeffs[1] = constant_term(tmp4072) / constant_term(r_p2[mo, ea]) - coeff3_1_M.coeffs[2:order + 1] .= zero(coeff3_1_M.coeffs[1]) - tmp4075.coeffs[1] = constant_term(10) * constant_term(coeff1_1_S) - tmp4075.coeffs[2:order + 1] .= zero(tmp4075.coeffs[1]) - tmp4076.coeffs[1] = constant_term(tmp4075) * constant_term(coeff2_1_S) - tmp4076.coeffs[2:order + 1] .= zero(tmp4076.coeffs[1]) - coeff3_1_S.coeffs[1] = constant_term(tmp4076) / constant_term(r_p2[mo, ea]) - coeff3_1_S.coeffs[2:order + 1] .= zero(coeff3_1_S.coeffs[1]) + TaylorSeries.zero!(tmp3531) + tmp3531.coeffs[1] = constant_term(10) * constant_term(coeff1_1_M) + TaylorSeries.zero!(tmp3532) + tmp3532.coeffs[1] = constant_term(tmp3531) * constant_term(coeff2_1_M) + TaylorSeries.zero!(coeff3_1_M) + coeff3_1_M.coeffs[1] = constant_term(tmp3532) / constant_term(r_p2[mo, ea]) + TaylorSeries.zero!(tmp3535) + tmp3535.coeffs[1] = constant_term(10) * constant_term(coeff1_1_S) + TaylorSeries.zero!(tmp3536) + tmp3536.coeffs[1] = constant_term(tmp3535) * constant_term(coeff2_1_S) + TaylorSeries.zero!(coeff3_1_S) + coeff3_1_S.coeffs[1] = constant_term(tmp3536) / constant_term(r_p2[mo, ea]) + TaylorSeries.zero!(k_21E_div_r1s5_M) k_21E_div_r1s5_M.coeffs[1] = constant_term(k_21E) / constant_term(r1s5_M) - k_21E_div_r1s5_M.coeffs[2:order + 1] .= zero(k_21E_div_r1s5_M.coeffs[1]) + TaylorSeries.zero!(k_21E_div_r1s5_S) k_21E_div_r1s5_S.coeffs[1] = constant_term(k_21E) / constant_term(r1s5_S) - k_21E_div_r1s5_S.coeffs[2:order + 1] .= zero(k_21E_div_r1s5_S.coeffs[1]) - tmp4081.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) - tmp4081.coeffs[2:order + 1] .= zero(tmp4081.coeffs[1]) - tmp4082.coeffs[1] = constant_term(tmp4081) * constant_term(r_star_M_1[1]) - tmp4082.coeffs[2:order + 1] .= zero(tmp4082.coeffs[1]) - tmp4083.coeffs[1] = constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]) - tmp4083.coeffs[2:order + 1] .= zero(tmp4083.coeffs[1]) - tmp4084.coeffs[1] = constant_term(tmp4082) - constant_term(tmp4083) - tmp4084.coeffs[2:order + 1] .= zero(tmp4084.coeffs[1]) - a_tid_1_M_x.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp4084) - a_tid_1_M_x.coeffs[2:order + 1] .= zero(a_tid_1_M_x.coeffs[1]) - tmp4087.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) - tmp4087.coeffs[2:order + 1] .= zero(tmp4087.coeffs[1]) - tmp4088.coeffs[1] = constant_term(tmp4087) * constant_term(r_star_M_1[2]) - tmp4088.coeffs[2:order + 1] .= zero(tmp4088.coeffs[1]) - tmp4089.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]) - tmp4089.coeffs[2:order + 1] .= zero(tmp4089.coeffs[1]) - tmp4090.coeffs[1] = constant_term(tmp4088) - constant_term(tmp4089) - tmp4090.coeffs[2:order + 1] .= zero(tmp4090.coeffs[1]) - a_tid_1_M_y.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp4090) - a_tid_1_M_y.coeffs[2:order + 1] .= zero(a_tid_1_M_y.coeffs[1]) - tmp4093.coeffs[1] = constant_term(2) * constant_term(coeff1_1_M) - tmp4093.coeffs[2:order + 1] .= zero(tmp4093.coeffs[1]) - tmp4094.coeffs[1] = constant_term(tmp4093) * constant_term(r_star_M_1[3]) - tmp4094.coeffs[2:order + 1] .= zero(tmp4094.coeffs[1]) - tmp4095.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]) - tmp4095.coeffs[2:order + 1] .= zero(tmp4095.coeffs[1]) - tmp4096.coeffs[1] = constant_term(tmp4094) - constant_term(tmp4095) - tmp4096.coeffs[2:order + 1] .= zero(tmp4096.coeffs[1]) - a_tid_1_M_z.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp4096) - a_tid_1_M_z.coeffs[2:order + 1] .= zero(a_tid_1_M_z.coeffs[1]) - tmp4099.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) - tmp4099.coeffs[2:order + 1] .= zero(tmp4099.coeffs[1]) - tmp4100.coeffs[1] = constant_term(tmp4099) * constant_term(r_star_S_1[1]) - tmp4100.coeffs[2:order + 1] .= zero(tmp4100.coeffs[1]) - tmp4101.coeffs[1] = constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]) - tmp4101.coeffs[2:order + 1] .= zero(tmp4101.coeffs[1]) - tmp4102.coeffs[1] = constant_term(tmp4100) - constant_term(tmp4101) - tmp4102.coeffs[2:order + 1] .= zero(tmp4102.coeffs[1]) - a_tid_1_S_x.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp4102) - a_tid_1_S_x.coeffs[2:order + 1] .= zero(a_tid_1_S_x.coeffs[1]) - tmp4105.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) - tmp4105.coeffs[2:order + 1] .= zero(tmp4105.coeffs[1]) - tmp4106.coeffs[1] = constant_term(tmp4105) * constant_term(r_star_S_1[2]) - tmp4106.coeffs[2:order + 1] .= zero(tmp4106.coeffs[1]) - tmp4107.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]) - tmp4107.coeffs[2:order + 1] .= zero(tmp4107.coeffs[1]) - tmp4108.coeffs[1] = constant_term(tmp4106) - constant_term(tmp4107) - tmp4108.coeffs[2:order + 1] .= zero(tmp4108.coeffs[1]) - a_tid_1_S_y.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp4108) - a_tid_1_S_y.coeffs[2:order + 1] .= zero(a_tid_1_S_y.coeffs[1]) - tmp4111.coeffs[1] = constant_term(2) * constant_term(coeff1_1_S) - tmp4111.coeffs[2:order + 1] .= zero(tmp4111.coeffs[1]) - tmp4112.coeffs[1] = constant_term(tmp4111) * constant_term(r_star_S_1[3]) - tmp4112.coeffs[2:order + 1] .= zero(tmp4112.coeffs[1]) - tmp4113.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]) - tmp4113.coeffs[2:order + 1] .= zero(tmp4113.coeffs[1]) - tmp4114.coeffs[1] = constant_term(tmp4112) - constant_term(tmp4113) - tmp4114.coeffs[2:order + 1] .= zero(tmp4114.coeffs[1]) - a_tid_1_S_z.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp4114) - a_tid_1_S_z.coeffs[2:order + 1] .= zero(a_tid_1_S_z.coeffs[1]) + TaylorSeries.zero!(tmp3541) + tmp3541.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) + TaylorSeries.zero!(tmp3542) + tmp3542.coeffs[1] = constant_term(tmp3541) * constant_term(r_star_M_1[1]) + TaylorSeries.zero!(tmp3543) + tmp3543.coeffs[1] = constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]) + TaylorSeries.zero!(tmp3544) + tmp3544.coeffs[1] = constant_term(tmp3542) - constant_term(tmp3543) + TaylorSeries.zero!(a_tid_1_M_x) + a_tid_1_M_x.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp3544) + TaylorSeries.zero!(tmp3547) + tmp3547.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) + TaylorSeries.zero!(tmp3548) + tmp3548.coeffs[1] = constant_term(tmp3547) * constant_term(r_star_M_1[2]) + TaylorSeries.zero!(tmp3549) + tmp3549.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]) + TaylorSeries.zero!(tmp3550) + tmp3550.coeffs[1] = constant_term(tmp3548) - constant_term(tmp3549) + TaylorSeries.zero!(a_tid_1_M_y) + a_tid_1_M_y.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp3550) + TaylorSeries.zero!(tmp3553) + tmp3553.coeffs[1] = constant_term(2) * constant_term(coeff1_1_M) + TaylorSeries.zero!(tmp3554) + tmp3554.coeffs[1] = constant_term(tmp3553) * constant_term(r_star_M_1[3]) + TaylorSeries.zero!(tmp3555) + tmp3555.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]) + TaylorSeries.zero!(tmp3556) + tmp3556.coeffs[1] = constant_term(tmp3554) - constant_term(tmp3555) + TaylorSeries.zero!(a_tid_1_M_z) + a_tid_1_M_z.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp3556) + TaylorSeries.zero!(tmp3559) + tmp3559.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) + TaylorSeries.zero!(tmp3560) + tmp3560.coeffs[1] = constant_term(tmp3559) * constant_term(r_star_S_1[1]) + TaylorSeries.zero!(tmp3561) + tmp3561.coeffs[1] = constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]) + TaylorSeries.zero!(tmp3562) + tmp3562.coeffs[1] = constant_term(tmp3560) - constant_term(tmp3561) + TaylorSeries.zero!(a_tid_1_S_x) + a_tid_1_S_x.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp3562) + TaylorSeries.zero!(tmp3565) + tmp3565.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) + TaylorSeries.zero!(tmp3566) + tmp3566.coeffs[1] = constant_term(tmp3565) * constant_term(r_star_S_1[2]) + TaylorSeries.zero!(tmp3567) + tmp3567.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]) + TaylorSeries.zero!(tmp3568) + tmp3568.coeffs[1] = constant_term(tmp3566) - constant_term(tmp3567) + TaylorSeries.zero!(a_tid_1_S_y) + a_tid_1_S_y.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp3568) + TaylorSeries.zero!(tmp3571) + tmp3571.coeffs[1] = constant_term(2) * constant_term(coeff1_1_S) + TaylorSeries.zero!(tmp3572) + tmp3572.coeffs[1] = constant_term(tmp3571) * constant_term(r_star_S_1[3]) + TaylorSeries.zero!(tmp3573) + tmp3573.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]) + TaylorSeries.zero!(tmp3574) + tmp3574.coeffs[1] = constant_term(tmp3572) - constant_term(tmp3573) + TaylorSeries.zero!(a_tid_1_S_z) + a_tid_1_S_z.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp3574) + TaylorSeries.zero!(x2s_M) x2s_M.coeffs[1] = identity(constant_term(r_star_M_2[1])) - x2s_M.coeffs[2:order + 1] .= zero(x2s_M.coeffs[1]) + TaylorSeries.zero!(y2s_M) y2s_M.coeffs[1] = identity(constant_term(r_star_M_2[2])) - y2s_M.coeffs[2:order + 1] .= zero(y2s_M.coeffs[1]) + TaylorSeries.zero!(z2s_M) z2s_M.coeffs[1] = identity(constant_term(r_star_M_2[3])) - z2s_M.coeffs[2:order + 1] .= zero(z2s_M.coeffs[1]) - tmp4117.coeffs[1] = constant_term(x2s_M) ^ float(constant_term(2)) - tmp4117.coeffs[2:order + 1] .= zero(tmp4117.coeffs[1]) - tmp4119.coeffs[1] = constant_term(y2s_M) ^ float(constant_term(2)) - tmp4119.coeffs[2:order + 1] .= zero(tmp4119.coeffs[1]) - ρ2s2_M.coeffs[1] = constant_term(tmp4117) + constant_term(tmp4119) - ρ2s2_M.coeffs[2:order + 1] .= zero(ρ2s2_M.coeffs[1]) + TaylorSeries.zero!(tmp3577) + tmp3577.coeffs[1] = constant_term(x2s_M) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3579) + tmp3579.coeffs[1] = constant_term(y2s_M) ^ float(constant_term(2)) + TaylorSeries.zero!(ρ2s2_M) + ρ2s2_M.coeffs[1] = constant_term(tmp3577) + constant_term(tmp3579) + TaylorSeries.zero!(ρ2s_M) ρ2s_M.coeffs[1] = sqrt(constant_term(ρ2s2_M)) - ρ2s_M.coeffs[2:order + 1] .= zero(ρ2s_M.coeffs[1]) + TaylorSeries.zero!(z2s2_M) z2s2_M.coeffs[1] = constant_term(z2s_M) ^ float(constant_term(2)) - z2s2_M.coeffs[2:order + 1] .= zero(z2s2_M.coeffs[1]) + TaylorSeries.zero!(r2s2_M) r2s2_M.coeffs[1] = constant_term(ρ2s2_M) + constant_term(z2s2_M) - r2s2_M.coeffs[2:order + 1] .= zero(r2s2_M.coeffs[1]) + TaylorSeries.zero!(r2s_M) r2s_M.coeffs[1] = sqrt(constant_term(r2s2_M)) - r2s_M.coeffs[2:order + 1] .= zero(r2s_M.coeffs[1]) + TaylorSeries.zero!(r2s5_M) r2s5_M.coeffs[1] = constant_term(r2s_M) ^ float(constant_term(5)) - r2s5_M.coeffs[2:order + 1] .= zero(r2s5_M.coeffs[1]) + TaylorSeries.zero!(x2s_S) x2s_S.coeffs[1] = identity(constant_term(r_star_S_2[1])) - x2s_S.coeffs[2:order + 1] .= zero(x2s_S.coeffs[1]) + TaylorSeries.zero!(y2s_S) y2s_S.coeffs[1] = identity(constant_term(r_star_S_2[2])) - y2s_S.coeffs[2:order + 1] .= zero(y2s_S.coeffs[1]) + TaylorSeries.zero!(z2s_S) z2s_S.coeffs[1] = identity(constant_term(r_star_S_2[3])) - z2s_S.coeffs[2:order + 1] .= zero(z2s_S.coeffs[1]) - tmp4129.coeffs[1] = constant_term(x2s_S) ^ float(constant_term(2)) - tmp4129.coeffs[2:order + 1] .= zero(tmp4129.coeffs[1]) - tmp4131.coeffs[1] = constant_term(y2s_S) ^ float(constant_term(2)) - tmp4131.coeffs[2:order + 1] .= zero(tmp4131.coeffs[1]) - ρ2s2_S.coeffs[1] = constant_term(tmp4129) + constant_term(tmp4131) - ρ2s2_S.coeffs[2:order + 1] .= zero(ρ2s2_S.coeffs[1]) + TaylorSeries.zero!(tmp3589) + tmp3589.coeffs[1] = constant_term(x2s_S) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3591) + tmp3591.coeffs[1] = constant_term(y2s_S) ^ float(constant_term(2)) + TaylorSeries.zero!(ρ2s2_S) + ρ2s2_S.coeffs[1] = constant_term(tmp3589) + constant_term(tmp3591) + TaylorSeries.zero!(ρ2s_S) ρ2s_S.coeffs[1] = sqrt(constant_term(ρ2s2_S)) - ρ2s_S.coeffs[2:order + 1] .= zero(ρ2s_S.coeffs[1]) + TaylorSeries.zero!(z2s2_S) z2s2_S.coeffs[1] = constant_term(z2s_S) ^ float(constant_term(2)) - z2s2_S.coeffs[2:order + 1] .= zero(z2s2_S.coeffs[1]) + TaylorSeries.zero!(r2s2_S) r2s2_S.coeffs[1] = constant_term(ρ2s2_S) + constant_term(z2s2_S) - r2s2_S.coeffs[2:order + 1] .= zero(r2s2_S.coeffs[1]) + TaylorSeries.zero!(r2s_S) r2s_S.coeffs[1] = sqrt(constant_term(r2s2_S)) - r2s_S.coeffs[2:order + 1] .= zero(r2s_S.coeffs[1]) + TaylorSeries.zero!(r2s5_S) r2s5_S.coeffs[1] = constant_term(r2s_S) ^ float(constant_term(5)) - r2s5_S.coeffs[2:order + 1] .= zero(r2s5_S.coeffs[1]) - tmp4140.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]) - tmp4140.coeffs[2:order + 1] .= zero(tmp4140.coeffs[1]) - tmp4141.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]) - tmp4141.coeffs[2:order + 1] .= zero(tmp4141.coeffs[1]) - coeff1_2_M.coeffs[1] = constant_term(tmp4140) + constant_term(tmp4141) - coeff1_2_M.coeffs[2:order + 1] .= zero(coeff1_2_M.coeffs[1]) - tmp4143.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]) - tmp4143.coeffs[2:order + 1] .= zero(tmp4143.coeffs[1]) - tmp4144.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]) - tmp4144.coeffs[2:order + 1] .= zero(tmp4144.coeffs[1]) - coeff1_2_S.coeffs[1] = constant_term(tmp4143) + constant_term(tmp4144) - coeff1_2_S.coeffs[2:order + 1] .= zero(coeff1_2_S.coeffs[1]) - tmp4148.coeffs[1] = constant_term(coeff1_2_M) ^ float(constant_term(2)) - tmp4148.coeffs[2:order + 1] .= zero(tmp4148.coeffs[1]) - tmp4151.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) - tmp4151.coeffs[2:order + 1] .= zero(tmp4151.coeffs[1]) - tmp4152.coeffs[1] = constant_term(0.5) * constant_term(tmp4151) - tmp4152.coeffs[2:order + 1] .= zero(tmp4152.coeffs[1]) - tmp4153.coeffs[1] = constant_term(tmp4152) * constant_term(ρ2s2_M) - tmp4153.coeffs[2:order + 1] .= zero(tmp4153.coeffs[1]) - tmp4154.coeffs[1] = constant_term(tmp4148) - constant_term(tmp4153) - tmp4154.coeffs[2:order + 1] .= zero(tmp4154.coeffs[1]) - tmp4155.coeffs[1] = constant_term(5) * constant_term(tmp4154) - tmp4155.coeffs[2:order + 1] .= zero(tmp4155.coeffs[1]) - coeff3_2_M.coeffs[1] = constant_term(tmp4155) / constant_term(r_p2[mo, ea]) - coeff3_2_M.coeffs[2:order + 1] .= zero(coeff3_2_M.coeffs[1]) - tmp4159.coeffs[1] = constant_term(coeff1_2_S) ^ float(constant_term(2)) - tmp4159.coeffs[2:order + 1] .= zero(tmp4159.coeffs[1]) - tmp4162.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) - tmp4162.coeffs[2:order + 1] .= zero(tmp4162.coeffs[1]) - tmp4163.coeffs[1] = constant_term(0.5) * constant_term(tmp4162) - tmp4163.coeffs[2:order + 1] .= zero(tmp4163.coeffs[1]) - tmp4164.coeffs[1] = constant_term(tmp4163) * constant_term(ρ2s2_S) - tmp4164.coeffs[2:order + 1] .= zero(tmp4164.coeffs[1]) - tmp4165.coeffs[1] = constant_term(tmp4159) - constant_term(tmp4164) - tmp4165.coeffs[2:order + 1] .= zero(tmp4165.coeffs[1]) - tmp4166.coeffs[1] = constant_term(5) * constant_term(tmp4165) - tmp4166.coeffs[2:order + 1] .= zero(tmp4166.coeffs[1]) - coeff3_2_S.coeffs[1] = constant_term(tmp4166) / constant_term(r_p2[mo, ea]) - coeff3_2_S.coeffs[2:order + 1] .= zero(coeff3_2_S.coeffs[1]) + TaylorSeries.zero!(tmp3600) + tmp3600.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]) + TaylorSeries.zero!(tmp3601) + tmp3601.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]) + TaylorSeries.zero!(coeff1_2_M) + coeff1_2_M.coeffs[1] = constant_term(tmp3600) + constant_term(tmp3601) + TaylorSeries.zero!(tmp3603) + tmp3603.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]) + TaylorSeries.zero!(tmp3604) + tmp3604.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]) + TaylorSeries.zero!(coeff1_2_S) + coeff1_2_S.coeffs[1] = constant_term(tmp3603) + constant_term(tmp3604) + TaylorSeries.zero!(tmp3608) + tmp3608.coeffs[1] = constant_term(coeff1_2_M) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3611) + tmp3611.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3612) + tmp3612.coeffs[1] = constant_term(0.5) * constant_term(tmp3611) + TaylorSeries.zero!(tmp3613) + tmp3613.coeffs[1] = constant_term(tmp3612) * constant_term(ρ2s2_M) + TaylorSeries.zero!(tmp3614) + tmp3614.coeffs[1] = constant_term(tmp3608) - constant_term(tmp3613) + TaylorSeries.zero!(tmp3615) + tmp3615.coeffs[1] = constant_term(5) * constant_term(tmp3614) + TaylorSeries.zero!(coeff3_2_M) + coeff3_2_M.coeffs[1] = constant_term(tmp3615) / constant_term(r_p2[mo, ea]) + TaylorSeries.zero!(tmp3619) + tmp3619.coeffs[1] = constant_term(coeff1_2_S) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3622) + tmp3622.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3623) + tmp3623.coeffs[1] = constant_term(0.5) * constant_term(tmp3622) + TaylorSeries.zero!(tmp3624) + tmp3624.coeffs[1] = constant_term(tmp3623) * constant_term(ρ2s2_S) + TaylorSeries.zero!(tmp3625) + tmp3625.coeffs[1] = constant_term(tmp3619) - constant_term(tmp3624) + TaylorSeries.zero!(tmp3626) + tmp3626.coeffs[1] = constant_term(5) * constant_term(tmp3625) + TaylorSeries.zero!(coeff3_2_S) + coeff3_2_S.coeffs[1] = constant_term(tmp3626) / constant_term(r_p2[mo, ea]) + TaylorSeries.zero!(k_22E_div_r2s5_M) k_22E_div_r2s5_M.coeffs[1] = constant_term(k_22E) / constant_term(r2s5_M) - k_22E_div_r2s5_M.coeffs[2:order + 1] .= zero(k_22E_div_r2s5_M.coeffs[1]) + TaylorSeries.zero!(k_22E_div_r2s5_S) k_22E_div_r2s5_S.coeffs[1] = constant_term(k_22E) / constant_term(r2s5_S) - k_22E_div_r2s5_S.coeffs[2:order + 1] .= zero(k_22E_div_r2s5_S.coeffs[1]) - tmp4171.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) - tmp4171.coeffs[2:order + 1] .= zero(tmp4171.coeffs[1]) - tmp4172.coeffs[1] = constant_term(tmp4171) * constant_term(r_star_M_2[1]) - tmp4172.coeffs[2:order + 1] .= zero(tmp4172.coeffs[1]) - tmp4173.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) - tmp4173.coeffs[2:order + 1] .= zero(tmp4173.coeffs[1]) - tmp4174.coeffs[1] = constant_term(tmp4173) * constant_term(X_bf[mo, ea]) - tmp4174.coeffs[2:order + 1] .= zero(tmp4174.coeffs[1]) - tmp4175.coeffs[1] = constant_term(tmp4172) - constant_term(tmp4174) - tmp4175.coeffs[2:order + 1] .= zero(tmp4175.coeffs[1]) - a_tid_2_M_x.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp4175) - a_tid_2_M_x.coeffs[2:order + 1] .= zero(a_tid_2_M_x.coeffs[1]) - tmp4178.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) - tmp4178.coeffs[2:order + 1] .= zero(tmp4178.coeffs[1]) - tmp4179.coeffs[1] = constant_term(tmp4178) * constant_term(r_star_M_2[2]) - tmp4179.coeffs[2:order + 1] .= zero(tmp4179.coeffs[1]) - tmp4180.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) - tmp4180.coeffs[2:order + 1] .= zero(tmp4180.coeffs[1]) - tmp4181.coeffs[1] = constant_term(tmp4180) * constant_term(Y_bf[mo, ea]) - tmp4181.coeffs[2:order + 1] .= zero(tmp4181.coeffs[1]) - tmp4182.coeffs[1] = constant_term(tmp4179) - constant_term(tmp4181) - tmp4182.coeffs[2:order + 1] .= zero(tmp4182.coeffs[1]) - a_tid_2_M_y.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp4182) - a_tid_2_M_y.coeffs[2:order + 1] .= zero(a_tid_2_M_y.coeffs[1]) - tmp4184.coeffs[1] = -(constant_term(coeff3_2_M)) - tmp4184.coeffs[2:order + 1] .= zero(tmp4184.coeffs[1]) - tmp4185.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp4184) - tmp4185.coeffs[2:order + 1] .= zero(tmp4185.coeffs[1]) - a_tid_2_M_z.coeffs[1] = constant_term(tmp4185) * constant_term(Z_bf[mo, ea]) - a_tid_2_M_z.coeffs[2:order + 1] .= zero(a_tid_2_M_z.coeffs[1]) - tmp4188.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) - tmp4188.coeffs[2:order + 1] .= zero(tmp4188.coeffs[1]) - tmp4189.coeffs[1] = constant_term(tmp4188) * constant_term(r_star_S_2[1]) - tmp4189.coeffs[2:order + 1] .= zero(tmp4189.coeffs[1]) - tmp4190.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) - tmp4190.coeffs[2:order + 1] .= zero(tmp4190.coeffs[1]) - tmp4191.coeffs[1] = constant_term(tmp4190) * constant_term(X_bf[mo, ea]) - tmp4191.coeffs[2:order + 1] .= zero(tmp4191.coeffs[1]) - tmp4192.coeffs[1] = constant_term(tmp4189) - constant_term(tmp4191) - tmp4192.coeffs[2:order + 1] .= zero(tmp4192.coeffs[1]) - a_tid_2_S_x.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp4192) - a_tid_2_S_x.coeffs[2:order + 1] .= zero(a_tid_2_S_x.coeffs[1]) - tmp4195.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) - tmp4195.coeffs[2:order + 1] .= zero(tmp4195.coeffs[1]) - tmp4196.coeffs[1] = constant_term(tmp4195) * constant_term(r_star_S_2[2]) - tmp4196.coeffs[2:order + 1] .= zero(tmp4196.coeffs[1]) - tmp4197.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) - tmp4197.coeffs[2:order + 1] .= zero(tmp4197.coeffs[1]) - tmp4198.coeffs[1] = constant_term(tmp4197) * constant_term(Y_bf[mo, ea]) - tmp4198.coeffs[2:order + 1] .= zero(tmp4198.coeffs[1]) - tmp4199.coeffs[1] = constant_term(tmp4196) - constant_term(tmp4198) - tmp4199.coeffs[2:order + 1] .= zero(tmp4199.coeffs[1]) - a_tid_2_S_y.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp4199) - a_tid_2_S_y.coeffs[2:order + 1] .= zero(a_tid_2_S_y.coeffs[1]) - tmp4201.coeffs[1] = -(constant_term(coeff3_2_S)) - tmp4201.coeffs[2:order + 1] .= zero(tmp4201.coeffs[1]) - tmp4202.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp4201) - tmp4202.coeffs[2:order + 1] .= zero(tmp4202.coeffs[1]) - a_tid_2_S_z.coeffs[1] = constant_term(tmp4202) * constant_term(Z_bf[mo, ea]) - a_tid_2_S_z.coeffs[2:order + 1] .= zero(a_tid_2_S_z.coeffs[1]) - tmp4204.coeffs[1] = constant_term(RE_au) / constant_term(r_p1d2[mo, ea]) - tmp4204.coeffs[2:order + 1] .= zero(tmp4204.coeffs[1]) - RE_div_r_p5.coeffs[1] = constant_term(tmp4204) ^ float(constant_term(5)) - RE_div_r_p5.coeffs[2:order + 1] .= zero(RE_div_r_p5.coeffs[1]) + TaylorSeries.zero!(tmp3631) + tmp3631.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) + TaylorSeries.zero!(tmp3632) + tmp3632.coeffs[1] = constant_term(tmp3631) * constant_term(r_star_M_2[1]) + TaylorSeries.zero!(tmp3633) + tmp3633.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) + TaylorSeries.zero!(tmp3634) + tmp3634.coeffs[1] = constant_term(tmp3633) * constant_term(X_bf[mo, ea]) + TaylorSeries.zero!(tmp3635) + tmp3635.coeffs[1] = constant_term(tmp3632) - constant_term(tmp3634) + TaylorSeries.zero!(a_tid_2_M_x) + a_tid_2_M_x.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp3635) + TaylorSeries.zero!(tmp3638) + tmp3638.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) + TaylorSeries.zero!(tmp3639) + tmp3639.coeffs[1] = constant_term(tmp3638) * constant_term(r_star_M_2[2]) + TaylorSeries.zero!(tmp3640) + tmp3640.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) + TaylorSeries.zero!(tmp3641) + tmp3641.coeffs[1] = constant_term(tmp3640) * constant_term(Y_bf[mo, ea]) + TaylorSeries.zero!(tmp3642) + tmp3642.coeffs[1] = constant_term(tmp3639) - constant_term(tmp3641) + TaylorSeries.zero!(a_tid_2_M_y) + a_tid_2_M_y.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp3642) + TaylorSeries.zero!(tmp3644) + tmp3644.coeffs[1] = -(constant_term(coeff3_2_M)) + TaylorSeries.zero!(tmp3645) + tmp3645.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp3644) + TaylorSeries.zero!(a_tid_2_M_z) + a_tid_2_M_z.coeffs[1] = constant_term(tmp3645) * constant_term(Z_bf[mo, ea]) + TaylorSeries.zero!(tmp3648) + tmp3648.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) + TaylorSeries.zero!(tmp3649) + tmp3649.coeffs[1] = constant_term(tmp3648) * constant_term(r_star_S_2[1]) + TaylorSeries.zero!(tmp3650) + tmp3650.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) + TaylorSeries.zero!(tmp3651) + tmp3651.coeffs[1] = constant_term(tmp3650) * constant_term(X_bf[mo, ea]) + TaylorSeries.zero!(tmp3652) + tmp3652.coeffs[1] = constant_term(tmp3649) - constant_term(tmp3651) + TaylorSeries.zero!(a_tid_2_S_x) + a_tid_2_S_x.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp3652) + TaylorSeries.zero!(tmp3655) + tmp3655.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) + TaylorSeries.zero!(tmp3656) + tmp3656.coeffs[1] = constant_term(tmp3655) * constant_term(r_star_S_2[2]) + TaylorSeries.zero!(tmp3657) + tmp3657.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) + TaylorSeries.zero!(tmp3658) + tmp3658.coeffs[1] = constant_term(tmp3657) * constant_term(Y_bf[mo, ea]) + TaylorSeries.zero!(tmp3659) + tmp3659.coeffs[1] = constant_term(tmp3656) - constant_term(tmp3658) + TaylorSeries.zero!(a_tid_2_S_y) + a_tid_2_S_y.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp3659) + TaylorSeries.zero!(tmp3661) + tmp3661.coeffs[1] = -(constant_term(coeff3_2_S)) + TaylorSeries.zero!(tmp3662) + tmp3662.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp3661) + TaylorSeries.zero!(a_tid_2_S_z) + a_tid_2_S_z.coeffs[1] = constant_term(tmp3662) * constant_term(Z_bf[mo, ea]) + TaylorSeries.zero!(tmp3664) + tmp3664.coeffs[1] = constant_term(RE_au) / constant_term(r_p1d2[mo, ea]) + TaylorSeries.zero!(RE_div_r_p5) + RE_div_r_p5.coeffs[1] = constant_term(tmp3664) ^ float(constant_term(5)) + TaylorSeries.zero!(aux_tidacc) aux_tidacc.coeffs[1] = constant_term(tid_num_coeff) * constant_term(RE_div_r_p5) - aux_tidacc.coeffs[2:order + 1] .= zero(aux_tidacc.coeffs[1]) + TaylorSeries.zero!(a_tidal_coeff_M) a_tidal_coeff_M.coeffs[1] = constant_term(μ[mo]) * constant_term(aux_tidacc) - a_tidal_coeff_M.coeffs[2:order + 1] .= zero(a_tidal_coeff_M.coeffs[1]) + TaylorSeries.zero!(a_tidal_coeff_S) a_tidal_coeff_S.coeffs[1] = constant_term(μ[su]) * constant_term(aux_tidacc) - a_tidal_coeff_S.coeffs[2:order + 1] .= zero(a_tidal_coeff_S.coeffs[1]) - tmp4210.coeffs[1] = constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x) - tmp4210.coeffs[2:order + 1] .= zero(tmp4210.coeffs[1]) - tmp4211.coeffs[1] = constant_term(tmp4210) + constant_term(a_tid_2_M_x) - tmp4211.coeffs[2:order + 1] .= zero(tmp4211.coeffs[1]) - tmp4212.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp4211) - tmp4212.coeffs[2:order + 1] .= zero(tmp4212.coeffs[1]) - tmp4213.coeffs[1] = constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x) - tmp4213.coeffs[2:order + 1] .= zero(tmp4213.coeffs[1]) - tmp4214.coeffs[1] = constant_term(tmp4213) + constant_term(a_tid_2_S_x) - tmp4214.coeffs[2:order + 1] .= zero(tmp4214.coeffs[1]) - tmp4215.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp4214) - tmp4215.coeffs[2:order + 1] .= zero(tmp4215.coeffs[1]) - a_tidal_tod_x.coeffs[1] = constant_term(tmp4212) + constant_term(tmp4215) - a_tidal_tod_x.coeffs[2:order + 1] .= zero(a_tidal_tod_x.coeffs[1]) - tmp4217.coeffs[1] = constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y) - tmp4217.coeffs[2:order + 1] .= zero(tmp4217.coeffs[1]) - tmp4218.coeffs[1] = constant_term(tmp4217) + constant_term(a_tid_2_M_y) - tmp4218.coeffs[2:order + 1] .= zero(tmp4218.coeffs[1]) - tmp4219.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp4218) - tmp4219.coeffs[2:order + 1] .= zero(tmp4219.coeffs[1]) - tmp4220.coeffs[1] = constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y) - tmp4220.coeffs[2:order + 1] .= zero(tmp4220.coeffs[1]) - tmp4221.coeffs[1] = constant_term(tmp4220) + constant_term(a_tid_2_S_y) - tmp4221.coeffs[2:order + 1] .= zero(tmp4221.coeffs[1]) - tmp4222.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp4221) - tmp4222.coeffs[2:order + 1] .= zero(tmp4222.coeffs[1]) - a_tidal_tod_y.coeffs[1] = constant_term(tmp4219) + constant_term(tmp4222) - a_tidal_tod_y.coeffs[2:order + 1] .= zero(a_tidal_tod_y.coeffs[1]) - tmp4224.coeffs[1] = constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z) - tmp4224.coeffs[2:order + 1] .= zero(tmp4224.coeffs[1]) - tmp4225.coeffs[1] = constant_term(tmp4224) + constant_term(a_tid_2_M_z) - tmp4225.coeffs[2:order + 1] .= zero(tmp4225.coeffs[1]) - tmp4226.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp4225) - tmp4226.coeffs[2:order + 1] .= zero(tmp4226.coeffs[1]) - tmp4227.coeffs[1] = constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z) - tmp4227.coeffs[2:order + 1] .= zero(tmp4227.coeffs[1]) - tmp4228.coeffs[1] = constant_term(tmp4227) + constant_term(a_tid_2_S_z) - tmp4228.coeffs[2:order + 1] .= zero(tmp4228.coeffs[1]) - tmp4229.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp4228) - tmp4229.coeffs[2:order + 1] .= zero(tmp4229.coeffs[1]) - a_tidal_tod_z.coeffs[1] = constant_term(tmp4226) + constant_term(tmp4229) - a_tidal_tod_z.coeffs[2:order + 1] .= zero(a_tidal_tod_z.coeffs[1]) - tmp4231.coeffs[1] = constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x) - tmp4231.coeffs[2:order + 1] .= zero(tmp4231.coeffs[1]) - tmp4232.coeffs[1] = constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y) - tmp4232.coeffs[2:order + 1] .= zero(tmp4232.coeffs[1]) - tmp4233.coeffs[1] = constant_term(tmp4231) + constant_term(tmp4232) - tmp4233.coeffs[2:order + 1] .= zero(tmp4233.coeffs[1]) - tmp4234.coeffs[1] = constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z) - tmp4234.coeffs[2:order + 1] .= zero(tmp4234.coeffs[1]) - a_tidal_x.coeffs[1] = constant_term(tmp4233) + constant_term(tmp4234) - a_tidal_x.coeffs[2:order + 1] .= zero(a_tidal_x.coeffs[1]) - tmp4236.coeffs[1] = constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x) - tmp4236.coeffs[2:order + 1] .= zero(tmp4236.coeffs[1]) - tmp4237.coeffs[1] = constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y) - tmp4237.coeffs[2:order + 1] .= zero(tmp4237.coeffs[1]) - tmp4238.coeffs[1] = constant_term(tmp4236) + constant_term(tmp4237) - tmp4238.coeffs[2:order + 1] .= zero(tmp4238.coeffs[1]) - tmp4239.coeffs[1] = constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z) - tmp4239.coeffs[2:order + 1] .= zero(tmp4239.coeffs[1]) - a_tidal_y.coeffs[1] = constant_term(tmp4238) + constant_term(tmp4239) - a_tidal_y.coeffs[2:order + 1] .= zero(a_tidal_y.coeffs[1]) - tmp4241.coeffs[1] = constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x) - tmp4241.coeffs[2:order + 1] .= zero(tmp4241.coeffs[1]) - tmp4242.coeffs[1] = constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y) - tmp4242.coeffs[2:order + 1] .= zero(tmp4242.coeffs[1]) - tmp4243.coeffs[1] = constant_term(tmp4241) + constant_term(tmp4242) - tmp4243.coeffs[2:order + 1] .= zero(tmp4243.coeffs[1]) - tmp4244.coeffs[1] = constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z) - tmp4244.coeffs[2:order + 1] .= zero(tmp4244.coeffs[1]) - a_tidal_z.coeffs[1] = constant_term(tmp4243) + constant_term(tmp4244) - a_tidal_z.coeffs[2:order + 1] .= zero(a_tidal_z.coeffs[1]) + TaylorSeries.zero!(tmp3670) + tmp3670.coeffs[1] = constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x) + TaylorSeries.zero!(tmp3671) + tmp3671.coeffs[1] = constant_term(tmp3670) + constant_term(a_tid_2_M_x) + TaylorSeries.zero!(tmp3672) + tmp3672.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp3671) + TaylorSeries.zero!(tmp3673) + tmp3673.coeffs[1] = constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x) + TaylorSeries.zero!(tmp3674) + tmp3674.coeffs[1] = constant_term(tmp3673) + constant_term(a_tid_2_S_x) + TaylorSeries.zero!(tmp3675) + tmp3675.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp3674) + TaylorSeries.zero!(a_tidal_tod_x) + a_tidal_tod_x.coeffs[1] = constant_term(tmp3672) + constant_term(tmp3675) + TaylorSeries.zero!(tmp3677) + tmp3677.coeffs[1] = constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y) + TaylorSeries.zero!(tmp3678) + tmp3678.coeffs[1] = constant_term(tmp3677) + constant_term(a_tid_2_M_y) + TaylorSeries.zero!(tmp3679) + tmp3679.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp3678) + TaylorSeries.zero!(tmp3680) + tmp3680.coeffs[1] = constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y) + TaylorSeries.zero!(tmp3681) + tmp3681.coeffs[1] = constant_term(tmp3680) + constant_term(a_tid_2_S_y) + TaylorSeries.zero!(tmp3682) + tmp3682.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp3681) + TaylorSeries.zero!(a_tidal_tod_y) + a_tidal_tod_y.coeffs[1] = constant_term(tmp3679) + constant_term(tmp3682) + TaylorSeries.zero!(tmp3684) + tmp3684.coeffs[1] = constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z) + TaylorSeries.zero!(tmp3685) + tmp3685.coeffs[1] = constant_term(tmp3684) + constant_term(a_tid_2_M_z) + TaylorSeries.zero!(tmp3686) + tmp3686.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp3685) + TaylorSeries.zero!(tmp3687) + tmp3687.coeffs[1] = constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z) + TaylorSeries.zero!(tmp3688) + tmp3688.coeffs[1] = constant_term(tmp3687) + constant_term(a_tid_2_S_z) + TaylorSeries.zero!(tmp3689) + tmp3689.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp3688) + TaylorSeries.zero!(a_tidal_tod_z) + a_tidal_tod_z.coeffs[1] = constant_term(tmp3686) + constant_term(tmp3689) + TaylorSeries.zero!(tmp3691) + tmp3691.coeffs[1] = constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x) + TaylorSeries.zero!(tmp3692) + tmp3692.coeffs[1] = constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y) + TaylorSeries.zero!(tmp3693) + tmp3693.coeffs[1] = constant_term(tmp3691) + constant_term(tmp3692) + TaylorSeries.zero!(tmp3694) + tmp3694.coeffs[1] = constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z) + TaylorSeries.zero!(a_tidal_x) + a_tidal_x.coeffs[1] = constant_term(tmp3693) + constant_term(tmp3694) + TaylorSeries.zero!(tmp3696) + tmp3696.coeffs[1] = constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x) + TaylorSeries.zero!(tmp3697) + tmp3697.coeffs[1] = constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y) + TaylorSeries.zero!(tmp3698) + tmp3698.coeffs[1] = constant_term(tmp3696) + constant_term(tmp3697) + TaylorSeries.zero!(tmp3699) + tmp3699.coeffs[1] = constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z) + TaylorSeries.zero!(a_tidal_y) + a_tidal_y.coeffs[1] = constant_term(tmp3698) + constant_term(tmp3699) + TaylorSeries.zero!(tmp3701) + tmp3701.coeffs[1] = constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x) + TaylorSeries.zero!(tmp3702) + tmp3702.coeffs[1] = constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y) + TaylorSeries.zero!(tmp3703) + tmp3703.coeffs[1] = constant_term(tmp3701) + constant_term(tmp3702) + TaylorSeries.zero!(tmp3704) + tmp3704.coeffs[1] = constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z) + TaylorSeries.zero!(a_tidal_z) + a_tidal_z.coeffs[1] = constant_term(tmp3703) + constant_term(tmp3704) + TaylorSeries.zero!(accX_mo_tides) accX_mo_tides.coeffs[1] = constant_term(accX[mo]) + constant_term(a_tidal_x) - accX_mo_tides.coeffs[2:order + 1] .= zero(accX_mo_tides.coeffs[1]) + TaylorSeries.zero!(accY_mo_tides) accY_mo_tides.coeffs[1] = constant_term(accY[mo]) + constant_term(a_tidal_y) - accY_mo_tides.coeffs[2:order + 1] .= zero(accY_mo_tides.coeffs[1]) + TaylorSeries.zero!(accZ_mo_tides) accZ_mo_tides.coeffs[1] = constant_term(accZ[mo]) + constant_term(a_tidal_z) - accZ_mo_tides.coeffs[2:order + 1] .= zero(accZ_mo_tides.coeffs[1]) + TaylorSeries.zero!(accX[mo]) (accX[mo]).coeffs[1] = identity(constant_term(accX_mo_tides)) - (accX[mo]).coeffs[2:order + 1] .= zero((accX[mo]).coeffs[1]) + TaylorSeries.zero!(accY[mo]) (accY[mo]).coeffs[1] = identity(constant_term(accY_mo_tides)) - (accY[mo]).coeffs[2:order + 1] .= zero((accY[mo]).coeffs[1]) + TaylorSeries.zero!(accZ[mo]) (accZ[mo]).coeffs[1] = identity(constant_term(accZ_mo_tides)) - (accZ[mo]).coeffs[2:order + 1] .= zero((accZ[mo]).coeffs[1]) - #= In[6]:990 =# Threads.@threads for i = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1896 =# Threads.@threads for i = 1:N_ext + TaylorSeries.zero!(dq[3 * (N + i) - 2]) (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) - (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i) - 1]) (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) - (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i)]) (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) - (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) end - #= In[6]:995 =# Threads.@threads for i = N_ext + 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1901 =# Threads.@threads for i = N_ext + 1:N + TaylorSeries.zero!(dq[3 * (N + i) - 2]) (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) - (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i) - 1]) (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) - (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + TaylorSeries.zero!(dq[3 * (N + i)]) (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) - (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) end - tmp4252.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) - tmp4252.coeffs[2:order + 1] .= zero(tmp4252.coeffs[1]) - tmp4253.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) - tmp4253.coeffs[2:order + 1] .= zero(tmp4253.coeffs[1]) - tmp4254.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) - tmp4254.coeffs[2:order + 1] .= zero(tmp4254.coeffs[1]) - tmp4255.coeffs[1] = constant_term(tmp4253) + constant_term(tmp4254) - tmp4255.coeffs[2:order + 1] .= zero(tmp4255.coeffs[1]) - Iω_x.coeffs[1] = constant_term(tmp4252) + constant_term(tmp4255) - Iω_x.coeffs[2:order + 1] .= zero(Iω_x.coeffs[1]) - tmp4257.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) - tmp4257.coeffs[2:order + 1] .= zero(tmp4257.coeffs[1]) - tmp4258.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) - tmp4258.coeffs[2:order + 1] .= zero(tmp4258.coeffs[1]) - tmp4259.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) - tmp4259.coeffs[2:order + 1] .= zero(tmp4259.coeffs[1]) - tmp4260.coeffs[1] = constant_term(tmp4258) + constant_term(tmp4259) - tmp4260.coeffs[2:order + 1] .= zero(tmp4260.coeffs[1]) - Iω_y.coeffs[1] = constant_term(tmp4257) + constant_term(tmp4260) - Iω_y.coeffs[2:order + 1] .= zero(Iω_y.coeffs[1]) - tmp4262.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) - tmp4262.coeffs[2:order + 1] .= zero(tmp4262.coeffs[1]) - tmp4263.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) - tmp4263.coeffs[2:order + 1] .= zero(tmp4263.coeffs[1]) - tmp4264.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) - tmp4264.coeffs[2:order + 1] .= zero(tmp4264.coeffs[1]) - tmp4265.coeffs[1] = constant_term(tmp4263) + constant_term(tmp4264) - tmp4265.coeffs[2:order + 1] .= zero(tmp4265.coeffs[1]) - Iω_z.coeffs[1] = constant_term(tmp4262) + constant_term(tmp4265) - Iω_z.coeffs[2:order + 1] .= zero(Iω_z.coeffs[1]) - tmp4267.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) - tmp4267.coeffs[2:order + 1] .= zero(tmp4267.coeffs[1]) - tmp4268.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) - tmp4268.coeffs[2:order + 1] .= zero(tmp4268.coeffs[1]) - ωxIω_x.coeffs[1] = constant_term(tmp4267) - constant_term(tmp4268) - ωxIω_x.coeffs[2:order + 1] .= zero(ωxIω_x.coeffs[1]) - tmp4270.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) - tmp4270.coeffs[2:order + 1] .= zero(tmp4270.coeffs[1]) - tmp4271.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) - tmp4271.coeffs[2:order + 1] .= zero(tmp4271.coeffs[1]) - ωxIω_y.coeffs[1] = constant_term(tmp4270) - constant_term(tmp4271) - ωxIω_y.coeffs[2:order + 1] .= zero(ωxIω_y.coeffs[1]) - tmp4273.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) - tmp4273.coeffs[2:order + 1] .= zero(tmp4273.coeffs[1]) - tmp4274.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) - tmp4274.coeffs[2:order + 1] .= zero(tmp4274.coeffs[1]) - ωxIω_z.coeffs[1] = constant_term(tmp4273) - constant_term(tmp4274) - ωxIω_z.coeffs[2:order + 1] .= zero(ωxIω_z.coeffs[1]) - tmp4276.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) - tmp4276.coeffs[2:order + 1] .= zero(tmp4276.coeffs[1]) - tmp4277.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) - tmp4277.coeffs[2:order + 1] .= zero(tmp4277.coeffs[1]) - tmp4278.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) - tmp4278.coeffs[2:order + 1] .= zero(tmp4278.coeffs[1]) - tmp4279.coeffs[1] = constant_term(tmp4277) + constant_term(tmp4278) - tmp4279.coeffs[2:order + 1] .= zero(tmp4279.coeffs[1]) - dIω_x.coeffs[1] = constant_term(tmp4276) + constant_term(tmp4279) - dIω_x.coeffs[2:order + 1] .= zero(dIω_x.coeffs[1]) - tmp4281.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) - tmp4281.coeffs[2:order + 1] .= zero(tmp4281.coeffs[1]) - tmp4282.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) - tmp4282.coeffs[2:order + 1] .= zero(tmp4282.coeffs[1]) - tmp4283.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) - tmp4283.coeffs[2:order + 1] .= zero(tmp4283.coeffs[1]) - tmp4284.coeffs[1] = constant_term(tmp4282) + constant_term(tmp4283) - tmp4284.coeffs[2:order + 1] .= zero(tmp4284.coeffs[1]) - dIω_y.coeffs[1] = constant_term(tmp4281) + constant_term(tmp4284) - dIω_y.coeffs[2:order + 1] .= zero(dIω_y.coeffs[1]) - tmp4286.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) - tmp4286.coeffs[2:order + 1] .= zero(tmp4286.coeffs[1]) - tmp4287.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) - tmp4287.coeffs[2:order + 1] .= zero(tmp4287.coeffs[1]) - tmp4288.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) - tmp4288.coeffs[2:order + 1] .= zero(tmp4288.coeffs[1]) - tmp4289.coeffs[1] = constant_term(tmp4287) + constant_term(tmp4288) - tmp4289.coeffs[2:order + 1] .= zero(tmp4289.coeffs[1]) - dIω_z.coeffs[1] = constant_term(tmp4286) + constant_term(tmp4289) - dIω_z.coeffs[2:order + 1] .= zero(dIω_z.coeffs[1]) + TaylorSeries.zero!(tmp3712) + tmp3712.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp3713) + tmp3713.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp3714) + tmp3714.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp3715) + tmp3715.coeffs[1] = constant_term(tmp3713) + constant_term(tmp3714) + TaylorSeries.zero!(Iω_x) + Iω_x.coeffs[1] = constant_term(tmp3712) + constant_term(tmp3715) + TaylorSeries.zero!(tmp3717) + tmp3717.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp3718) + tmp3718.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp3719) + tmp3719.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp3720) + tmp3720.coeffs[1] = constant_term(tmp3718) + constant_term(tmp3719) + TaylorSeries.zero!(Iω_y) + Iω_y.coeffs[1] = constant_term(tmp3717) + constant_term(tmp3720) + TaylorSeries.zero!(tmp3722) + tmp3722.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp3723) + tmp3723.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp3724) + tmp3724.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp3725) + tmp3725.coeffs[1] = constant_term(tmp3723) + constant_term(tmp3724) + TaylorSeries.zero!(Iω_z) + Iω_z.coeffs[1] = constant_term(tmp3722) + constant_term(tmp3725) + TaylorSeries.zero!(tmp3727) + tmp3727.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) + TaylorSeries.zero!(tmp3728) + tmp3728.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) + TaylorSeries.zero!(ωxIω_x) + ωxIω_x.coeffs[1] = constant_term(tmp3727) - constant_term(tmp3728) + TaylorSeries.zero!(tmp3730) + tmp3730.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) + TaylorSeries.zero!(tmp3731) + tmp3731.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) + TaylorSeries.zero!(ωxIω_y) + ωxIω_y.coeffs[1] = constant_term(tmp3730) - constant_term(tmp3731) + TaylorSeries.zero!(tmp3733) + tmp3733.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) + TaylorSeries.zero!(tmp3734) + tmp3734.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) + TaylorSeries.zero!(ωxIω_z) + ωxIω_z.coeffs[1] = constant_term(tmp3733) - constant_term(tmp3734) + TaylorSeries.zero!(tmp3736) + tmp3736.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp3737) + tmp3737.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp3738) + tmp3738.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp3739) + tmp3739.coeffs[1] = constant_term(tmp3737) + constant_term(tmp3738) + TaylorSeries.zero!(dIω_x) + dIω_x.coeffs[1] = constant_term(tmp3736) + constant_term(tmp3739) + TaylorSeries.zero!(tmp3741) + tmp3741.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp3742) + tmp3742.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp3743) + tmp3743.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp3744) + tmp3744.coeffs[1] = constant_term(tmp3742) + constant_term(tmp3743) + TaylorSeries.zero!(dIω_y) + dIω_y.coeffs[1] = constant_term(tmp3741) + constant_term(tmp3744) + TaylorSeries.zero!(tmp3746) + tmp3746.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp3747) + tmp3747.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp3748) + tmp3748.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) + TaylorSeries.zero!(tmp3749) + tmp3749.coeffs[1] = constant_term(tmp3747) + constant_term(tmp3748) + TaylorSeries.zero!(dIω_z) + dIω_z.coeffs[1] = constant_term(tmp3746) + constant_term(tmp3749) + TaylorSeries.zero!(er_EM_I_1) er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_1.coeffs[2:order + 1] .= zero(er_EM_I_1.coeffs[1]) + TaylorSeries.zero!(er_EM_I_2) er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_2.coeffs[2:order + 1] .= zero(er_EM_I_2.coeffs[1]) + TaylorSeries.zero!(er_EM_I_3) er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) - er_EM_I_3.coeffs[2:order + 1] .= zero(er_EM_I_3.coeffs[1]) + TaylorSeries.zero!(p_E_I_1) p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) - p_E_I_1.coeffs[2:order + 1] .= zero(p_E_I_1.coeffs[1]) + TaylorSeries.zero!(p_E_I_2) p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) - p_E_I_2.coeffs[2:order + 1] .= zero(p_E_I_2.coeffs[1]) + TaylorSeries.zero!(p_E_I_3) p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) - p_E_I_3.coeffs[2:order + 1] .= zero(p_E_I_3.coeffs[1]) - tmp4294.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) - tmp4294.coeffs[2:order + 1] .= zero(tmp4294.coeffs[1]) - tmp4295.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) - tmp4295.coeffs[2:order + 1] .= zero(tmp4295.coeffs[1]) - tmp4296.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) - tmp4296.coeffs[2:order + 1] .= zero(tmp4296.coeffs[1]) - tmp4297.coeffs[1] = constant_term(tmp4295) + constant_term(tmp4296) - tmp4297.coeffs[2:order + 1] .= zero(tmp4297.coeffs[1]) - er_EM_1.coeffs[1] = constant_term(tmp4294) + constant_term(tmp4297) - er_EM_1.coeffs[2:order + 1] .= zero(er_EM_1.coeffs[1]) - tmp4299.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) - tmp4299.coeffs[2:order + 1] .= zero(tmp4299.coeffs[1]) - tmp4300.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) - tmp4300.coeffs[2:order + 1] .= zero(tmp4300.coeffs[1]) - tmp4301.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) - tmp4301.coeffs[2:order + 1] .= zero(tmp4301.coeffs[1]) - tmp4302.coeffs[1] = constant_term(tmp4300) + constant_term(tmp4301) - tmp4302.coeffs[2:order + 1] .= zero(tmp4302.coeffs[1]) - er_EM_2.coeffs[1] = constant_term(tmp4299) + constant_term(tmp4302) - er_EM_2.coeffs[2:order + 1] .= zero(er_EM_2.coeffs[1]) - tmp4304.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) - tmp4304.coeffs[2:order + 1] .= zero(tmp4304.coeffs[1]) - tmp4305.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) - tmp4305.coeffs[2:order + 1] .= zero(tmp4305.coeffs[1]) - tmp4306.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) - tmp4306.coeffs[2:order + 1] .= zero(tmp4306.coeffs[1]) - tmp4307.coeffs[1] = constant_term(tmp4305) + constant_term(tmp4306) - tmp4307.coeffs[2:order + 1] .= zero(tmp4307.coeffs[1]) - er_EM_3.coeffs[1] = constant_term(tmp4304) + constant_term(tmp4307) - er_EM_3.coeffs[2:order + 1] .= zero(er_EM_3.coeffs[1]) - tmp4309.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) - tmp4309.coeffs[2:order + 1] .= zero(tmp4309.coeffs[1]) - tmp4310.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) - tmp4310.coeffs[2:order + 1] .= zero(tmp4310.coeffs[1]) - tmp4311.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) - tmp4311.coeffs[2:order + 1] .= zero(tmp4311.coeffs[1]) - tmp4312.coeffs[1] = constant_term(tmp4310) + constant_term(tmp4311) - tmp4312.coeffs[2:order + 1] .= zero(tmp4312.coeffs[1]) - p_E_1.coeffs[1] = constant_term(tmp4309) + constant_term(tmp4312) - p_E_1.coeffs[2:order + 1] .= zero(p_E_1.coeffs[1]) - tmp4314.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) - tmp4314.coeffs[2:order + 1] .= zero(tmp4314.coeffs[1]) - tmp4315.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) - tmp4315.coeffs[2:order + 1] .= zero(tmp4315.coeffs[1]) - tmp4316.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) - tmp4316.coeffs[2:order + 1] .= zero(tmp4316.coeffs[1]) - tmp4317.coeffs[1] = constant_term(tmp4315) + constant_term(tmp4316) - tmp4317.coeffs[2:order + 1] .= zero(tmp4317.coeffs[1]) - p_E_2.coeffs[1] = constant_term(tmp4314) + constant_term(tmp4317) - p_E_2.coeffs[2:order + 1] .= zero(p_E_2.coeffs[1]) - tmp4319.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) - tmp4319.coeffs[2:order + 1] .= zero(tmp4319.coeffs[1]) - tmp4320.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) - tmp4320.coeffs[2:order + 1] .= zero(tmp4320.coeffs[1]) - tmp4321.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) - tmp4321.coeffs[2:order + 1] .= zero(tmp4321.coeffs[1]) - tmp4322.coeffs[1] = constant_term(tmp4320) + constant_term(tmp4321) - tmp4322.coeffs[2:order + 1] .= zero(tmp4322.coeffs[1]) - p_E_3.coeffs[1] = constant_term(tmp4319) + constant_term(tmp4322) - p_E_3.coeffs[2:order + 1] .= zero(p_E_3.coeffs[1]) - tmp4324.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) - tmp4324.coeffs[2:order + 1] .= zero(tmp4324.coeffs[1]) - tmp4325.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) - tmp4325.coeffs[2:order + 1] .= zero(tmp4325.coeffs[1]) - tmp4326.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) - tmp4326.coeffs[2:order + 1] .= zero(tmp4326.coeffs[1]) - tmp4327.coeffs[1] = constant_term(tmp4325) + constant_term(tmp4326) - tmp4327.coeffs[2:order + 1] .= zero(tmp4327.coeffs[1]) - I_er_EM_1.coeffs[1] = constant_term(tmp4324) + constant_term(tmp4327) - I_er_EM_1.coeffs[2:order + 1] .= zero(I_er_EM_1.coeffs[1]) - tmp4329.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) - tmp4329.coeffs[2:order + 1] .= zero(tmp4329.coeffs[1]) - tmp4330.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) - tmp4330.coeffs[2:order + 1] .= zero(tmp4330.coeffs[1]) - tmp4331.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) - tmp4331.coeffs[2:order + 1] .= zero(tmp4331.coeffs[1]) - tmp4332.coeffs[1] = constant_term(tmp4330) + constant_term(tmp4331) - tmp4332.coeffs[2:order + 1] .= zero(tmp4332.coeffs[1]) - I_er_EM_2.coeffs[1] = constant_term(tmp4329) + constant_term(tmp4332) - I_er_EM_2.coeffs[2:order + 1] .= zero(I_er_EM_2.coeffs[1]) - tmp4334.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) - tmp4334.coeffs[2:order + 1] .= zero(tmp4334.coeffs[1]) - tmp4335.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) - tmp4335.coeffs[2:order + 1] .= zero(tmp4335.coeffs[1]) - tmp4336.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) - tmp4336.coeffs[2:order + 1] .= zero(tmp4336.coeffs[1]) - tmp4337.coeffs[1] = constant_term(tmp4335) + constant_term(tmp4336) - tmp4337.coeffs[2:order + 1] .= zero(tmp4337.coeffs[1]) - I_er_EM_3.coeffs[1] = constant_term(tmp4334) + constant_term(tmp4337) - I_er_EM_3.coeffs[2:order + 1] .= zero(I_er_EM_3.coeffs[1]) - tmp4339.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) - tmp4339.coeffs[2:order + 1] .= zero(tmp4339.coeffs[1]) - tmp4340.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) - tmp4340.coeffs[2:order + 1] .= zero(tmp4340.coeffs[1]) - tmp4341.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) - tmp4341.coeffs[2:order + 1] .= zero(tmp4341.coeffs[1]) - tmp4342.coeffs[1] = constant_term(tmp4340) + constant_term(tmp4341) - tmp4342.coeffs[2:order + 1] .= zero(tmp4342.coeffs[1]) - I_p_E_1.coeffs[1] = constant_term(tmp4339) + constant_term(tmp4342) - I_p_E_1.coeffs[2:order + 1] .= zero(I_p_E_1.coeffs[1]) - tmp4344.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) - tmp4344.coeffs[2:order + 1] .= zero(tmp4344.coeffs[1]) - tmp4345.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) - tmp4345.coeffs[2:order + 1] .= zero(tmp4345.coeffs[1]) - tmp4346.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) - tmp4346.coeffs[2:order + 1] .= zero(tmp4346.coeffs[1]) - tmp4347.coeffs[1] = constant_term(tmp4345) + constant_term(tmp4346) - tmp4347.coeffs[2:order + 1] .= zero(tmp4347.coeffs[1]) - I_p_E_2.coeffs[1] = constant_term(tmp4344) + constant_term(tmp4347) - I_p_E_2.coeffs[2:order + 1] .= zero(I_p_E_2.coeffs[1]) - tmp4349.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) - tmp4349.coeffs[2:order + 1] .= zero(tmp4349.coeffs[1]) - tmp4350.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) - tmp4350.coeffs[2:order + 1] .= zero(tmp4350.coeffs[1]) - tmp4351.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) - tmp4351.coeffs[2:order + 1] .= zero(tmp4351.coeffs[1]) - tmp4352.coeffs[1] = constant_term(tmp4350) + constant_term(tmp4351) - tmp4352.coeffs[2:order + 1] .= zero(tmp4352.coeffs[1]) - I_p_E_3.coeffs[1] = constant_term(tmp4349) + constant_term(tmp4352) - I_p_E_3.coeffs[2:order + 1] .= zero(I_p_E_3.coeffs[1]) - tmp4354.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) - tmp4354.coeffs[2:order + 1] .= zero(tmp4354.coeffs[1]) - tmp4355.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) - tmp4355.coeffs[2:order + 1] .= zero(tmp4355.coeffs[1]) - er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp4354) - constant_term(tmp4355) - er_EM_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_1.coeffs[1]) - tmp4357.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) - tmp4357.coeffs[2:order + 1] .= zero(tmp4357.coeffs[1]) - tmp4358.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) - tmp4358.coeffs[2:order + 1] .= zero(tmp4358.coeffs[1]) - er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp4357) - constant_term(tmp4358) - er_EM_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_2.coeffs[1]) - tmp4360.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) - tmp4360.coeffs[2:order + 1] .= zero(tmp4360.coeffs[1]) - tmp4361.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) - tmp4361.coeffs[2:order + 1] .= zero(tmp4361.coeffs[1]) - er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp4360) - constant_term(tmp4361) - er_EM_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_3.coeffs[1]) - tmp4363.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) - tmp4363.coeffs[2:order + 1] .= zero(tmp4363.coeffs[1]) - tmp4364.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) - tmp4364.coeffs[2:order + 1] .= zero(tmp4364.coeffs[1]) - er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp4363) - constant_term(tmp4364) - er_EM_cross_I_p_E_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_1.coeffs[1]) - tmp4366.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) - tmp4366.coeffs[2:order + 1] .= zero(tmp4366.coeffs[1]) - tmp4367.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) - tmp4367.coeffs[2:order + 1] .= zero(tmp4367.coeffs[1]) - er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp4366) - constant_term(tmp4367) - er_EM_cross_I_p_E_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_2.coeffs[1]) - tmp4369.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) - tmp4369.coeffs[2:order + 1] .= zero(tmp4369.coeffs[1]) - tmp4370.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) - tmp4370.coeffs[2:order + 1] .= zero(tmp4370.coeffs[1]) - er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp4369) - constant_term(tmp4370) - er_EM_cross_I_p_E_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_3.coeffs[1]) - tmp4372.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) - tmp4372.coeffs[2:order + 1] .= zero(tmp4372.coeffs[1]) - tmp4373.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) - tmp4373.coeffs[2:order + 1] .= zero(tmp4373.coeffs[1]) - p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp4372) - constant_term(tmp4373) - p_E_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_1.coeffs[1]) - tmp4375.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) - tmp4375.coeffs[2:order + 1] .= zero(tmp4375.coeffs[1]) - tmp4376.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) - tmp4376.coeffs[2:order + 1] .= zero(tmp4376.coeffs[1]) - p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp4375) - constant_term(tmp4376) - p_E_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_2.coeffs[1]) - tmp4378.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) - tmp4378.coeffs[2:order + 1] .= zero(tmp4378.coeffs[1]) - tmp4379.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) - tmp4379.coeffs[2:order + 1] .= zero(tmp4379.coeffs[1]) - p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp4378) - constant_term(tmp4379) - p_E_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_3.coeffs[1]) - tmp4381.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) - tmp4381.coeffs[2:order + 1] .= zero(tmp4381.coeffs[1]) - tmp4382.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) - tmp4382.coeffs[2:order + 1] .= zero(tmp4382.coeffs[1]) - p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp4381) - constant_term(tmp4382) - p_E_cross_I_p_E_1.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_1.coeffs[1]) - tmp4384.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) - tmp4384.coeffs[2:order + 1] .= zero(tmp4384.coeffs[1]) - tmp4385.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) - tmp4385.coeffs[2:order + 1] .= zero(tmp4385.coeffs[1]) - p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp4384) - constant_term(tmp4385) - p_E_cross_I_p_E_2.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_2.coeffs[1]) - tmp4387.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) - tmp4387.coeffs[2:order + 1] .= zero(tmp4387.coeffs[1]) - tmp4388.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) - tmp4388.coeffs[2:order + 1] .= zero(tmp4388.coeffs[1]) - p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp4387) - constant_term(tmp4388) - p_E_cross_I_p_E_3.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_3.coeffs[1]) - tmp4392.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) - tmp4392.coeffs[2:order + 1] .= zero(tmp4392.coeffs[1]) - tmp4393.coeffs[1] = constant_term(7) * constant_term(tmp4392) - tmp4393.coeffs[2:order + 1] .= zero(tmp4393.coeffs[1]) - one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp4393) - one_minus_7sin2ϕEM.coeffs[2:order + 1] .= zero(one_minus_7sin2ϕEM.coeffs[1]) + TaylorSeries.zero!(tmp3754) + tmp3754.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) + TaylorSeries.zero!(tmp3755) + tmp3755.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) + TaylorSeries.zero!(tmp3756) + tmp3756.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) + TaylorSeries.zero!(tmp3757) + tmp3757.coeffs[1] = constant_term(tmp3755) + constant_term(tmp3756) + TaylorSeries.zero!(er_EM_1) + er_EM_1.coeffs[1] = constant_term(tmp3754) + constant_term(tmp3757) + TaylorSeries.zero!(tmp3759) + tmp3759.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) + TaylorSeries.zero!(tmp3760) + tmp3760.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) + TaylorSeries.zero!(tmp3761) + tmp3761.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) + TaylorSeries.zero!(tmp3762) + tmp3762.coeffs[1] = constant_term(tmp3760) + constant_term(tmp3761) + TaylorSeries.zero!(er_EM_2) + er_EM_2.coeffs[1] = constant_term(tmp3759) + constant_term(tmp3762) + TaylorSeries.zero!(tmp3764) + tmp3764.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) + TaylorSeries.zero!(tmp3765) + tmp3765.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) + TaylorSeries.zero!(tmp3766) + tmp3766.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) + TaylorSeries.zero!(tmp3767) + tmp3767.coeffs[1] = constant_term(tmp3765) + constant_term(tmp3766) + TaylorSeries.zero!(er_EM_3) + er_EM_3.coeffs[1] = constant_term(tmp3764) + constant_term(tmp3767) + TaylorSeries.zero!(tmp3769) + tmp3769.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) + TaylorSeries.zero!(tmp3770) + tmp3770.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) + TaylorSeries.zero!(tmp3771) + tmp3771.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) + TaylorSeries.zero!(tmp3772) + tmp3772.coeffs[1] = constant_term(tmp3770) + constant_term(tmp3771) + TaylorSeries.zero!(p_E_1) + p_E_1.coeffs[1] = constant_term(tmp3769) + constant_term(tmp3772) + TaylorSeries.zero!(tmp3774) + tmp3774.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) + TaylorSeries.zero!(tmp3775) + tmp3775.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) + TaylorSeries.zero!(tmp3776) + tmp3776.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) + TaylorSeries.zero!(tmp3777) + tmp3777.coeffs[1] = constant_term(tmp3775) + constant_term(tmp3776) + TaylorSeries.zero!(p_E_2) + p_E_2.coeffs[1] = constant_term(tmp3774) + constant_term(tmp3777) + TaylorSeries.zero!(tmp3779) + tmp3779.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) + TaylorSeries.zero!(tmp3780) + tmp3780.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) + TaylorSeries.zero!(tmp3781) + tmp3781.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) + TaylorSeries.zero!(tmp3782) + tmp3782.coeffs[1] = constant_term(tmp3780) + constant_term(tmp3781) + TaylorSeries.zero!(p_E_3) + p_E_3.coeffs[1] = constant_term(tmp3779) + constant_term(tmp3782) + TaylorSeries.zero!(tmp3784) + tmp3784.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) + TaylorSeries.zero!(tmp3785) + tmp3785.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) + TaylorSeries.zero!(tmp3786) + tmp3786.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) + TaylorSeries.zero!(tmp3787) + tmp3787.coeffs[1] = constant_term(tmp3785) + constant_term(tmp3786) + TaylorSeries.zero!(I_er_EM_1) + I_er_EM_1.coeffs[1] = constant_term(tmp3784) + constant_term(tmp3787) + TaylorSeries.zero!(tmp3789) + tmp3789.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) + TaylorSeries.zero!(tmp3790) + tmp3790.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) + TaylorSeries.zero!(tmp3791) + tmp3791.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) + TaylorSeries.zero!(tmp3792) + tmp3792.coeffs[1] = constant_term(tmp3790) + constant_term(tmp3791) + TaylorSeries.zero!(I_er_EM_2) + I_er_EM_2.coeffs[1] = constant_term(tmp3789) + constant_term(tmp3792) + TaylorSeries.zero!(tmp3794) + tmp3794.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) + TaylorSeries.zero!(tmp3795) + tmp3795.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) + TaylorSeries.zero!(tmp3796) + tmp3796.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) + TaylorSeries.zero!(tmp3797) + tmp3797.coeffs[1] = constant_term(tmp3795) + constant_term(tmp3796) + TaylorSeries.zero!(I_er_EM_3) + I_er_EM_3.coeffs[1] = constant_term(tmp3794) + constant_term(tmp3797) + TaylorSeries.zero!(tmp3799) + tmp3799.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) + TaylorSeries.zero!(tmp3800) + tmp3800.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) + TaylorSeries.zero!(tmp3801) + tmp3801.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) + TaylorSeries.zero!(tmp3802) + tmp3802.coeffs[1] = constant_term(tmp3800) + constant_term(tmp3801) + TaylorSeries.zero!(I_p_E_1) + I_p_E_1.coeffs[1] = constant_term(tmp3799) + constant_term(tmp3802) + TaylorSeries.zero!(tmp3804) + tmp3804.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) + TaylorSeries.zero!(tmp3805) + tmp3805.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) + TaylorSeries.zero!(tmp3806) + tmp3806.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) + TaylorSeries.zero!(tmp3807) + tmp3807.coeffs[1] = constant_term(tmp3805) + constant_term(tmp3806) + TaylorSeries.zero!(I_p_E_2) + I_p_E_2.coeffs[1] = constant_term(tmp3804) + constant_term(tmp3807) + TaylorSeries.zero!(tmp3809) + tmp3809.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) + TaylorSeries.zero!(tmp3810) + tmp3810.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) + TaylorSeries.zero!(tmp3811) + tmp3811.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) + TaylorSeries.zero!(tmp3812) + tmp3812.coeffs[1] = constant_term(tmp3810) + constant_term(tmp3811) + TaylorSeries.zero!(I_p_E_3) + I_p_E_3.coeffs[1] = constant_term(tmp3809) + constant_term(tmp3812) + TaylorSeries.zero!(tmp3814) + tmp3814.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) + TaylorSeries.zero!(tmp3815) + tmp3815.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) + TaylorSeries.zero!(er_EM_cross_I_er_EM_1) + er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3814) - constant_term(tmp3815) + TaylorSeries.zero!(tmp3817) + tmp3817.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) + TaylorSeries.zero!(tmp3818) + tmp3818.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) + TaylorSeries.zero!(er_EM_cross_I_er_EM_2) + er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3817) - constant_term(tmp3818) + TaylorSeries.zero!(tmp3820) + tmp3820.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) + TaylorSeries.zero!(tmp3821) + tmp3821.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) + TaylorSeries.zero!(er_EM_cross_I_er_EM_3) + er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3820) - constant_term(tmp3821) + TaylorSeries.zero!(tmp3823) + tmp3823.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) + TaylorSeries.zero!(tmp3824) + tmp3824.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) + TaylorSeries.zero!(er_EM_cross_I_p_E_1) + er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp3823) - constant_term(tmp3824) + TaylorSeries.zero!(tmp3826) + tmp3826.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) + TaylorSeries.zero!(tmp3827) + tmp3827.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) + TaylorSeries.zero!(er_EM_cross_I_p_E_2) + er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp3826) - constant_term(tmp3827) + TaylorSeries.zero!(tmp3829) + tmp3829.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) + TaylorSeries.zero!(tmp3830) + tmp3830.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) + TaylorSeries.zero!(er_EM_cross_I_p_E_3) + er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp3829) - constant_term(tmp3830) + TaylorSeries.zero!(tmp3832) + tmp3832.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) + TaylorSeries.zero!(tmp3833) + tmp3833.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) + TaylorSeries.zero!(p_E_cross_I_er_EM_1) + p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3832) - constant_term(tmp3833) + TaylorSeries.zero!(tmp3835) + tmp3835.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) + TaylorSeries.zero!(tmp3836) + tmp3836.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) + TaylorSeries.zero!(p_E_cross_I_er_EM_2) + p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3835) - constant_term(tmp3836) + TaylorSeries.zero!(tmp3838) + tmp3838.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) + TaylorSeries.zero!(tmp3839) + tmp3839.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) + TaylorSeries.zero!(p_E_cross_I_er_EM_3) + p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3838) - constant_term(tmp3839) + TaylorSeries.zero!(tmp3841) + tmp3841.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) + TaylorSeries.zero!(tmp3842) + tmp3842.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) + TaylorSeries.zero!(p_E_cross_I_p_E_1) + p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp3841) - constant_term(tmp3842) + TaylorSeries.zero!(tmp3844) + tmp3844.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) + TaylorSeries.zero!(tmp3845) + tmp3845.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) + TaylorSeries.zero!(p_E_cross_I_p_E_2) + p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp3844) - constant_term(tmp3845) + TaylorSeries.zero!(tmp3847) + tmp3847.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) + TaylorSeries.zero!(tmp3848) + tmp3848.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) + TaylorSeries.zero!(p_E_cross_I_p_E_3) + p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp3847) - constant_term(tmp3848) + TaylorSeries.zero!(tmp3852) + tmp3852.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3853) + tmp3853.coeffs[1] = constant_term(7) * constant_term(tmp3852) + TaylorSeries.zero!(one_minus_7sin2ϕEM) + one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp3853) + TaylorSeries.zero!(two_sinϕEM) two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) - two_sinϕEM.coeffs[2:order + 1] .= zero(two_sinϕEM.coeffs[1]) - tmp4398.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) - tmp4398.coeffs[2:order + 1] .= zero(tmp4398.coeffs[1]) - N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp4398) - N_MfigM_figE_factor_div_rEMp5.coeffs[2:order + 1] .= zero(N_MfigM_figE_factor_div_rEMp5.coeffs[1]) - tmp4400.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) - tmp4400.coeffs[2:order + 1] .= zero(tmp4400.coeffs[1]) - tmp4401.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) - tmp4401.coeffs[2:order + 1] .= zero(tmp4401.coeffs[1]) - tmp4402.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp4401) - tmp4402.coeffs[2:order + 1] .= zero(tmp4402.coeffs[1]) - tmp4403.coeffs[1] = constant_term(tmp4400) + constant_term(tmp4402) - tmp4403.coeffs[2:order + 1] .= zero(tmp4403.coeffs[1]) - tmp4405.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) - tmp4405.coeffs[2:order + 1] .= zero(tmp4405.coeffs[1]) - tmp4406.coeffs[1] = constant_term(tmp4403) - constant_term(tmp4405) - tmp4406.coeffs[2:order + 1] .= zero(tmp4406.coeffs[1]) - N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp4406) - N_MfigM_figE_1.coeffs[2:order + 1] .= zero(N_MfigM_figE_1.coeffs[1]) - tmp4408.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) - tmp4408.coeffs[2:order + 1] .= zero(tmp4408.coeffs[1]) - tmp4409.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) - tmp4409.coeffs[2:order + 1] .= zero(tmp4409.coeffs[1]) - tmp4410.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp4409) - tmp4410.coeffs[2:order + 1] .= zero(tmp4410.coeffs[1]) - tmp4411.coeffs[1] = constant_term(tmp4408) + constant_term(tmp4410) - tmp4411.coeffs[2:order + 1] .= zero(tmp4411.coeffs[1]) - tmp4413.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) - tmp4413.coeffs[2:order + 1] .= zero(tmp4413.coeffs[1]) - tmp4414.coeffs[1] = constant_term(tmp4411) - constant_term(tmp4413) - tmp4414.coeffs[2:order + 1] .= zero(tmp4414.coeffs[1]) - N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp4414) - N_MfigM_figE_2.coeffs[2:order + 1] .= zero(N_MfigM_figE_2.coeffs[1]) - tmp4416.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) - tmp4416.coeffs[2:order + 1] .= zero(tmp4416.coeffs[1]) - tmp4417.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) - tmp4417.coeffs[2:order + 1] .= zero(tmp4417.coeffs[1]) - tmp4418.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp4417) - tmp4418.coeffs[2:order + 1] .= zero(tmp4418.coeffs[1]) - tmp4419.coeffs[1] = constant_term(tmp4416) + constant_term(tmp4418) - tmp4419.coeffs[2:order + 1] .= zero(tmp4419.coeffs[1]) - tmp4421.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) - tmp4421.coeffs[2:order + 1] .= zero(tmp4421.coeffs[1]) - tmp4422.coeffs[1] = constant_term(tmp4419) - constant_term(tmp4421) - tmp4422.coeffs[2:order + 1] .= zero(tmp4422.coeffs[1]) - N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp4422) - N_MfigM_figE_3.coeffs[2:order + 1] .= zero(N_MfigM_figE_3.coeffs[1]) - tmp4424.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) - tmp4424.coeffs[2:order + 1] .= zero(tmp4424.coeffs[1]) - tmp4425.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) - tmp4425.coeffs[2:order + 1] .= zero(tmp4425.coeffs[1]) - tmp4426.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) - tmp4426.coeffs[2:order + 1] .= zero(tmp4426.coeffs[1]) - tmp4427.coeffs[1] = constant_term(tmp4425) + constant_term(tmp4426) - tmp4427.coeffs[2:order + 1] .= zero(tmp4427.coeffs[1]) - N_1_LMF.coeffs[1] = constant_term(tmp4424) + constant_term(tmp4427) - N_1_LMF.coeffs[2:order + 1] .= zero(N_1_LMF.coeffs[1]) - tmp4429.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) - tmp4429.coeffs[2:order + 1] .= zero(tmp4429.coeffs[1]) - tmp4430.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) - tmp4430.coeffs[2:order + 1] .= zero(tmp4430.coeffs[1]) - tmp4431.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) - tmp4431.coeffs[2:order + 1] .= zero(tmp4431.coeffs[1]) - tmp4432.coeffs[1] = constant_term(tmp4430) + constant_term(tmp4431) - tmp4432.coeffs[2:order + 1] .= zero(tmp4432.coeffs[1]) - N_2_LMF.coeffs[1] = constant_term(tmp4429) + constant_term(tmp4432) - N_2_LMF.coeffs[2:order + 1] .= zero(N_2_LMF.coeffs[1]) - tmp4434.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) - tmp4434.coeffs[2:order + 1] .= zero(tmp4434.coeffs[1]) - tmp4435.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) - tmp4435.coeffs[2:order + 1] .= zero(tmp4435.coeffs[1]) - tmp4436.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) - tmp4436.coeffs[2:order + 1] .= zero(tmp4436.coeffs[1]) - tmp4437.coeffs[1] = constant_term(tmp4435) + constant_term(tmp4436) - tmp4437.coeffs[2:order + 1] .= zero(tmp4437.coeffs[1]) - N_3_LMF.coeffs[1] = constant_term(tmp4434) + constant_term(tmp4437) - N_3_LMF.coeffs[2:order + 1] .= zero(N_3_LMF.coeffs[1]) - tmp4439.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) - tmp4439.coeffs[2:order + 1] .= zero(tmp4439.coeffs[1]) - tmp4440.coeffs[1] = constant_term(k_ν) * constant_term(tmp4439) - tmp4440.coeffs[2:order + 1] .= zero(tmp4440.coeffs[1]) - tmp4441.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - tmp4441.coeffs[2:order + 1] .= zero(tmp4441.coeffs[1]) - tmp4442.coeffs[1] = constant_term(tmp4441) * constant_term(q[6N + 11]) - tmp4442.coeffs[2:order + 1] .= zero(tmp4442.coeffs[1]) - N_cmb_1.coeffs[1] = constant_term(tmp4440) - constant_term(tmp4442) - N_cmb_1.coeffs[2:order + 1] .= zero(N_cmb_1.coeffs[1]) - tmp4444.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) - tmp4444.coeffs[2:order + 1] .= zero(tmp4444.coeffs[1]) - tmp4445.coeffs[1] = constant_term(k_ν) * constant_term(tmp4444) - tmp4445.coeffs[2:order + 1] .= zero(tmp4445.coeffs[1]) - tmp4446.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - tmp4446.coeffs[2:order + 1] .= zero(tmp4446.coeffs[1]) - tmp4447.coeffs[1] = constant_term(tmp4446) * constant_term(q[6N + 10]) - tmp4447.coeffs[2:order + 1] .= zero(tmp4447.coeffs[1]) - N_cmb_2.coeffs[1] = constant_term(tmp4445) + constant_term(tmp4447) - N_cmb_2.coeffs[2:order + 1] .= zero(N_cmb_2.coeffs[1]) - tmp4449.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) - tmp4449.coeffs[2:order + 1] .= zero(tmp4449.coeffs[1]) - N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp4449) - N_cmb_3.coeffs[2:order + 1] .= zero(N_cmb_3.coeffs[1]) - tmp4451.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) - tmp4451.coeffs[2:order + 1] .= zero(tmp4451.coeffs[1]) - tmp4452.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp4451) - tmp4452.coeffs[2:order + 1] .= zero(tmp4452.coeffs[1]) - tmp4453.coeffs[1] = constant_term(tmp4452) + constant_term(N_cmb_1) - tmp4453.coeffs[2:order + 1] .= zero(tmp4453.coeffs[1]) - tmp4454.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) - tmp4454.coeffs[2:order + 1] .= zero(tmp4454.coeffs[1]) - I_dω_1.coeffs[1] = constant_term(tmp4453) - constant_term(tmp4454) - I_dω_1.coeffs[2:order + 1] .= zero(I_dω_1.coeffs[1]) - tmp4456.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) - tmp4456.coeffs[2:order + 1] .= zero(tmp4456.coeffs[1]) - tmp4457.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp4456) - tmp4457.coeffs[2:order + 1] .= zero(tmp4457.coeffs[1]) - tmp4458.coeffs[1] = constant_term(tmp4457) + constant_term(N_cmb_2) - tmp4458.coeffs[2:order + 1] .= zero(tmp4458.coeffs[1]) - tmp4459.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) - tmp4459.coeffs[2:order + 1] .= zero(tmp4459.coeffs[1]) - I_dω_2.coeffs[1] = constant_term(tmp4458) - constant_term(tmp4459) - I_dω_2.coeffs[2:order + 1] .= zero(I_dω_2.coeffs[1]) - tmp4461.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) - tmp4461.coeffs[2:order + 1] .= zero(tmp4461.coeffs[1]) - tmp4462.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp4461) - tmp4462.coeffs[2:order + 1] .= zero(tmp4462.coeffs[1]) - tmp4463.coeffs[1] = constant_term(tmp4462) + constant_term(N_cmb_3) - tmp4463.coeffs[2:order + 1] .= zero(tmp4463.coeffs[1]) - tmp4464.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) - tmp4464.coeffs[2:order + 1] .= zero(tmp4464.coeffs[1]) - I_dω_3.coeffs[1] = constant_term(tmp4463) - constant_term(tmp4464) - I_dω_3.coeffs[2:order + 1] .= zero(I_dω_3.coeffs[1]) + TaylorSeries.zero!(tmp3858) + tmp3858.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) + TaylorSeries.zero!(N_MfigM_figE_factor_div_rEMp5) + N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp3858) + TaylorSeries.zero!(tmp3860) + tmp3860.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) + TaylorSeries.zero!(tmp3861) + tmp3861.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) + TaylorSeries.zero!(tmp3862) + tmp3862.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3861) + TaylorSeries.zero!(tmp3863) + tmp3863.coeffs[1] = constant_term(tmp3860) + constant_term(tmp3862) + TaylorSeries.zero!(tmp3865) + tmp3865.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) + TaylorSeries.zero!(tmp3866) + tmp3866.coeffs[1] = constant_term(tmp3863) - constant_term(tmp3865) + TaylorSeries.zero!(N_MfigM_figE_1) + N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3866) + TaylorSeries.zero!(tmp3868) + tmp3868.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) + TaylorSeries.zero!(tmp3869) + tmp3869.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) + TaylorSeries.zero!(tmp3870) + tmp3870.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3869) + TaylorSeries.zero!(tmp3871) + tmp3871.coeffs[1] = constant_term(tmp3868) + constant_term(tmp3870) + TaylorSeries.zero!(tmp3873) + tmp3873.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) + TaylorSeries.zero!(tmp3874) + tmp3874.coeffs[1] = constant_term(tmp3871) - constant_term(tmp3873) + TaylorSeries.zero!(N_MfigM_figE_2) + N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3874) + TaylorSeries.zero!(tmp3876) + tmp3876.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) + TaylorSeries.zero!(tmp3877) + tmp3877.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) + TaylorSeries.zero!(tmp3878) + tmp3878.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3877) + TaylorSeries.zero!(tmp3879) + tmp3879.coeffs[1] = constant_term(tmp3876) + constant_term(tmp3878) + TaylorSeries.zero!(tmp3881) + tmp3881.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) + TaylorSeries.zero!(tmp3882) + tmp3882.coeffs[1] = constant_term(tmp3879) - constant_term(tmp3881) + TaylorSeries.zero!(N_MfigM_figE_3) + N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3882) + TaylorSeries.zero!(tmp3884) + tmp3884.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) + TaylorSeries.zero!(tmp3885) + tmp3885.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) + TaylorSeries.zero!(tmp3886) + tmp3886.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) + TaylorSeries.zero!(tmp3887) + tmp3887.coeffs[1] = constant_term(tmp3885) + constant_term(tmp3886) + TaylorSeries.zero!(N_1_LMF) + N_1_LMF.coeffs[1] = constant_term(tmp3884) + constant_term(tmp3887) + TaylorSeries.zero!(tmp3889) + tmp3889.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) + TaylorSeries.zero!(tmp3890) + tmp3890.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) + TaylorSeries.zero!(tmp3891) + tmp3891.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) + TaylorSeries.zero!(tmp3892) + tmp3892.coeffs[1] = constant_term(tmp3890) + constant_term(tmp3891) + TaylorSeries.zero!(N_2_LMF) + N_2_LMF.coeffs[1] = constant_term(tmp3889) + constant_term(tmp3892) + TaylorSeries.zero!(tmp3894) + tmp3894.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) + TaylorSeries.zero!(tmp3895) + tmp3895.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) + TaylorSeries.zero!(tmp3896) + tmp3896.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) + TaylorSeries.zero!(tmp3897) + tmp3897.coeffs[1] = constant_term(tmp3895) + constant_term(tmp3896) + TaylorSeries.zero!(N_3_LMF) + N_3_LMF.coeffs[1] = constant_term(tmp3894) + constant_term(tmp3897) + TaylorSeries.zero!(tmp3899) + tmp3899.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) + TaylorSeries.zero!(tmp3900) + tmp3900.coeffs[1] = constant_term(k_ν) * constant_term(tmp3899) + TaylorSeries.zero!(tmp3901) + tmp3901.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp3902) + tmp3902.coeffs[1] = constant_term(tmp3901) * constant_term(q[6N + 11]) + TaylorSeries.zero!(N_cmb_1) + N_cmb_1.coeffs[1] = constant_term(tmp3900) - constant_term(tmp3902) + TaylorSeries.zero!(tmp3904) + tmp3904.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) + TaylorSeries.zero!(tmp3905) + tmp3905.coeffs[1] = constant_term(k_ν) * constant_term(tmp3904) + TaylorSeries.zero!(tmp3906) + tmp3906.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + TaylorSeries.zero!(tmp3907) + tmp3907.coeffs[1] = constant_term(tmp3906) * constant_term(q[6N + 10]) + TaylorSeries.zero!(N_cmb_2) + N_cmb_2.coeffs[1] = constant_term(tmp3905) + constant_term(tmp3907) + TaylorSeries.zero!(tmp3909) + tmp3909.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) + TaylorSeries.zero!(N_cmb_3) + N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp3909) + TaylorSeries.zero!(tmp3911) + tmp3911.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) + TaylorSeries.zero!(tmp3912) + tmp3912.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp3911) + TaylorSeries.zero!(tmp3913) + tmp3913.coeffs[1] = constant_term(tmp3912) + constant_term(N_cmb_1) + TaylorSeries.zero!(tmp3914) + tmp3914.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) + TaylorSeries.zero!(I_dω_1) + I_dω_1.coeffs[1] = constant_term(tmp3913) - constant_term(tmp3914) + TaylorSeries.zero!(tmp3916) + tmp3916.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) + TaylorSeries.zero!(tmp3917) + tmp3917.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp3916) + TaylorSeries.zero!(tmp3918) + tmp3918.coeffs[1] = constant_term(tmp3917) + constant_term(N_cmb_2) + TaylorSeries.zero!(tmp3919) + tmp3919.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) + TaylorSeries.zero!(I_dω_2) + I_dω_2.coeffs[1] = constant_term(tmp3918) - constant_term(tmp3919) + TaylorSeries.zero!(tmp3921) + tmp3921.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) + TaylorSeries.zero!(tmp3922) + tmp3922.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp3921) + TaylorSeries.zero!(tmp3923) + tmp3923.coeffs[1] = constant_term(tmp3922) + constant_term(N_cmb_3) + TaylorSeries.zero!(tmp3924) + tmp3924.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) + TaylorSeries.zero!(I_dω_3) + I_dω_3.coeffs[1] = constant_term(tmp3923) - constant_term(tmp3924) + TaylorSeries.zero!(Ic_ωc_1) Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) - Ic_ωc_1.coeffs[2:order + 1] .= zero(Ic_ωc_1.coeffs[1]) + TaylorSeries.zero!(Ic_ωc_2) Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) - Ic_ωc_2.coeffs[2:order + 1] .= zero(Ic_ωc_2.coeffs[1]) + TaylorSeries.zero!(Ic_ωc_3) Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) - Ic_ωc_3.coeffs[2:order + 1] .= zero(Ic_ωc_3.coeffs[1]) - tmp4469.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) - tmp4469.coeffs[2:order + 1] .= zero(tmp4469.coeffs[1]) - tmp4470.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) - tmp4470.coeffs[2:order + 1] .= zero(tmp4470.coeffs[1]) - m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp4469) - constant_term(tmp4470) - m_ωm_x_Icωc_1.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_1.coeffs[1]) - tmp4472.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) - tmp4472.coeffs[2:order + 1] .= zero(tmp4472.coeffs[1]) - tmp4473.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) - tmp4473.coeffs[2:order + 1] .= zero(tmp4473.coeffs[1]) - m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp4472) - constant_term(tmp4473) - m_ωm_x_Icωc_2.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_2.coeffs[1]) - tmp4475.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) - tmp4475.coeffs[2:order + 1] .= zero(tmp4475.coeffs[1]) - tmp4476.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) - tmp4476.coeffs[2:order + 1] .= zero(tmp4476.coeffs[1]) - m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp4475) - constant_term(tmp4476) - m_ωm_x_Icωc_3.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_3.coeffs[1]) + TaylorSeries.zero!(tmp3929) + tmp3929.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) + TaylorSeries.zero!(tmp3930) + tmp3930.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) + TaylorSeries.zero!(m_ωm_x_Icωc_1) + m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp3929) - constant_term(tmp3930) + TaylorSeries.zero!(tmp3932) + tmp3932.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) + TaylorSeries.zero!(tmp3933) + tmp3933.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) + TaylorSeries.zero!(m_ωm_x_Icωc_2) + m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp3932) - constant_term(tmp3933) + TaylorSeries.zero!(tmp3935) + tmp3935.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) + TaylorSeries.zero!(tmp3936) + tmp3936.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) + TaylorSeries.zero!(m_ωm_x_Icωc_3) + m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp3935) - constant_term(tmp3936) + TaylorSeries.zero!(Ic_dωc_1) Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) - Ic_dωc_1.coeffs[2:order + 1] .= zero(Ic_dωc_1.coeffs[1]) + TaylorSeries.zero!(Ic_dωc_2) Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) - Ic_dωc_2.coeffs[2:order + 1] .= zero(Ic_dωc_2.coeffs[1]) + TaylorSeries.zero!(Ic_dωc_3) Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) - Ic_dωc_3.coeffs[2:order + 1] .= zero(Ic_dωc_3.coeffs[1]) - tmp4481.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp4481.coeffs[2:order + 1] .= zero(tmp4481.coeffs[1]) - tmp4612.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp4612.coeffs[2:order + 1] .= zero(tmp4612.coeffs[1]) - tmp4482.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp4481) - tmp4482.coeffs[2:order + 1] .= zero(tmp4482.coeffs[1]) - tmp4483.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp4483.coeffs[2:order + 1] .= zero(tmp4483.coeffs[1]) - tmp4613.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp4613.coeffs[2:order + 1] .= zero(tmp4613.coeffs[1]) - tmp4484.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp4483) - tmp4484.coeffs[2:order + 1] .= zero(tmp4484.coeffs[1]) - tmp4485.coeffs[1] = constant_term(tmp4482) + constant_term(tmp4484) - tmp4485.coeffs[2:order + 1] .= zero(tmp4485.coeffs[1]) - tmp4486.coeffs[1] = sin(constant_term(q[6N + 2])) - tmp4486.coeffs[2:order + 1] .= zero(tmp4486.coeffs[1]) - tmp4614.coeffs[1] = cos(constant_term(q[6N + 2])) - tmp4614.coeffs[2:order + 1] .= zero(tmp4614.coeffs[1]) - (dq[6N + 1]).coeffs[1] = constant_term(tmp4485) / constant_term(tmp4486) - (dq[6N + 1]).coeffs[2:order + 1] .= zero((dq[6N + 1]).coeffs[1]) - tmp4488.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp4488.coeffs[2:order + 1] .= zero(tmp4488.coeffs[1]) - tmp4615.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp4615.coeffs[2:order + 1] .= zero(tmp4615.coeffs[1]) - tmp4489.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp4488) - tmp4489.coeffs[2:order + 1] .= zero(tmp4489.coeffs[1]) - tmp4490.coeffs[1] = sin(constant_term(q[6N + 3])) - tmp4490.coeffs[2:order + 1] .= zero(tmp4490.coeffs[1]) - tmp4616.coeffs[1] = cos(constant_term(q[6N + 3])) - tmp4616.coeffs[2:order + 1] .= zero(tmp4616.coeffs[1]) - tmp4491.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp4490) - tmp4491.coeffs[2:order + 1] .= zero(tmp4491.coeffs[1]) - (dq[6N + 2]).coeffs[1] = constant_term(tmp4489) - constant_term(tmp4491) - (dq[6N + 2]).coeffs[2:order + 1] .= zero((dq[6N + 2]).coeffs[1]) - tmp4493.coeffs[1] = cos(constant_term(q[6N + 2])) - tmp4493.coeffs[2:order + 1] .= zero(tmp4493.coeffs[1]) - tmp4617.coeffs[1] = sin(constant_term(q[6N + 2])) - tmp4617.coeffs[2:order + 1] .= zero(tmp4617.coeffs[1]) - tmp4494.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp4493) - tmp4494.coeffs[2:order + 1] .= zero(tmp4494.coeffs[1]) - (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp4494) - (dq[6N + 3]).coeffs[2:order + 1] .= zero((dq[6N + 3]).coeffs[1]) - tmp4496.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) - tmp4496.coeffs[2:order + 1] .= zero(tmp4496.coeffs[1]) - tmp4497.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) - tmp4497.coeffs[2:order + 1] .= zero(tmp4497.coeffs[1]) - tmp4498.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) - tmp4498.coeffs[2:order + 1] .= zero(tmp4498.coeffs[1]) - tmp4499.coeffs[1] = constant_term(tmp4497) + constant_term(tmp4498) - tmp4499.coeffs[2:order + 1] .= zero(tmp4499.coeffs[1]) - (dq[6N + 4]).coeffs[1] = constant_term(tmp4496) + constant_term(tmp4499) - (dq[6N + 4]).coeffs[2:order + 1] .= zero((dq[6N + 4]).coeffs[1]) - tmp4501.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) - tmp4501.coeffs[2:order + 1] .= zero(tmp4501.coeffs[1]) - tmp4502.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) - tmp4502.coeffs[2:order + 1] .= zero(tmp4502.coeffs[1]) - tmp4503.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) - tmp4503.coeffs[2:order + 1] .= zero(tmp4503.coeffs[1]) - tmp4504.coeffs[1] = constant_term(tmp4502) + constant_term(tmp4503) - tmp4504.coeffs[2:order + 1] .= zero(tmp4504.coeffs[1]) - (dq[6N + 5]).coeffs[1] = constant_term(tmp4501) + constant_term(tmp4504) - (dq[6N + 5]).coeffs[2:order + 1] .= zero((dq[6N + 5]).coeffs[1]) - tmp4506.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) - tmp4506.coeffs[2:order + 1] .= zero(tmp4506.coeffs[1]) - tmp4507.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) - tmp4507.coeffs[2:order + 1] .= zero(tmp4507.coeffs[1]) - tmp4508.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) - tmp4508.coeffs[2:order + 1] .= zero(tmp4508.coeffs[1]) - tmp4509.coeffs[1] = constant_term(tmp4507) + constant_term(tmp4508) - tmp4509.coeffs[2:order + 1] .= zero(tmp4509.coeffs[1]) - (dq[6N + 6]).coeffs[1] = constant_term(tmp4506) + constant_term(tmp4509) - (dq[6N + 6]).coeffs[2:order + 1] .= zero((dq[6N + 6]).coeffs[1]) - tmp4511.coeffs[1] = sin(constant_term(q[6N + 8])) - tmp4511.coeffs[2:order + 1] .= zero(tmp4511.coeffs[1]) - tmp4618.coeffs[1] = cos(constant_term(q[6N + 8])) - tmp4618.coeffs[2:order + 1] .= zero(tmp4618.coeffs[1]) - tmp4512.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp4511) - tmp4512.coeffs[2:order + 1] .= zero(tmp4512.coeffs[1]) - (dq[6N + 9]).coeffs[1] = -(constant_term(tmp4512)) - (dq[6N + 9]).coeffs[2:order + 1] .= zero((dq[6N + 9]).coeffs[1]) - tmp4514.coeffs[1] = cos(constant_term(q[6N + 8])) - tmp4514.coeffs[2:order + 1] .= zero(tmp4514.coeffs[1]) - tmp4619.coeffs[1] = sin(constant_term(q[6N + 8])) - tmp4619.coeffs[2:order + 1] .= zero(tmp4619.coeffs[1]) - tmp4515.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp4514) - tmp4515.coeffs[2:order + 1] .= zero(tmp4515.coeffs[1]) - (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp4515) - (dq[6N + 7]).coeffs[2:order + 1] .= zero((dq[6N + 7]).coeffs[1]) + TaylorSeries.zero!(tmp3941) + tmp3941.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp4072) + tmp4072.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp3942) + tmp3942.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3941) + TaylorSeries.zero!(tmp3943) + tmp3943.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp4073) + tmp4073.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp3944) + tmp3944.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3943) + TaylorSeries.zero!(tmp3945) + tmp3945.coeffs[1] = constant_term(tmp3942) + constant_term(tmp3944) + TaylorSeries.zero!(tmp3946) + tmp3946.coeffs[1] = sin(constant_term(q[6N + 2])) + TaylorSeries.zero!(tmp4074) + tmp4074.coeffs[1] = cos(constant_term(q[6N + 2])) + TaylorSeries.zero!(dq[6N + 1]) + (dq[6N + 1]).coeffs[1] = constant_term(tmp3945) / constant_term(tmp3946) + TaylorSeries.zero!(tmp3948) + tmp3948.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp4075) + tmp4075.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp3949) + tmp3949.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3948) + TaylorSeries.zero!(tmp3950) + tmp3950.coeffs[1] = sin(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp4076) + tmp4076.coeffs[1] = cos(constant_term(q[6N + 3])) + TaylorSeries.zero!(tmp3951) + tmp3951.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3950) + TaylorSeries.zero!(dq[6N + 2]) + (dq[6N + 2]).coeffs[1] = constant_term(tmp3949) - constant_term(tmp3951) + TaylorSeries.zero!(tmp3953) + tmp3953.coeffs[1] = cos(constant_term(q[6N + 2])) + TaylorSeries.zero!(tmp4077) + tmp4077.coeffs[1] = sin(constant_term(q[6N + 2])) + TaylorSeries.zero!(tmp3954) + tmp3954.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp3953) + TaylorSeries.zero!(dq[6N + 3]) + (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp3954) + TaylorSeries.zero!(tmp3956) + tmp3956.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) + TaylorSeries.zero!(tmp3957) + tmp3957.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) + TaylorSeries.zero!(tmp3958) + tmp3958.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) + TaylorSeries.zero!(tmp3959) + tmp3959.coeffs[1] = constant_term(tmp3957) + constant_term(tmp3958) + TaylorSeries.zero!(dq[6N + 4]) + (dq[6N + 4]).coeffs[1] = constant_term(tmp3956) + constant_term(tmp3959) + TaylorSeries.zero!(tmp3961) + tmp3961.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) + TaylorSeries.zero!(tmp3962) + tmp3962.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) + TaylorSeries.zero!(tmp3963) + tmp3963.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) + TaylorSeries.zero!(tmp3964) + tmp3964.coeffs[1] = constant_term(tmp3962) + constant_term(tmp3963) + TaylorSeries.zero!(dq[6N + 5]) + (dq[6N + 5]).coeffs[1] = constant_term(tmp3961) + constant_term(tmp3964) + TaylorSeries.zero!(tmp3966) + tmp3966.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) + TaylorSeries.zero!(tmp3967) + tmp3967.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) + TaylorSeries.zero!(tmp3968) + tmp3968.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) + TaylorSeries.zero!(tmp3969) + tmp3969.coeffs[1] = constant_term(tmp3967) + constant_term(tmp3968) + TaylorSeries.zero!(dq[6N + 6]) + (dq[6N + 6]).coeffs[1] = constant_term(tmp3966) + constant_term(tmp3969) + TaylorSeries.zero!(tmp3971) + tmp3971.coeffs[1] = sin(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp4078) + tmp4078.coeffs[1] = cos(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp3972) + tmp3972.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp3971) + TaylorSeries.zero!(dq[6N + 9]) + (dq[6N + 9]).coeffs[1] = -(constant_term(tmp3972)) + TaylorSeries.zero!(tmp3974) + tmp3974.coeffs[1] = cos(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp4079) + tmp4079.coeffs[1] = sin(constant_term(q[6N + 8])) + TaylorSeries.zero!(tmp3975) + tmp3975.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp3974) + TaylorSeries.zero!(dq[6N + 7]) + (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp3975) + TaylorSeries.zero!(dq[6N + 8]) (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) - (dq[6N + 8]).coeffs[2:order + 1] .= zero((dq[6N + 8]).coeffs[1]) + TaylorSeries.zero!(dq[6N + 10]) (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) - (dq[6N + 10]).coeffs[2:order + 1] .= zero((dq[6N + 10]).coeffs[1]) + TaylorSeries.zero!(dq[6N + 11]) (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) - (dq[6N + 11]).coeffs[2:order + 1] .= zero((dq[6N + 11]).coeffs[1]) + TaylorSeries.zero!(dq[6N + 12]) (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) - (dq[6N + 12]).coeffs[2:order + 1] .= zero((dq[6N + 12]).coeffs[1]) - tmp4520.coeffs[1] = constant_term(newtonianCoeff[su, ea]) * constant_term(J2_t[su]) - tmp4520.coeffs[2:order + 1] .= zero(tmp4520.coeffs[1]) - tmp4523.coeffs[1] = constant_term(sin_ϕ[su, ea]) ^ float(constant_term(2)) - tmp4523.coeffs[2:order + 1] .= zero(tmp4523.coeffs[1]) - tmp4524.coeffs[1] = constant_term(3) * constant_term(tmp4523) - tmp4524.coeffs[2:order + 1] .= zero(tmp4524.coeffs[1]) - tmp4525.coeffs[1] = constant_term(one_t) - constant_term(tmp4524) - tmp4525.coeffs[2:order + 1] .= zero(tmp4525.coeffs[1]) - tmp4527.coeffs[1] = constant_term(tmp4525) / constant_term(2) - tmp4527.coeffs[2:order + 1] .= zero(tmp4527.coeffs[1]) - w_LE.coeffs[1] = constant_term(tmp4520) * constant_term(tmp4527) - w_LE.coeffs[2:order + 1] .= zero(w_LE.coeffs[1]) - tmp4530.coeffs[1] = constant_term(0.5) * constant_term(v2[ea]) - tmp4530.coeffs[2:order + 1] .= zero(tmp4530.coeffs[1]) - tmp4531.coeffs[1] = constant_term(tmp4530) + constant_term(newtonianNb_Potential[ea]) - tmp4531.coeffs[2:order + 1] .= zero(tmp4531.coeffs[1]) - α_TTmTDB.coeffs[1] = constant_term(tmp4531) + constant_term(w_LE) - α_TTmTDB.coeffs[2:order + 1] .= zero(α_TTmTDB.coeffs[1]) + TaylorSeries.zero!(tmp3980) + tmp3980.coeffs[1] = constant_term(newtonianCoeff[su, ea]) * constant_term(J2_t[su]) + TaylorSeries.zero!(tmp3983) + tmp3983.coeffs[1] = constant_term(sin_ϕ[su, ea]) ^ float(constant_term(2)) + TaylorSeries.zero!(tmp3984) + tmp3984.coeffs[1] = constant_term(3) * constant_term(tmp3983) + TaylorSeries.zero!(tmp3985) + tmp3985.coeffs[1] = constant_term(one_t) - constant_term(tmp3984) + TaylorSeries.zero!(tmp3987) + tmp3987.coeffs[1] = constant_term(tmp3985) / constant_term(2) + TaylorSeries.zero!(w_LE) + w_LE.coeffs[1] = constant_term(tmp3980) * constant_term(tmp3987) + TaylorSeries.zero!(tmp3990) + tmp3990.coeffs[1] = constant_term(0.5) * constant_term(v2[ea]) + TaylorSeries.zero!(tmp3991) + tmp3991.coeffs[1] = constant_term(tmp3990) + constant_term(newtonianNb_Potential[ea]) + TaylorSeries.zero!(α_TTmTDB) + α_TTmTDB.coeffs[1] = constant_term(tmp3991) + constant_term(w_LE) + TaylorSeries.zero!(v4E) v4E.coeffs[1] = constant_term(v2[ea]) ^ float(constant_term(2)) - v4E.coeffs[2:order + 1] .= zero(v4E.coeffs[1]) + TaylorSeries.zero!(ϕ_Earth_Newtonian_sq) ϕ_Earth_Newtonian_sq.coeffs[1] = constant_term(newtonianNb_Potential[ea]) ^ float(constant_term(2)) - ϕ_Earth_Newtonian_sq.coeffs[2:order + 1] .= zero(ϕ_Earth_Newtonian_sq.coeffs[1]) - tmp4538.coeffs[1] = constant_term(ϕ_Earth_Newtonian_sq) / constant_term(2) - tmp4538.coeffs[2:order + 1] .= zero(tmp4538.coeffs[1]) - tmp4540.coeffs[1] = constant_term(v4E) / constant_term(8) - tmp4540.coeffs[2:order + 1] .= zero(tmp4540.coeffs[1]) - β_TTmTDB.coeffs[1] = constant_term(tmp4538) - constant_term(tmp4540) - β_TTmTDB.coeffs[2:order + 1] .= zero(β_TTmTDB.coeffs[1]) + TaylorSeries.zero!(tmp3998) + tmp3998.coeffs[1] = constant_term(ϕ_Earth_Newtonian_sq) / constant_term(2) + TaylorSeries.zero!(tmp4000) + tmp4000.coeffs[1] = constant_term(v4E) / constant_term(8) + TaylorSeries.zero!(β_TTmTDB) + β_TTmTDB.coeffs[1] = constant_term(tmp3998) - constant_term(tmp4000) for i = 1:N if i == ea continue else + TaylorSeries.zero!(β_TTmTDB_i_1[i, ea]) (β_TTmTDB_i_1[i, ea]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, ea]) - (β_TTmTDB_i_1[i, ea]).coeffs[2:order + 1] .= zero((β_TTmTDB_i_1[i, ea]).coeffs[1]) - (tmp4545[ea]).coeffs[1] = constant_term(1.5) * constant_term(v2[ea]) - (tmp4545[ea]).coeffs[2:order + 1] .= zero((tmp4545[ea]).coeffs[1]) - (tmp4547[i]).coeffs[1] = constant_term(2) * constant_term(v2[i]) - (tmp4547[i]).coeffs[2:order + 1] .= zero((tmp4547[i]).coeffs[1]) - (tmp4548[ea]).coeffs[1] = constant_term(tmp4545[ea]) + constant_term(tmp4547[i]) - (tmp4548[ea]).coeffs[2:order + 1] .= zero((tmp4548[ea]).coeffs[1]) - (β_TTmTDB_i_2[i]).coeffs[1] = constant_term(newtonianNb_Potential[i]) - constant_term(tmp4548[ea]) - (β_TTmTDB_i_2[i]).coeffs[2:order + 1] .= zero((β_TTmTDB_i_2[i]).coeffs[1]) - (tmp4550[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i) - 2]) * constant_term(X[i, ea]) - (tmp4550[i, ea]).coeffs[2:order + 1] .= zero((tmp4550[i, ea]).coeffs[1]) - (tmp4551[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i) - 1]) * constant_term(Y[i, ea]) - (tmp4551[i, ea]).coeffs[2:order + 1] .= zero((tmp4551[i, ea]).coeffs[1]) - (tmp4552[i, ea]).coeffs[1] = constant_term(tmp4550[i, ea]) + constant_term(tmp4551[i, ea]) - (tmp4552[i, ea]).coeffs[2:order + 1] .= zero((tmp4552[i, ea]).coeffs[1]) - (tmp4553[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i)]) * constant_term(Z[i, ea]) - (tmp4553[i, ea]).coeffs[2:order + 1] .= zero((tmp4553[i, ea]).coeffs[1]) - (tmp4554[i, ea]).coeffs[1] = constant_term(tmp4552[i, ea]) + constant_term(tmp4553[i, ea]) - (tmp4554[i, ea]).coeffs[2:order + 1] .= zero((tmp4554[i, ea]).coeffs[1]) - (β_TTmTDB_i_3[i, ea]).coeffs[1] = constant_term(tmp4554[i, ea]) / constant_term(2) - (β_TTmTDB_i_3[i, ea]).coeffs[2:order + 1] .= zero((β_TTmTDB_i_3[i, ea]).coeffs[1]) + TaylorSeries.zero!(tmp4005[ea]) + (tmp4005[ea]).coeffs[1] = constant_term(1.5) * constant_term(v2[ea]) + TaylorSeries.zero!(tmp4007[i]) + (tmp4007[i]).coeffs[1] = constant_term(2) * constant_term(v2[i]) + TaylorSeries.zero!(tmp4008[ea]) + (tmp4008[ea]).coeffs[1] = constant_term(tmp4005[ea]) + constant_term(tmp4007[i]) + TaylorSeries.zero!(β_TTmTDB_i_2[i]) + (β_TTmTDB_i_2[i]).coeffs[1] = constant_term(newtonianNb_Potential[i]) - constant_term(tmp4008[ea]) + TaylorSeries.zero!(tmp4010[i, ea]) + (tmp4010[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i) - 2]) * constant_term(X[i, ea]) + TaylorSeries.zero!(tmp4011[i, ea]) + (tmp4011[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i) - 1]) * constant_term(Y[i, ea]) + TaylorSeries.zero!(tmp4012[i, ea]) + (tmp4012[i, ea]).coeffs[1] = constant_term(tmp4010[i, ea]) + constant_term(tmp4011[i, ea]) + TaylorSeries.zero!(tmp4013[i, ea]) + (tmp4013[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i)]) * constant_term(Z[i, ea]) + TaylorSeries.zero!(tmp4014[i, ea]) + (tmp4014[i, ea]).coeffs[1] = constant_term(tmp4012[i, ea]) + constant_term(tmp4013[i, ea]) + TaylorSeries.zero!(β_TTmTDB_i_3[i, ea]) + (β_TTmTDB_i_3[i, ea]).coeffs[1] = constant_term(tmp4014[i, ea]) / constant_term(2) + TaylorSeries.zero!(β_TTmTDB_i_4[i, ea]) (β_TTmTDB_i_4[i, ea]).coeffs[1] = constant_term(rij_dot_vi_div_rij_sq[i, ea]) / constant_term(2) - (β_TTmTDB_i_4[i, ea]).coeffs[2:order + 1] .= zero((β_TTmTDB_i_4[i, ea]).coeffs[1]) - (tmp4559[i, ea]).coeffs[1] = constant_term(β_TTmTDB_i_1[i, ea]) + constant_term(β_TTmTDB_i_2[i]) - (tmp4559[i, ea]).coeffs[2:order + 1] .= zero((tmp4559[i, ea]).coeffs[1]) - (tmp4560[i, ea]).coeffs[1] = constant_term(β_TTmTDB_i_3[i, ea]) + constant_term(β_TTmTDB_i_4[i, ea]) - (tmp4560[i, ea]).coeffs[2:order + 1] .= zero((tmp4560[i, ea]).coeffs[1]) - (β_TTmTDB_i[i, ea]).coeffs[1] = constant_term(tmp4559[i, ea]) + constant_term(tmp4560[i, ea]) - (β_TTmTDB_i[i, ea]).coeffs[2:order + 1] .= zero((β_TTmTDB_i[i, ea]).coeffs[1]) - (tmp4562[i, ea]).coeffs[1] = constant_term(newtonian1b_Potential[i, ea]) * constant_term(β_TTmTDB_i[i, ea]) - (tmp4562[i, ea]).coeffs[2:order + 1] .= zero((tmp4562[i, ea]).coeffs[1]) - (temp_β_TTmTDB[i, ea]).coeffs[1] = constant_term(β_TTmTDB) + constant_term(tmp4562[i, ea]) - (temp_β_TTmTDB[i, ea]).coeffs[2:order + 1] .= zero((temp_β_TTmTDB[i, ea]).coeffs[1]) + TaylorSeries.zero!(tmp4019[i, ea]) + (tmp4019[i, ea]).coeffs[1] = constant_term(β_TTmTDB_i_1[i, ea]) + constant_term(β_TTmTDB_i_2[i]) + TaylorSeries.zero!(tmp4020[i, ea]) + (tmp4020[i, ea]).coeffs[1] = constant_term(β_TTmTDB_i_3[i, ea]) + constant_term(β_TTmTDB_i_4[i, ea]) + TaylorSeries.zero!(β_TTmTDB_i[i, ea]) + (β_TTmTDB_i[i, ea]).coeffs[1] = constant_term(tmp4019[i, ea]) + constant_term(tmp4020[i, ea]) + TaylorSeries.zero!(tmp4022[i, ea]) + (tmp4022[i, ea]).coeffs[1] = constant_term(newtonian1b_Potential[i, ea]) * constant_term(β_TTmTDB_i[i, ea]) + TaylorSeries.zero!(temp_β_TTmTDB[i, ea]) + (temp_β_TTmTDB[i, ea]).coeffs[1] = constant_term(β_TTmTDB) + constant_term(tmp4022[i, ea]) + TaylorSeries.zero!(β_TTmTDB) β_TTmTDB.coeffs[1] = identity(constant_term(temp_β_TTmTDB[i, ea])) - β_TTmTDB.coeffs[2:order + 1] .= zero(β_TTmTDB.coeffs[1]) end end - tmp4564.coeffs[1] = constant_term(c_m2) * constant_term(α_TTmTDB) - tmp4564.coeffs[2:order + 1] .= zero(tmp4564.coeffs[1]) - tmp4565.coeffs[1] = constant_term(L_B) - constant_term(tmp4564) - tmp4565.coeffs[2:order + 1] .= zero(tmp4565.coeffs[1]) - tmp4566.coeffs[1] = constant_term(tmp4565) * constant_term(one_plus_L_B_minus_L_G) - tmp4566.coeffs[2:order + 1] .= zero(tmp4566.coeffs[1]) - tmp4567.coeffs[1] = constant_term(c_m4) * constant_term(β_TTmTDB) - tmp4567.coeffs[2:order + 1] .= zero(tmp4567.coeffs[1]) - tmp4568.coeffs[1] = constant_term(tmp4567) - constant_term(L_G) - tmp4568.coeffs[2:order + 1] .= zero(tmp4568.coeffs[1]) - tmp4569.coeffs[1] = constant_term(tmp4566) + constant_term(tmp4568) - tmp4569.coeffs[2:order + 1] .= zero(tmp4569.coeffs[1]) - (dq[6N + 13]).coeffs[1] = constant_term(daysec) * constant_term(tmp4569) - (dq[6N + 13]).coeffs[2:order + 1] .= zero((dq[6N + 13]).coeffs[1]) + TaylorSeries.zero!(tmp4024) + tmp4024.coeffs[1] = constant_term(c_m2) * constant_term(α_TTmTDB) + TaylorSeries.zero!(tmp4025) + tmp4025.coeffs[1] = constant_term(L_B) - constant_term(tmp4024) + TaylorSeries.zero!(tmp4026) + tmp4026.coeffs[1] = constant_term(tmp4025) * constant_term(one_plus_L_B_minus_L_G) + TaylorSeries.zero!(tmp4027) + tmp4027.coeffs[1] = constant_term(c_m4) * constant_term(β_TTmTDB) + TaylorSeries.zero!(tmp4028) + tmp4028.coeffs[1] = constant_term(tmp4027) - constant_term(L_G) + TaylorSeries.zero!(tmp4029) + tmp4029.coeffs[1] = constant_term(tmp4026) + constant_term(tmp4028) + TaylorSeries.zero!(dq[6N + 13]) + (dq[6N + 13]).coeffs[1] = constant_term(daysec) * constant_term(tmp4029) for __idx = eachindex(q) (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] end @@ -9949,109 +10765,109 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(ϕ_m, q[6N + 1], ord) TaylorSeries.identity!(θ_m, q[6N + 2], ord) TaylorSeries.identity!(ψ_m, q[6N + 3], ord) - TaylorSeries.sincos!(tmp4571, tmp3501, ϕ_m, ord) - TaylorSeries.sincos!(tmp4572, tmp3502, ψ_m, ord) - TaylorSeries.mul!(tmp3503, tmp3501, tmp3502, ord) - TaylorSeries.sincos!(tmp4573, tmp3504, θ_m, ord) - TaylorSeries.sincos!(tmp3505, tmp4574, ϕ_m, ord) - TaylorSeries.mul!(tmp3506, tmp3504, tmp3505, ord) - TaylorSeries.sincos!(tmp3507, tmp4575, ψ_m, ord) - TaylorSeries.mul!(tmp3508, tmp3506, tmp3507, ord) - TaylorSeries.subst!(RotM[1, 1, mo], tmp3503, tmp3508, ord) - TaylorSeries.sincos!(tmp4576, tmp3510, θ_m, ord) - TaylorSeries.subst!(tmp3511, tmp3510, ord) - TaylorSeries.sincos!(tmp4577, tmp3512, ψ_m, ord) - TaylorSeries.mul!(tmp3513, tmp3511, tmp3512, ord) - TaylorSeries.sincos!(tmp3514, tmp4578, ϕ_m, ord) - TaylorSeries.mul!(tmp3515, tmp3513, tmp3514, ord) - TaylorSeries.sincos!(tmp4579, tmp3516, ϕ_m, ord) - TaylorSeries.sincos!(tmp3517, tmp4580, ψ_m, ord) - TaylorSeries.mul!(tmp3518, tmp3516, tmp3517, ord) - TaylorSeries.subst!(RotM[2, 1, mo], tmp3515, tmp3518, ord) - TaylorSeries.sincos!(tmp3520, tmp4581, θ_m, ord) - TaylorSeries.sincos!(tmp3521, tmp4582, ϕ_m, ord) - TaylorSeries.mul!(RotM[3, 1, mo], tmp3520, tmp3521, ord) - TaylorSeries.sincos!(tmp4583, tmp3523, ψ_m, ord) - TaylorSeries.sincos!(tmp3524, tmp4584, ϕ_m, ord) - TaylorSeries.mul!(tmp3525, tmp3523, tmp3524, ord) - TaylorSeries.sincos!(tmp4585, tmp3526, θ_m, ord) - TaylorSeries.sincos!(tmp4586, tmp3527, ϕ_m, ord) - TaylorSeries.mul!(tmp3528, tmp3526, tmp3527, ord) - TaylorSeries.sincos!(tmp3529, tmp4587, ψ_m, ord) - TaylorSeries.mul!(tmp3530, tmp3528, tmp3529, ord) - TaylorSeries.add!(RotM[1, 2, mo], tmp3525, tmp3530, ord) - TaylorSeries.sincos!(tmp4588, tmp3532, θ_m, ord) - TaylorSeries.sincos!(tmp4589, tmp3533, ϕ_m, ord) - TaylorSeries.mul!(tmp3534, tmp3532, tmp3533, ord) - TaylorSeries.sincos!(tmp4590, tmp3535, ψ_m, ord) - TaylorSeries.mul!(tmp3536, tmp3534, tmp3535, ord) - TaylorSeries.sincos!(tmp3537, tmp4591, ϕ_m, ord) - TaylorSeries.sincos!(tmp3538, tmp4592, ψ_m, ord) - TaylorSeries.mul!(tmp3539, tmp3537, tmp3538, ord) - TaylorSeries.subst!(RotM[2, 2, mo], tmp3536, tmp3539, ord) - TaylorSeries.sincos!(tmp4593, tmp3541, ϕ_m, ord) - TaylorSeries.subst!(tmp3542, tmp3541, ord) - TaylorSeries.sincos!(tmp3543, tmp4594, θ_m, ord) - TaylorSeries.mul!(RotM[3, 2, mo], tmp3542, tmp3543, ord) - TaylorSeries.sincos!(tmp3545, tmp4595, θ_m, ord) - TaylorSeries.sincos!(tmp3546, tmp4596, ψ_m, ord) - TaylorSeries.mul!(RotM[1, 3, mo], tmp3545, tmp3546, ord) - TaylorSeries.sincos!(tmp4597, tmp3548, ψ_m, ord) - TaylorSeries.sincos!(tmp3549, tmp4598, θ_m, ord) - TaylorSeries.mul!(RotM[2, 3, mo], tmp3548, tmp3549, ord) - TaylorSeries.sincos!(tmp4599, RotM[3, 3, mo], θ_m, ord) + TaylorSeries.sincos!(tmp4031, tmp2961, ϕ_m, ord) + TaylorSeries.sincos!(tmp4032, tmp2962, ψ_m, ord) + TaylorSeries.mul!(tmp2963, tmp2961, tmp2962, ord) + TaylorSeries.sincos!(tmp4033, tmp2964, θ_m, ord) + TaylorSeries.sincos!(tmp2965, tmp4034, ϕ_m, ord) + TaylorSeries.mul!(tmp2966, tmp2964, tmp2965, ord) + TaylorSeries.sincos!(tmp2967, tmp4035, ψ_m, ord) + TaylorSeries.mul!(tmp2968, tmp2966, tmp2967, ord) + TaylorSeries.subst!(RotM[1, 1, mo], tmp2963, tmp2968, ord) + TaylorSeries.sincos!(tmp4036, tmp2970, θ_m, ord) + TaylorSeries.subst!(tmp2971, tmp2970, ord) + TaylorSeries.sincos!(tmp4037, tmp2972, ψ_m, ord) + TaylorSeries.mul!(tmp2973, tmp2971, tmp2972, ord) + TaylorSeries.sincos!(tmp2974, tmp4038, ϕ_m, ord) + TaylorSeries.mul!(tmp2975, tmp2973, tmp2974, ord) + TaylorSeries.sincos!(tmp4039, tmp2976, ϕ_m, ord) + TaylorSeries.sincos!(tmp2977, tmp4040, ψ_m, ord) + TaylorSeries.mul!(tmp2978, tmp2976, tmp2977, ord) + TaylorSeries.subst!(RotM[2, 1, mo], tmp2975, tmp2978, ord) + TaylorSeries.sincos!(tmp2980, tmp4041, θ_m, ord) + TaylorSeries.sincos!(tmp2981, tmp4042, ϕ_m, ord) + TaylorSeries.mul!(RotM[3, 1, mo], tmp2980, tmp2981, ord) + TaylorSeries.sincos!(tmp4043, tmp2983, ψ_m, ord) + TaylorSeries.sincos!(tmp2984, tmp4044, ϕ_m, ord) + TaylorSeries.mul!(tmp2985, tmp2983, tmp2984, ord) + TaylorSeries.sincos!(tmp4045, tmp2986, θ_m, ord) + TaylorSeries.sincos!(tmp4046, tmp2987, ϕ_m, ord) + TaylorSeries.mul!(tmp2988, tmp2986, tmp2987, ord) + TaylorSeries.sincos!(tmp2989, tmp4047, ψ_m, ord) + TaylorSeries.mul!(tmp2990, tmp2988, tmp2989, ord) + TaylorSeries.add!(RotM[1, 2, mo], tmp2985, tmp2990, ord) + TaylorSeries.sincos!(tmp4048, tmp2992, θ_m, ord) + TaylorSeries.sincos!(tmp4049, tmp2993, ϕ_m, ord) + TaylorSeries.mul!(tmp2994, tmp2992, tmp2993, ord) + TaylorSeries.sincos!(tmp4050, tmp2995, ψ_m, ord) + TaylorSeries.mul!(tmp2996, tmp2994, tmp2995, ord) + TaylorSeries.sincos!(tmp2997, tmp4051, ϕ_m, ord) + TaylorSeries.sincos!(tmp2998, tmp4052, ψ_m, ord) + TaylorSeries.mul!(tmp2999, tmp2997, tmp2998, ord) + TaylorSeries.subst!(RotM[2, 2, mo], tmp2996, tmp2999, ord) + TaylorSeries.sincos!(tmp4053, tmp3001, ϕ_m, ord) + TaylorSeries.subst!(tmp3002, tmp3001, ord) + TaylorSeries.sincos!(tmp3003, tmp4054, θ_m, ord) + TaylorSeries.mul!(RotM[3, 2, mo], tmp3002, tmp3003, ord) + TaylorSeries.sincos!(tmp3005, tmp4055, θ_m, ord) + TaylorSeries.sincos!(tmp3006, tmp4056, ψ_m, ord) + TaylorSeries.mul!(RotM[1, 3, mo], tmp3005, tmp3006, ord) + TaylorSeries.sincos!(tmp4057, tmp3008, ψ_m, ord) + TaylorSeries.sincos!(tmp3009, tmp4058, θ_m, ord) + TaylorSeries.mul!(RotM[2, 3, mo], tmp3008, tmp3009, ord) + TaylorSeries.sincos!(tmp4059, RotM[3, 3, mo], θ_m, ord) TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) - TaylorSeries.sincos!(tmp4600, tmp3552, ϕ_c, ord) - TaylorSeries.mul!(tmp3553, RotM[1, 1, mo], tmp3552, ord) - TaylorSeries.sincos!(tmp3554, tmp4601, ϕ_c, ord) - TaylorSeries.mul!(tmp3555, RotM[1, 2, mo], tmp3554, ord) - TaylorSeries.add!(mantlef2coref[1, 1], tmp3553, tmp3555, ord) - TaylorSeries.subst!(tmp3557, RotM[1, 1, mo], ord) - TaylorSeries.sincos!(tmp3558, tmp4602, ϕ_c, ord) - TaylorSeries.mul!(tmp3559, tmp3557, tmp3558, ord) - TaylorSeries.sincos!(tmp4603, tmp3560, ϕ_c, ord) - TaylorSeries.mul!(tmp3561, RotM[1, 2, mo], tmp3560, ord) - TaylorSeries.add!(mantlef2coref[2, 1], tmp3559, tmp3561, ord) + TaylorSeries.sincos!(tmp4060, tmp3012, ϕ_c, ord) + TaylorSeries.mul!(tmp3013, RotM[1, 1, mo], tmp3012, ord) + TaylorSeries.sincos!(tmp3014, tmp4061, ϕ_c, ord) + TaylorSeries.mul!(tmp3015, RotM[1, 2, mo], tmp3014, ord) + TaylorSeries.add!(mantlef2coref[1, 1], tmp3013, tmp3015, ord) + TaylorSeries.subst!(tmp3017, RotM[1, 1, mo], ord) + TaylorSeries.sincos!(tmp3018, tmp4062, ϕ_c, ord) + TaylorSeries.mul!(tmp3019, tmp3017, tmp3018, ord) + TaylorSeries.sincos!(tmp4063, tmp3020, ϕ_c, ord) + TaylorSeries.mul!(tmp3021, RotM[1, 2, mo], tmp3020, ord) + TaylorSeries.add!(mantlef2coref[2, 1], tmp3019, tmp3021, ord) TaylorSeries.identity!(mantlef2coref[3, 1], RotM[1, 3, mo], ord) - TaylorSeries.sincos!(tmp4604, tmp3563, ϕ_c, ord) - TaylorSeries.mul!(tmp3564, RotM[2, 1, mo], tmp3563, ord) - TaylorSeries.sincos!(tmp3565, tmp4605, ϕ_c, ord) - TaylorSeries.mul!(tmp3566, RotM[2, 2, mo], tmp3565, ord) - TaylorSeries.add!(mantlef2coref[1, 2], tmp3564, tmp3566, ord) - TaylorSeries.subst!(tmp3568, RotM[2, 1, mo], ord) - TaylorSeries.sincos!(tmp3569, tmp4606, ϕ_c, ord) - TaylorSeries.mul!(tmp3570, tmp3568, tmp3569, ord) - TaylorSeries.sincos!(tmp4607, tmp3571, ϕ_c, ord) - TaylorSeries.mul!(tmp3572, RotM[2, 2, mo], tmp3571, ord) - TaylorSeries.add!(mantlef2coref[2, 2], tmp3570, tmp3572, ord) + TaylorSeries.sincos!(tmp4064, tmp3023, ϕ_c, ord) + TaylorSeries.mul!(tmp3024, RotM[2, 1, mo], tmp3023, ord) + TaylorSeries.sincos!(tmp3025, tmp4065, ϕ_c, ord) + TaylorSeries.mul!(tmp3026, RotM[2, 2, mo], tmp3025, ord) + TaylorSeries.add!(mantlef2coref[1, 2], tmp3024, tmp3026, ord) + TaylorSeries.subst!(tmp3028, RotM[2, 1, mo], ord) + TaylorSeries.sincos!(tmp3029, tmp4066, ϕ_c, ord) + TaylorSeries.mul!(tmp3030, tmp3028, tmp3029, ord) + TaylorSeries.sincos!(tmp4067, tmp3031, ϕ_c, ord) + TaylorSeries.mul!(tmp3032, RotM[2, 2, mo], tmp3031, ord) + TaylorSeries.add!(mantlef2coref[2, 2], tmp3030, tmp3032, ord) TaylorSeries.identity!(mantlef2coref[3, 2], RotM[2, 3, mo], ord) - TaylorSeries.sincos!(tmp4608, tmp3574, ϕ_c, ord) - TaylorSeries.mul!(tmp3575, RotM[3, 1, mo], tmp3574, ord) - TaylorSeries.sincos!(tmp3576, tmp4609, ϕ_c, ord) - TaylorSeries.mul!(tmp3577, RotM[3, 2, mo], tmp3576, ord) - TaylorSeries.add!(mantlef2coref[1, 3], tmp3575, tmp3577, ord) - TaylorSeries.subst!(tmp3579, RotM[3, 1, mo], ord) - TaylorSeries.sincos!(tmp3580, tmp4610, ϕ_c, ord) - TaylorSeries.mul!(tmp3581, tmp3579, tmp3580, ord) - TaylorSeries.sincos!(tmp4611, tmp3582, ϕ_c, ord) - TaylorSeries.mul!(tmp3583, RotM[3, 2, mo], tmp3582, ord) - TaylorSeries.add!(mantlef2coref[2, 3], tmp3581, tmp3583, ord) + TaylorSeries.sincos!(tmp4068, tmp3034, ϕ_c, ord) + TaylorSeries.mul!(tmp3035, RotM[3, 1, mo], tmp3034, ord) + TaylorSeries.sincos!(tmp3036, tmp4069, ϕ_c, ord) + TaylorSeries.mul!(tmp3037, RotM[3, 2, mo], tmp3036, ord) + TaylorSeries.add!(mantlef2coref[1, 3], tmp3035, tmp3037, ord) + TaylorSeries.subst!(tmp3039, RotM[3, 1, mo], ord) + TaylorSeries.sincos!(tmp3040, tmp4070, ϕ_c, ord) + TaylorSeries.mul!(tmp3041, tmp3039, tmp3040, ord) + TaylorSeries.sincos!(tmp4071, tmp3042, ϕ_c, ord) + TaylorSeries.mul!(tmp3043, RotM[3, 2, mo], tmp3042, ord) + TaylorSeries.add!(mantlef2coref[2, 3], tmp3041, tmp3043, ord) TaylorSeries.identity!(mantlef2coref[3, 3], RotM[3, 3, mo], ord) - TaylorSeries.mul!(tmp3585, mantlef2coref[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3586, mantlef2coref[1, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3587, mantlef2coref[1, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3588, tmp3586, tmp3587, ord) - TaylorSeries.add!(ω_c_CE_1, tmp3585, tmp3588, ord) - TaylorSeries.mul!(tmp3590, mantlef2coref[2, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3591, mantlef2coref[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3592, mantlef2coref[2, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3593, tmp3591, tmp3592, ord) - TaylorSeries.add!(ω_c_CE_2, tmp3590, tmp3593, ord) - TaylorSeries.mul!(tmp3595, mantlef2coref[3, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3596, mantlef2coref[3, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3597, mantlef2coref[3, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3598, tmp3596, tmp3597, ord) - TaylorSeries.add!(ω_c_CE_3, tmp3595, tmp3598, ord) + TaylorSeries.mul!(tmp3045, mantlef2coref[1, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3046, mantlef2coref[1, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3047, mantlef2coref[1, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3048, tmp3046, tmp3047, ord) + TaylorSeries.add!(ω_c_CE_1, tmp3045, tmp3048, ord) + TaylorSeries.mul!(tmp3050, mantlef2coref[2, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3051, mantlef2coref[2, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3052, mantlef2coref[2, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3053, tmp3051, tmp3052, ord) + TaylorSeries.add!(ω_c_CE_2, tmp3050, tmp3053, ord) + TaylorSeries.mul!(tmp3055, mantlef2coref[3, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3056, mantlef2coref[3, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3057, mantlef2coref[3, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3058, tmp3056, tmp3057, ord) + TaylorSeries.add!(ω_c_CE_3, tmp3055, tmp3058, ord) TaylorSeries.identity!(J2_t[su], J2S_t, ord) TaylorSeries.identity!(J2_t[ea], J2E_t, ord) for j = 1:N @@ -10068,7 +10884,7 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(accY[j], zero_q_1, ord) TaylorSeries.identity!(accZ[j], zero_q_1, ord) end - #= In[6]:380 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1286 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -10079,35 +10895,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.subst!(U[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.subst!(V[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.subst!(W[i, j], dq[3i], dq[3j], ord) - TaylorSeries.mul!(tmp3607[3j - 2], 4, dq[3j - 2], ord) - TaylorSeries.mul!(tmp3609[3i - 2], 3, dq[3i - 2], ord) - TaylorSeries.subst!(_4U_m_3X[i, j], tmp3607[3j - 2], tmp3609[3i - 2], ord) - TaylorSeries.mul!(tmp3612[3j - 1], 4, dq[3j - 1], ord) - TaylorSeries.mul!(tmp3614[3i - 1], 3, dq[3i - 1], ord) - TaylorSeries.subst!(_4V_m_3Y[i, j], tmp3612[3j - 1], tmp3614[3i - 1], ord) - TaylorSeries.mul!(tmp3617[3j], 4, dq[3j], ord) - TaylorSeries.mul!(tmp3619[3i], 3, dq[3i], ord) - TaylorSeries.subst!(_4W_m_3Z[i, j], tmp3617[3j], tmp3619[3i], ord) + TaylorSeries.mul!(tmp3067[3j - 2], 4, dq[3j - 2], ord) + TaylorSeries.mul!(tmp3069[3i - 2], 3, dq[3i - 2], ord) + TaylorSeries.subst!(_4U_m_3X[i, j], tmp3067[3j - 2], tmp3069[3i - 2], ord) + TaylorSeries.mul!(tmp3072[3j - 1], 4, dq[3j - 1], ord) + TaylorSeries.mul!(tmp3074[3i - 1], 3, dq[3i - 1], ord) + TaylorSeries.subst!(_4V_m_3Y[i, j], tmp3072[3j - 1], tmp3074[3i - 1], ord) + TaylorSeries.mul!(tmp3077[3j], 4, dq[3j], ord) + TaylorSeries.mul!(tmp3079[3i], 3, dq[3i], ord) + TaylorSeries.subst!(_4W_m_3Z[i, j], tmp3077[3j], tmp3079[3i], ord) TaylorSeries.mul!(pn2x[i, j], X[i, j], _4U_m_3X[i, j], ord) TaylorSeries.mul!(pn2y[i, j], Y[i, j], _4V_m_3Y[i, j], ord) TaylorSeries.mul!(pn2z[i, j], Z[i, j], _4W_m_3Z[i, j], ord) TaylorSeries.mul!(UU[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.mul!(VV[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) - TaylorSeries.add!(tmp3627[i, j], UU[i, j], VV[i, j], ord) - TaylorSeries.add!(vi_dot_vj[i, j], tmp3627[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp3630[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp3632[i, j], Y[i, j], 2, ord) - TaylorSeries.add!(tmp3633[i, j], tmp3630[i, j], tmp3632[i, j], ord) - TaylorSeries.pow!(tmp3635[i, j], Z[i, j], 2, ord) - TaylorSeries.add!(r_p2[i, j], tmp3633[i, j], tmp3635[i, j], ord) + TaylorSeries.add!(tmp3087[i, j], UU[i, j], VV[i, j], ord) + TaylorSeries.add!(vi_dot_vj[i, j], tmp3087[i, j], WW[i, j], ord) + TaylorSeries.pow!(tmp3090[i, j], X[i, j], 2, ord) + TaylorSeries.pow!(tmp3092[i, j], Y[i, j], 2, ord) + TaylorSeries.add!(tmp3093[i, j], tmp3090[i, j], tmp3092[i, j], ord) + TaylorSeries.pow!(tmp3095[i, j], Z[i, j], 2, ord) + TaylorSeries.add!(r_p2[i, j], tmp3093[i, j], tmp3095[i, j], ord) TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) - TaylorSeries.add!(tmp3643[i, j], pn2x[i, j], pn2y[i, j], ord) - TaylorSeries.add!(tmp3644[i, j], tmp3643[i, j], pn2z[i, j], ord) - TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp3644[i, j], ord) + TaylorSeries.add!(tmp3103[i, j], pn2x[i, j], pn2y[i, j], ord) + TaylorSeries.add!(tmp3104[i, j], tmp3103[i, j], pn2z[i, j], ord) + TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp3104[i, j], ord) TaylorSeries.mul!(newton_acc_X[i, j], X[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Y[i, j], Y[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Z[i, j], Z[i, j], newtonianCoeff[i, j], ord) @@ -10116,41 +10932,41 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(U_t_pn2[i, j], pn2[i, j], U[i, j], ord) TaylorSeries.mul!(V_t_pn2[i, j], pn2[i, j], V[i, j], ord) TaylorSeries.mul!(W_t_pn2[i, j], pn2[i, j], W[i, j], ord) - TaylorSeries.mul!(tmp3655[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp3655[i, j], ord) + TaylorSeries.mul!(tmp3115[i, j], X[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp3115[i, j], ord) TaylorSeries.identity!(newtonX[j], temp_001[i, j], ord) - TaylorSeries.mul!(tmp3657[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp3657[i, j], ord) + TaylorSeries.mul!(tmp3117[i, j], Y[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp3117[i, j], ord) TaylorSeries.identity!(newtonY[j], temp_002[i, j], ord) - TaylorSeries.mul!(tmp3659[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp3659[i, j], ord) + TaylorSeries.mul!(tmp3119[i, j], Z[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp3119[i, j], ord) TaylorSeries.identity!(newtonZ[j], temp_003[i, j], ord) TaylorSeries.add!(temp_004[i, j], newtonianNb_Potential[j], newtonian1b_Potential[i, j], ord) TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) end end - TaylorSeries.pow!(tmp3663[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp3665[3j - 1], dq[3j - 1], 2, ord) - TaylorSeries.add!(tmp3666[3j - 2], tmp3663[3j - 2], tmp3665[3j - 1], ord) - TaylorSeries.pow!(tmp3668[3j], dq[3j], 2, ord) - TaylorSeries.add!(v2[j], tmp3666[3j - 2], tmp3668[3j], ord) + TaylorSeries.pow!(tmp3123[3j - 2], dq[3j - 2], 2, ord) + TaylorSeries.pow!(tmp3125[3j - 1], dq[3j - 1], 2, ord) + TaylorSeries.add!(tmp3126[3j - 2], tmp3123[3j - 2], tmp3125[3j - 1], ord) + TaylorSeries.pow!(tmp3128[3j], dq[3j], 2, ord) + TaylorSeries.add!(v2[j], tmp3126[3j - 2], tmp3128[3j], ord) end - TaylorSeries.add!(tmp3670, I_M_t[1, 1], I_M_t[2, 2], ord) - TaylorSeries.div!(tmp3672, tmp3670, 2, ord) - TaylorSeries.subst!(tmp3673, I_M_t[3, 3], tmp3672, ord) - TaylorSeries.div!(J2M_t, tmp3673, μ[mo], ord) - TaylorSeries.subst!(tmp3675, I_M_t[2, 2], I_M_t[1, 1], ord) - TaylorSeries.div!(tmp3676, tmp3675, μ[mo], ord) - TaylorSeries.div!(C22M_t, tmp3676, 4, ord) - TaylorSeries.subst!(tmp3679, I_M_t[1, 3], ord) - TaylorSeries.div!(C21M_t, tmp3679, μ[mo], ord) - TaylorSeries.subst!(tmp3681, I_M_t[3, 2], ord) - TaylorSeries.div!(S21M_t, tmp3681, μ[mo], ord) - TaylorSeries.subst!(tmp3683, I_M_t[2, 1], ord) - TaylorSeries.div!(tmp3684, tmp3683, μ[mo], ord) - TaylorSeries.div!(S22M_t, tmp3684, 2, ord) + TaylorSeries.add!(tmp3130, I_M_t[1, 1], I_M_t[2, 2], ord) + TaylorSeries.div!(tmp3132, tmp3130, 2, ord) + TaylorSeries.subst!(tmp3133, I_M_t[3, 3], tmp3132, ord) + TaylorSeries.div!(J2M_t, tmp3133, μ[mo], ord) + TaylorSeries.subst!(tmp3135, I_M_t[2, 2], I_M_t[1, 1], ord) + TaylorSeries.div!(tmp3136, tmp3135, μ[mo], ord) + TaylorSeries.div!(C22M_t, tmp3136, 4, ord) + TaylorSeries.subst!(tmp3139, I_M_t[1, 3], ord) + TaylorSeries.div!(C21M_t, tmp3139, μ[mo], ord) + TaylorSeries.subst!(tmp3141, I_M_t[3, 2], ord) + TaylorSeries.div!(S21M_t, tmp3141, μ[mo], ord) + TaylorSeries.subst!(tmp3143, I_M_t[2, 1], ord) + TaylorSeries.div!(tmp3144, tmp3143, μ[mo], ord) + TaylorSeries.div!(S22M_t, tmp3144, 2, ord) TaylorSeries.identity!(J2_t[mo], J2M_t, ord) - #= In[6]:474 =# Threads.@threads for j = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1380 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -10165,17 +10981,17 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(Z_bf_1[i, j], X[i, j], RotM[3, 1, j], ord) TaylorSeries.mul!(Z_bf_2[i, j], Y[i, j], RotM[3, 2, j], ord) TaylorSeries.mul!(Z_bf_3[i, j], Z[i, j], RotM[3, 3, j], ord) - TaylorSeries.add!(tmp3696[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) - TaylorSeries.add!(X_bf[i, j], tmp3696[i, j], X_bf_3[i, j], ord) - TaylorSeries.add!(tmp3698[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) - TaylorSeries.add!(Y_bf[i, j], tmp3698[i, j], Y_bf_3[i, j], ord) - TaylorSeries.add!(tmp3700[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) - TaylorSeries.add!(Z_bf[i, j], tmp3700[i, j], Z_bf_3[i, j], ord) + TaylorSeries.add!(tmp3156[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) + TaylorSeries.add!(X_bf[i, j], tmp3156[i, j], X_bf_3[i, j], ord) + TaylorSeries.add!(tmp3158[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) + TaylorSeries.add!(Y_bf[i, j], tmp3158[i, j], Y_bf_3[i, j], ord) + TaylorSeries.add!(tmp3160[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) + TaylorSeries.add!(Z_bf[i, j], tmp3160[i, j], Z_bf_3[i, j], ord) TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp3704[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp3706[i, j], Y_bf[i, j], 2, ord) - TaylorSeries.add!(tmp3707[i, j], tmp3704[i, j], tmp3706[i, j], ord) - TaylorSeries.sqrt!(r_xy[i, j], tmp3707[i, j], ord) + TaylorSeries.pow!(tmp3164[i, j], X_bf[i, j], 2, ord) + TaylorSeries.pow!(tmp3166[i, j], Y_bf[i, j], 2, ord) + TaylorSeries.add!(tmp3167[i, j], tmp3164[i, j], tmp3166[i, j], ord) + TaylorSeries.sqrt!(r_xy[i, j], tmp3167[i, j], ord) TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) TaylorSeries.div!(sin_λ[i, j], Y_bf[i, j], r_xy[i, j], ord) TaylorSeries.div!(cos_λ[i, j], X_bf[i, j], r_xy[i, j], ord) @@ -10184,35 +11000,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(dP_n[i, j, 1], zero_q_1, ord) TaylorSeries.identity!(dP_n[i, j, 2], one_t, ord) for n = 2:n1SEM[j] - TaylorSeries.mul!(tmp3712[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3713[i, j, n], tmp3712[i, j, n], fact1_jsem[n], ord) - TaylorSeries.mul!(tmp3714[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) - TaylorSeries.subst!(P_n[i, j, n + 1], tmp3713[i, j, n], tmp3714[i, j, n - 1], ord) - TaylorSeries.mul!(tmp3716[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3717[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) - TaylorSeries.add!(dP_n[i, j, n + 1], tmp3716[i, j, n], tmp3717[i, j, n], ord) + TaylorSeries.mul!(tmp3172[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3173[i, j, n], tmp3172[i, j, n], fact1_jsem[n], ord) + TaylorSeries.mul!(tmp3174[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) + TaylorSeries.subst!(P_n[i, j, n + 1], tmp3173[i, j, n], tmp3174[i, j, n - 1], ord) + TaylorSeries.mul!(tmp3176[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3177[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) + TaylorSeries.add!(dP_n[i, j, n + 1], tmp3176[i, j, n], tmp3177[i, j, n], ord) TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) end TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) - TaylorSeries.mul!(tmp3722[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) - TaylorSeries.mul!(tmp3723[i, j, 3], tmp3722[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ξ[i, j], tmp3723[i, j, 3], r_p4[i, j], ord) - TaylorSeries.subst!(tmp3725[i, j, 3], dP_n[i, j, 3], ord) - TaylorSeries.mul!(tmp3726[i, j, 3], tmp3725[i, j, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3727[i, j, 3], tmp3726[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ζ[i, j], tmp3727[i, j, 3], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3182[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) + TaylorSeries.mul!(tmp3183[i, j, 3], tmp3182[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ξ[i, j], tmp3183[i, j, 3], r_p4[i, j], ord) + TaylorSeries.subst!(tmp3185[i, j, 3], dP_n[i, j, 3], ord) + TaylorSeries.mul!(tmp3186[i, j, 3], tmp3185[i, j, 3], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3187[i, j, 3], tmp3186[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ζ[i, j], tmp3187[i, j, 3], r_p4[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_J_ζ_36[i, j], zero_q_1, ord) for n = 3:n1SEM[j] - TaylorSeries.mul!(tmp3729[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) - TaylorSeries.mul!(tmp3730[i, j, n + 1], tmp3729[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3731[i, j, n + 1], tmp3730[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjξ[i, j, n], tmp3731[i, j, n + 1], F_J_ξ_36[i, j], ord) - TaylorSeries.subst!(tmp3733[i, j, n + 1], dP_n[i, j, n + 1], ord) - TaylorSeries.mul!(tmp3734[i, j, n + 1], tmp3733[i, j, n + 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3735[i, j, n + 1], tmp3734[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3736[i, j, n + 1], tmp3735[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjζ[i, j, n], tmp3736[i, j, n + 1], F_J_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp3189[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) + TaylorSeries.mul!(tmp3190[i, j, n + 1], tmp3189[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp3191[i, j, n + 1], tmp3190[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjξ[i, j, n], tmp3191[i, j, n + 1], F_J_ξ_36[i, j], ord) + TaylorSeries.subst!(tmp3193[i, j, n + 1], dP_n[i, j, n + 1], ord) + TaylorSeries.mul!(tmp3194[i, j, n + 1], tmp3193[i, j, n + 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3195[i, j, n + 1], tmp3194[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp3196[i, j, n + 1], tmp3195[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjζ[i, j, n], tmp3196[i, j, n + 1], F_J_ζ_36[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], temp_fjξ[i, j, n], ord) TaylorSeries.identity!(F_J_ζ_36[i, j], temp_fjζ[i, j, n], ord) end @@ -10225,69 +11041,69 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(P_nm[i, j, 1, 1], cos_ϕ[i, j], ord) TaylorSeries.mul!(cosϕ_dP_nm[i, j, 1, 1], sin_ϕ[i, j], lnm3[1], ord) else - TaylorSeries.mul!(tmp3739[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3740[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.add!(sin_mλ[i, j, m], tmp3739[i, j, m - 1], tmp3740[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3742[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3743[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(cos_mλ[i, j, m], tmp3742[i, j, m - 1], tmp3743[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3745[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp3745[i, j, m - 1, m - 1], lnm5[m], ord) + TaylorSeries.mul!(tmp3199[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3200[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.add!(sin_mλ[i, j, m], tmp3199[i, j, m - 1], tmp3200[i, j, m - 1], ord) + TaylorSeries.mul!(tmp3202[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3203[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(cos_mλ[i, j, m], tmp3202[i, j, m - 1], tmp3203[i, j, m - 1], ord) + TaylorSeries.mul!(tmp3205[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp3205[i, j, m - 1, m - 1], lnm5[m], ord) TaylorSeries.mul!(P_nm[i, j, m, m], secϕ_P_nm[i, j, m, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3748[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp3748[i, j, m, m], lnm3[m], ord) + TaylorSeries.mul!(tmp3208[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp3208[i, j, m, m], lnm3[m], ord) end for n = m + 1:n1SEM[mo] if n == m + 1 - TaylorSeries.mul!(tmp3750[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp3750[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp3210[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp3210[i, j, n - 1, m], lnm1[n, m], ord) else - TaylorSeries.mul!(tmp3752[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3753[i, j, n - 1, m], tmp3752[i, j, n - 1, m], lnm1[n, m], ord) - TaylorSeries.mul!(tmp3754[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) - TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp3753[i, j, n - 1, m], tmp3754[i, j, n - 2, m], ord) + TaylorSeries.mul!(tmp3212[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3213[i, j, n - 1, m], tmp3212[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp3214[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) + TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp3213[i, j, n - 1, m], tmp3214[i, j, n - 2, m], ord) end TaylorSeries.mul!(P_nm[i, j, n, m], secϕ_P_nm[i, j, n, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3757[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3758[i, j, n, m], tmp3757[i, j, n, m], lnm3[n], ord) - TaylorSeries.mul!(tmp3759[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) - TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp3758[i, j, n, m], tmp3759[i, j, n - 1, m], ord) + TaylorSeries.mul!(tmp3217[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3218[i, j, n, m], tmp3217[i, j, n, m], lnm3[n], ord) + TaylorSeries.mul!(tmp3219[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) + TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp3218[i, j, n, m], tmp3219[i, j, n - 1, m], ord) end end - TaylorSeries.mul!(tmp3761[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) - TaylorSeries.mul!(tmp3762[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3763[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3764[i, j, 1], tmp3762[i, j, 1], tmp3763[i, j, 1], ord) - TaylorSeries.mul!(tmp3765[i, j, 2, 1], tmp3761[i, j, 2, 1], tmp3764[i, j, 1], ord) - TaylorSeries.mul!(tmp3766[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) - TaylorSeries.mul!(tmp3767[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3768[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3769[i, j, 2], tmp3767[i, j, 2], tmp3768[i, j, 2], ord) - TaylorSeries.mul!(tmp3770[i, j, 2, 2], tmp3766[i, j, 2, 2], tmp3769[i, j, 2], ord) - TaylorSeries.add!(tmp3771[i, j, 2, 1], tmp3765[i, j, 2, 1], tmp3770[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ξ[i, j], tmp3771[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3773[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) - TaylorSeries.mul!(tmp3774[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3775[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(tmp3776[i, j, 1], tmp3774[i, j, 1], tmp3775[i, j, 1], ord) - TaylorSeries.mul!(tmp3777[i, j, 2, 1], tmp3773[i, j, 2, 1], tmp3776[i, j, 1], ord) - TaylorSeries.mul!(tmp3778[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) - TaylorSeries.mul!(tmp3779[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3780[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.subst!(tmp3781[i, j, 2], tmp3779[i, j, 2], tmp3780[i, j, 2], ord) - TaylorSeries.mul!(tmp3782[i, j, 2, 2], tmp3778[i, j, 2, 2], tmp3781[i, j, 2], ord) - TaylorSeries.add!(tmp3783[i, j, 2, 1], tmp3777[i, j, 2, 1], tmp3782[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_η[i, j], tmp3783[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3785[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3786[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3787[i, j, 1], tmp3785[i, j, 1], tmp3786[i, j, 1], ord) - TaylorSeries.mul!(tmp3788[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp3787[i, j, 1], ord) - TaylorSeries.mul!(tmp3789[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3790[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3791[i, j, 2], tmp3789[i, j, 2], tmp3790[i, j, 2], ord) - TaylorSeries.mul!(tmp3792[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp3791[i, j, 2], ord) - TaylorSeries.add!(tmp3793[i, j, 2, 1], tmp3788[i, j, 2, 1], tmp3792[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ζ[i, j], tmp3793[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3221[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) + TaylorSeries.mul!(tmp3222[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3223[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp3224[i, j, 1], tmp3222[i, j, 1], tmp3223[i, j, 1], ord) + TaylorSeries.mul!(tmp3225[i, j, 2, 1], tmp3221[i, j, 2, 1], tmp3224[i, j, 1], ord) + TaylorSeries.mul!(tmp3226[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) + TaylorSeries.mul!(tmp3227[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3228[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp3229[i, j, 2], tmp3227[i, j, 2], tmp3228[i, j, 2], ord) + TaylorSeries.mul!(tmp3230[i, j, 2, 2], tmp3226[i, j, 2, 2], tmp3229[i, j, 2], ord) + TaylorSeries.add!(tmp3231[i, j, 2, 1], tmp3225[i, j, 2, 1], tmp3230[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ξ[i, j], tmp3231[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3233[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) + TaylorSeries.mul!(tmp3234[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3235[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(tmp3236[i, j, 1], tmp3234[i, j, 1], tmp3235[i, j, 1], ord) + TaylorSeries.mul!(tmp3237[i, j, 2, 1], tmp3233[i, j, 2, 1], tmp3236[i, j, 1], ord) + TaylorSeries.mul!(tmp3238[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) + TaylorSeries.mul!(tmp3239[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3240[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.subst!(tmp3241[i, j, 2], tmp3239[i, j, 2], tmp3240[i, j, 2], ord) + TaylorSeries.mul!(tmp3242[i, j, 2, 2], tmp3238[i, j, 2, 2], tmp3241[i, j, 2], ord) + TaylorSeries.add!(tmp3243[i, j, 2, 1], tmp3237[i, j, 2, 1], tmp3242[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_η[i, j], tmp3243[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3245[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3246[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp3247[i, j, 1], tmp3245[i, j, 1], tmp3246[i, j, 1], ord) + TaylorSeries.mul!(tmp3248[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp3247[i, j, 1], ord) + TaylorSeries.mul!(tmp3249[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3250[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp3251[i, j, 2], tmp3249[i, j, 2], tmp3250[i, j, 2], ord) + TaylorSeries.mul!(tmp3252[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp3251[i, j, 2], ord) + TaylorSeries.add!(tmp3253[i, j, 2, 1], tmp3248[i, j, 2, 1], tmp3252[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ζ[i, j], tmp3253[i, j, 2, 1], r_p4[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_η_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], zero_q_1, ord) @@ -10297,32 +11113,32 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(Cnm_sinmλ[i, j, n, m], CM[n, m], sin_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_cosmλ[i, j, n, m], SM[n, m], cos_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_sinmλ[i, j, n, m], SM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(tmp3799[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) - TaylorSeries.add!(tmp3800[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3801[i, j, n, m], tmp3799[i, j, n, m], tmp3800[i, j, n, m], ord) - TaylorSeries.div!(tmp3802[i, j, n, m], tmp3801[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp3802[i, j, n, m], F_CS_ξ_36[i, j], ord) - TaylorSeries.mul!(tmp3804[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) - TaylorSeries.subst!(tmp3805[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3806[i, j, n, m], tmp3804[i, j, n, m], tmp3805[i, j, n, m], ord) - TaylorSeries.div!(tmp3807[i, j, n, m], tmp3806[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp3807[i, j, n, m], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3809[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3810[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp3809[i, j, n, m], ord) - TaylorSeries.div!(tmp3811[i, j, n, m], tmp3810[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp3811[i, j, n, m], F_CS_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp3259[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) + TaylorSeries.add!(tmp3260[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3261[i, j, n, m], tmp3259[i, j, n, m], tmp3260[i, j, n, m], ord) + TaylorSeries.div!(tmp3262[i, j, n, m], tmp3261[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp3262[i, j, n, m], F_CS_ξ_36[i, j], ord) + TaylorSeries.mul!(tmp3264[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) + TaylorSeries.subst!(tmp3265[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3266[i, j, n, m], tmp3264[i, j, n, m], tmp3265[i, j, n, m], ord) + TaylorSeries.div!(tmp3267[i, j, n, m], tmp3266[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp3267[i, j, n, m], F_CS_η_36[i, j], ord) + TaylorSeries.add!(tmp3269[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3270[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp3269[i, j, n, m], ord) + TaylorSeries.div!(tmp3271[i, j, n, m], tmp3270[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp3271[i, j, n, m], F_CS_ζ_36[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], temp_CS_ξ[i, j, n, m], ord) TaylorSeries.identity!(F_CS_η_36[i, j], temp_CS_η[i, j, n, m], ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], temp_CS_ζ[i, j, n, m], ord) end end - TaylorSeries.add!(tmp3813[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.add!(tmp3814[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ξ[i, j], tmp3813[i, j], tmp3814[i, j], ord) + TaylorSeries.add!(tmp3273[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) + TaylorSeries.add!(tmp3274[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ξ[i, j], tmp3273[i, j], tmp3274[i, j], ord) TaylorSeries.add!(F_JCS_η[i, j], F_CS_η[i, j], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3817[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - TaylorSeries.add!(tmp3818[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ζ[i, j], tmp3817[i, j], tmp3818[i, j], ord) + TaylorSeries.add!(tmp3277[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) + TaylorSeries.add!(tmp3278[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ζ[i, j], tmp3277[i, j], tmp3278[i, j], ord) else TaylorSeries.add!(F_JCS_ξ[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) TaylorSeries.identity!(F_JCS_η[i, j], zero_q_1, ord) @@ -10330,75 +11146,75 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract end TaylorSeries.mul!(Rb2p[i, j, 1, 1], cos_ϕ[i, j], cos_λ[i, j], ord) TaylorSeries.subst!(Rb2p[i, j, 2, 1], sin_λ[i, j], ord) - TaylorSeries.subst!(tmp3824[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp3824[i, j], cos_λ[i, j], ord) + TaylorSeries.subst!(tmp3284[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp3284[i, j], cos_λ[i, j], ord) TaylorSeries.mul!(Rb2p[i, j, 1, 2], cos_ϕ[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 2], cos_λ[i, j], ord) - TaylorSeries.subst!(tmp3827[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp3827[i, j], sin_λ[i, j], ord) + TaylorSeries.subst!(tmp3287[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp3287[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 1, 3], sin_ϕ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 3], zero_q_1, ord) TaylorSeries.identity!(Rb2p[i, j, 3, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3829[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3830[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3831[i, j, 1, 1], tmp3829[i, j, 1, 1], tmp3830[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3832[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp3831[i, j, 1, 1], tmp3832[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3834[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3835[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3836[i, j, 2, 1], tmp3834[i, j, 2, 1], tmp3835[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3837[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp3836[i, j, 2, 1], tmp3837[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3839[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3840[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3841[i, j, 3, 1], tmp3839[i, j, 3, 1], tmp3840[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3842[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp3841[i, j, 3, 1], tmp3842[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3844[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3845[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3846[i, j, 1, 1], tmp3844[i, j, 1, 1], tmp3845[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3847[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp3846[i, j, 1, 1], tmp3847[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3849[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3850[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3851[i, j, 2, 1], tmp3849[i, j, 2, 1], tmp3850[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3852[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp3851[i, j, 2, 1], tmp3852[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3854[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3855[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3856[i, j, 3, 1], tmp3854[i, j, 3, 1], tmp3855[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3857[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp3856[i, j, 3, 1], tmp3857[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3859[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3860[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3861[i, j, 1, 1], tmp3859[i, j, 1, 1], tmp3860[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3862[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp3861[i, j, 1, 1], tmp3862[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3864[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3865[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3866[i, j, 2, 1], tmp3864[i, j, 2, 1], tmp3865[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3867[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp3866[i, j, 2, 1], tmp3867[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3869[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3870[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3871[i, j, 3, 1], tmp3869[i, j, 3, 1], tmp3870[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3872[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp3871[i, j, 3, 1], tmp3872[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3874[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) - TaylorSeries.mul!(tmp3875[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) - TaylorSeries.add!(tmp3876[i, j, 1, 1], tmp3874[i, j, 1, 1], tmp3875[i, j, 2, 1], ord) - TaylorSeries.mul!(tmp3877[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) - TaylorSeries.add!(F_JCS_x[i, j], tmp3876[i, j, 1, 1], tmp3877[i, j, 3, 1], ord) - TaylorSeries.mul!(tmp3879[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3880[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) - TaylorSeries.add!(tmp3881[i, j, 1, 2], tmp3879[i, j, 1, 2], tmp3880[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3882[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) - TaylorSeries.add!(F_JCS_y[i, j], tmp3881[i, j, 1, 2], tmp3882[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3884[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3885[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) - TaylorSeries.add!(tmp3886[i, j, 1, 3], tmp3884[i, j, 1, 3], tmp3885[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3887[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) - TaylorSeries.add!(F_JCS_z[i, j], tmp3886[i, j, 1, 3], tmp3887[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3289[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3290[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp3291[i, j, 1, 1], tmp3289[i, j, 1, 1], tmp3290[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3292[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp3291[i, j, 1, 1], tmp3292[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3294[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3295[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp3296[i, j, 2, 1], tmp3294[i, j, 2, 1], tmp3295[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3297[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp3296[i, j, 2, 1], tmp3297[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3299[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3300[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp3301[i, j, 3, 1], tmp3299[i, j, 3, 1], tmp3300[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3302[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp3301[i, j, 3, 1], tmp3302[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3304[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3305[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp3306[i, j, 1, 1], tmp3304[i, j, 1, 1], tmp3305[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3307[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp3306[i, j, 1, 1], tmp3307[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3309[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3310[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp3311[i, j, 2, 1], tmp3309[i, j, 2, 1], tmp3310[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3312[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp3311[i, j, 2, 1], tmp3312[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3314[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3315[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp3316[i, j, 3, 1], tmp3314[i, j, 3, 1], tmp3315[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3317[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp3316[i, j, 3, 1], tmp3317[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3319[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3320[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3321[i, j, 1, 1], tmp3319[i, j, 1, 1], tmp3320[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3322[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp3321[i, j, 1, 1], tmp3322[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3324[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3325[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3326[i, j, 2, 1], tmp3324[i, j, 2, 1], tmp3325[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3327[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp3326[i, j, 2, 1], tmp3327[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3329[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3330[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3331[i, j, 3, 1], tmp3329[i, j, 3, 1], tmp3330[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3332[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp3331[i, j, 3, 1], tmp3332[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3334[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) + TaylorSeries.mul!(tmp3335[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) + TaylorSeries.add!(tmp3336[i, j, 1, 1], tmp3334[i, j, 1, 1], tmp3335[i, j, 2, 1], ord) + TaylorSeries.mul!(tmp3337[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) + TaylorSeries.add!(F_JCS_x[i, j], tmp3336[i, j, 1, 1], tmp3337[i, j, 3, 1], ord) + TaylorSeries.mul!(tmp3339[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3340[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) + TaylorSeries.add!(tmp3341[i, j, 1, 2], tmp3339[i, j, 1, 2], tmp3340[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3342[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) + TaylorSeries.add!(F_JCS_y[i, j], tmp3341[i, j, 1, 2], tmp3342[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3344[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3345[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) + TaylorSeries.add!(tmp3346[i, j, 1, 3], tmp3344[i, j, 1, 3], tmp3345[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3347[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) + TaylorSeries.add!(F_JCS_z[i, j], tmp3346[i, j, 1, 3], tmp3347[i, j, 3, 3], ord) end end end @@ -10409,37 +11225,37 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract continue else if UJ_interaction[i, j] - TaylorSeries.mul!(tmp3889[i, j], μ[i], F_JCS_x[i, j], ord) - TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp3889[i, j], ord) + TaylorSeries.mul!(tmp3349[i, j], μ[i], F_JCS_x[i, j], ord) + TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp3349[i, j], ord) TaylorSeries.identity!(accX[j], temp_accX_j[i, j], ord) - TaylorSeries.mul!(tmp3891[i, j], μ[i], F_JCS_y[i, j], ord) - TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp3891[i, j], ord) + TaylorSeries.mul!(tmp3351[i, j], μ[i], F_JCS_y[i, j], ord) + TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp3351[i, j], ord) TaylorSeries.identity!(accY[j], temp_accY_j[i, j], ord) - TaylorSeries.mul!(tmp3893[i, j], μ[i], F_JCS_z[i, j], ord) - TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp3893[i, j], ord) + TaylorSeries.mul!(tmp3353[i, j], μ[i], F_JCS_z[i, j], ord) + TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp3353[i, j], ord) TaylorSeries.identity!(accZ[j], temp_accZ_j[i, j], ord) - TaylorSeries.mul!(tmp3895[i, j], μ[j], F_JCS_x[i, j], ord) - TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp3895[i, j], ord) + TaylorSeries.mul!(tmp3355[i, j], μ[j], F_JCS_x[i, j], ord) + TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp3355[i, j], ord) TaylorSeries.identity!(accX[i], temp_accX_i[i, j], ord) - TaylorSeries.mul!(tmp3897[i, j], μ[j], F_JCS_y[i, j], ord) - TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp3897[i, j], ord) + TaylorSeries.mul!(tmp3357[i, j], μ[j], F_JCS_y[i, j], ord) + TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp3357[i, j], ord) TaylorSeries.identity!(accY[i], temp_accY_i[i, j], ord) - TaylorSeries.mul!(tmp3899[i, j], μ[j], F_JCS_z[i, j], ord) - TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp3899[i, j], ord) + TaylorSeries.mul!(tmp3359[i, j], μ[j], F_JCS_z[i, j], ord) + TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp3359[i, j], ord) TaylorSeries.identity!(accZ[i], temp_accZ_i[i, j], ord) if j == mo - TaylorSeries.mul!(tmp3901[i, j], Y[i, j], F_JCS_z[i, j], ord) - TaylorSeries.mul!(tmp3902[i, j], Z[i, j], F_JCS_y[i, j], ord) - TaylorSeries.subst!(tmp3903[i, j], tmp3901[i, j], tmp3902[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp3903[i, j], ord) - TaylorSeries.mul!(tmp3905[i, j], Z[i, j], F_JCS_x[i, j], ord) - TaylorSeries.mul!(tmp3906[i, j], X[i, j], F_JCS_z[i, j], ord) - TaylorSeries.subst!(tmp3907[i, j], tmp3905[i, j], tmp3906[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp3907[i, j], ord) - TaylorSeries.mul!(tmp3909[i, j], X[i, j], F_JCS_y[i, j], ord) - TaylorSeries.mul!(tmp3910[i, j], Y[i, j], F_JCS_x[i, j], ord) - TaylorSeries.subst!(tmp3911[i, j], tmp3909[i, j], tmp3910[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp3911[i, j], ord) + TaylorSeries.mul!(tmp3361[i, j], Y[i, j], F_JCS_z[i, j], ord) + TaylorSeries.mul!(tmp3362[i, j], Z[i, j], F_JCS_y[i, j], ord) + TaylorSeries.subst!(tmp3363[i, j], tmp3361[i, j], tmp3362[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp3363[i, j], ord) + TaylorSeries.mul!(tmp3365[i, j], Z[i, j], F_JCS_x[i, j], ord) + TaylorSeries.mul!(tmp3366[i, j], X[i, j], F_JCS_z[i, j], ord) + TaylorSeries.subst!(tmp3367[i, j], tmp3365[i, j], tmp3366[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp3367[i, j], ord) + TaylorSeries.mul!(tmp3369[i, j], X[i, j], F_JCS_y[i, j], ord) + TaylorSeries.mul!(tmp3370[i, j], Y[i, j], F_JCS_x[i, j], ord) + TaylorSeries.subst!(tmp3371[i, j], tmp3369[i, j], tmp3370[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp3371[i, j], ord) TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], N_MfigM_pmA_x[i], ord) TaylorSeries.identity!(N_MfigM[1], temp_N_M_x[i], ord) TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], N_MfigM_pmA_y[i], ord) @@ -10451,7 +11267,7 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract end end end - #= In[6]:713 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1619 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -10460,18 +11276,18 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.add!(ϕi_plus_4ϕj[i, j], newtonianNb_Potential[i], _4ϕj[i, j], ord) TaylorSeries.mul!(_2v2[i, j], 2, v2[i], ord) TaylorSeries.add!(sj2_plus_2si2[i, j], v2[j], _2v2[i, j], ord) - TaylorSeries.mul!(tmp3923[i, j], 4, vi_dot_vj[i, j], ord) - TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp3923[i, j], ord) + TaylorSeries.mul!(tmp3383[i, j], 4, vi_dot_vj[i, j], ord) + TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp3383[i, j], ord) TaylorSeries.subst!(ϕs_and_vs[i, j], sj2_plus_2si2_minus_4vivj[i, j], ϕi_plus_4ϕj[i, j], ord) TaylorSeries.mul!(Xij_t_Ui[i, j], X[i, j], dq[3i - 2], ord) TaylorSeries.mul!(Yij_t_Vi[i, j], Y[i, j], dq[3i - 1], ord) TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) - TaylorSeries.add!(tmp3929[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) - TaylorSeries.add!(Rij_dot_Vi[i, j], tmp3929[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp3932[i, j], Rij_dot_Vi[i, j], 2, ord) - TaylorSeries.div!(rij_dot_vi_div_rij_sq[i, j], tmp3932[i, j], r_p2[i, j], ord) - TaylorSeries.mul!(tmp3935[i, j], 1.5, rij_dot_vi_div_rij_sq[i, j], ord) - TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp3935[i, j], ord) + TaylorSeries.add!(tmp3389[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) + TaylorSeries.add!(Rij_dot_Vi[i, j], tmp3389[i, j], Zij_t_Wi[i, j], ord) + TaylorSeries.pow!(tmp3392[i, j], Rij_dot_Vi[i, j], 2, ord) + TaylorSeries.div!(rij_dot_vi_div_rij_sq[i, j], tmp3392[i, j], r_p2[i, j], ord) + TaylorSeries.mul!(tmp3395[i, j], 1.5, rij_dot_vi_div_rij_sq[i, j], ord) + TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp3395[i, j], ord) TaylorSeries.add!(pn1t1_7[i, j], c_p2, pn1t2_7[i, j], ord) end end @@ -10479,7 +11295,7 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(pntempY[j], zero_q_1, ord) TaylorSeries.identity!(pntempZ[j], zero_q_1, ord) end - #= In[6]:752 =# Threads.@threads for j = 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1658 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -10487,26 +11303,26 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(pNX_t_X[i, j], newtonX[i], X[i, j], ord) TaylorSeries.mul!(pNY_t_Y[i, j], newtonY[i], Y[i, j], ord) TaylorSeries.mul!(pNZ_t_Z[i, j], newtonZ[i], Z[i, j], ord) - TaylorSeries.add!(tmp3942[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) - TaylorSeries.add!(tmp3943[i, j], tmp3942[i, j], pNZ_t_Z[i, j], ord) - TaylorSeries.mul!(tmp3944[i, j], 0.5, tmp3943[i, j], ord) - TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp3944[i, j], ord) + TaylorSeries.add!(tmp3402[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) + TaylorSeries.add!(tmp3403[i, j], tmp3402[i, j], pNZ_t_Z[i, j], ord) + TaylorSeries.mul!(tmp3404[i, j], 0.5, tmp3403[i, j], ord) + TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp3404[i, j], ord) TaylorSeries.mul!(X_t_pn1[i, j], newton_acc_X[i, j], pn1[i, j], ord) TaylorSeries.mul!(Y_t_pn1[i, j], newton_acc_Y[i, j], pn1[i, j], ord) TaylorSeries.mul!(Z_t_pn1[i, j], newton_acc_Z[i, j], pn1[i, j], ord) TaylorSeries.mul!(pNX_t_pn3[i, j], newtonX[i], pn3[i, j], ord) TaylorSeries.mul!(pNY_t_pn3[i, j], newtonY[i], pn3[i, j], ord) TaylorSeries.mul!(pNZ_t_pn3[i, j], newtonZ[i], pn3[i, j], ord) - TaylorSeries.add!(tmp3952[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) - TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp3952[i, j], ord) + TaylorSeries.add!(tmp3412[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) + TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp3412[i, j], ord) TaylorSeries.add!(sumpnx[i, j], pntempX[j], termpnx[i, j], ord) TaylorSeries.identity!(pntempX[j], sumpnx[i, j], ord) - TaylorSeries.add!(tmp3955[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) - TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp3955[i, j], ord) + TaylorSeries.add!(tmp3415[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) + TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp3415[i, j], ord) TaylorSeries.add!(sumpny[i, j], pntempY[j], termpny[i, j], ord) TaylorSeries.identity!(pntempY[j], sumpny[i, j], ord) - TaylorSeries.add!(tmp3958[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) - TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp3958[i, j], ord) + TaylorSeries.add!(tmp3418[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) + TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp3418[i, j], ord) TaylorSeries.add!(sumpnz[i, j], pntempZ[j], termpnz[i, j], ord) TaylorSeries.identity!(pntempZ[j], sumpnz[i, j], ord) end @@ -10518,9 +11334,9 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x0s_M, r_star_M_0[1], ord) TaylorSeries.identity!(y0s_M, r_star_M_0[2], ord) TaylorSeries.identity!(z0s_M, r_star_M_0[3], ord) - TaylorSeries.pow!(tmp3965, x0s_M, 2, ord) - TaylorSeries.pow!(tmp3967, y0s_M, 2, ord) - TaylorSeries.add!(ρ0s2_M, tmp3965, tmp3967, ord) + TaylorSeries.pow!(tmp3425, x0s_M, 2, ord) + TaylorSeries.pow!(tmp3427, y0s_M, 2, ord) + TaylorSeries.add!(ρ0s2_M, tmp3425, tmp3427, ord) TaylorSeries.sqrt!(ρ0s_M, ρ0s2_M, ord) TaylorSeries.pow!(z0s2_M, z0s_M, 2, ord) TaylorSeries.add!(r0s2_M, ρ0s2_M, z0s2_M, ord) @@ -10529,60 +11345,60 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x0s_S, r_star_S_0[1], ord) TaylorSeries.identity!(y0s_S, r_star_S_0[2], ord) TaylorSeries.identity!(z0s_S, r_star_S_0[3], ord) - TaylorSeries.pow!(tmp3977, x0s_S, 2, ord) - TaylorSeries.pow!(tmp3979, y0s_S, 2, ord) - TaylorSeries.add!(ρ0s2_S, tmp3977, tmp3979, ord) + TaylorSeries.pow!(tmp3437, x0s_S, 2, ord) + TaylorSeries.pow!(tmp3439, y0s_S, 2, ord) + TaylorSeries.add!(ρ0s2_S, tmp3437, tmp3439, ord) TaylorSeries.sqrt!(ρ0s_S, ρ0s2_S, ord) TaylorSeries.pow!(z0s2_S, z0s_S, 2, ord) TaylorSeries.add!(r0s2_S, ρ0s2_S, z0s2_S, ord) TaylorSeries.sqrt!(r0s_S, r0s2_S, ord) TaylorSeries.pow!(r0s5_S, r0s_S, 5, ord) - TaylorSeries.mul!(tmp3989, Z_bf[mo, ea], r_star_M_0[3], ord) - TaylorSeries.pow!(tmp3991, tmp3989, 2, ord) - TaylorSeries.mul!(tmp3993, r_xy[mo, ea], ρ0s_M, ord) - TaylorSeries.pow!(tmp3995, tmp3993, 2, ord) - TaylorSeries.mul!(tmp3996, 0.5, tmp3995, ord) - TaylorSeries.add!(tmp3997, tmp3991, tmp3996, ord) - TaylorSeries.div!(tmp3998, tmp3997, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp3999, 5, tmp3998, ord) - TaylorSeries.subst!(coeff0_M, r0s2_M, tmp3999, ord) - TaylorSeries.mul!(tmp4002, Z_bf[mo, ea], r_star_S_0[3], ord) - TaylorSeries.pow!(tmp4004, tmp4002, 2, ord) - TaylorSeries.mul!(tmp4006, r_xy[mo, ea], ρ0s_S, ord) - TaylorSeries.pow!(tmp4008, tmp4006, 2, ord) - TaylorSeries.mul!(tmp4009, 0.5, tmp4008, ord) - TaylorSeries.add!(tmp4010, tmp4004, tmp4009, ord) - TaylorSeries.div!(tmp4011, tmp4010, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp4012, 5, tmp4011, ord) - TaylorSeries.subst!(coeff0_S, r0s2_S, tmp4012, ord) + TaylorSeries.mul!(tmp3449, Z_bf[mo, ea], r_star_M_0[3], ord) + TaylorSeries.pow!(tmp3451, tmp3449, 2, ord) + TaylorSeries.mul!(tmp3453, r_xy[mo, ea], ρ0s_M, ord) + TaylorSeries.pow!(tmp3455, tmp3453, 2, ord) + TaylorSeries.mul!(tmp3456, 0.5, tmp3455, ord) + TaylorSeries.add!(tmp3457, tmp3451, tmp3456, ord) + TaylorSeries.div!(tmp3458, tmp3457, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3459, 5, tmp3458, ord) + TaylorSeries.subst!(coeff0_M, r0s2_M, tmp3459, ord) + TaylorSeries.mul!(tmp3462, Z_bf[mo, ea], r_star_S_0[3], ord) + TaylorSeries.pow!(tmp3464, tmp3462, 2, ord) + TaylorSeries.mul!(tmp3466, r_xy[mo, ea], ρ0s_S, ord) + TaylorSeries.pow!(tmp3468, tmp3466, 2, ord) + TaylorSeries.mul!(tmp3469, 0.5, tmp3468, ord) + TaylorSeries.add!(tmp3470, tmp3464, tmp3469, ord) + TaylorSeries.div!(tmp3471, tmp3470, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3472, 5, tmp3471, ord) + TaylorSeries.subst!(coeff0_S, r0s2_S, tmp3472, ord) TaylorSeries.div!(k_20E_div_r0s5_M, k_20E, r0s5_M, ord) TaylorSeries.div!(k_20E_div_r0s5_S, k_20E, r0s5_S, ord) - TaylorSeries.add!(tmp4016, ρ0s2_M, coeff0_M, ord) - TaylorSeries.mul!(tmp4017, k_20E_div_r0s5_M, tmp4016, ord) - TaylorSeries.mul!(a_tid_0_M_x, tmp4017, X_bf[mo, ea], ord) - TaylorSeries.add!(tmp4019, ρ0s2_M, coeff0_M, ord) - TaylorSeries.mul!(tmp4020, k_20E_div_r0s5_M, tmp4019, ord) - TaylorSeries.mul!(a_tid_0_M_y, tmp4020, Y_bf[mo, ea], ord) - TaylorSeries.mul!(tmp4023, 2, z0s2_M, ord) - TaylorSeries.add!(tmp4024, tmp4023, coeff0_M, ord) - TaylorSeries.mul!(tmp4025, k_20E_div_r0s5_M, tmp4024, ord) - TaylorSeries.mul!(a_tid_0_M_z, tmp4025, Z_bf[mo, ea], ord) - TaylorSeries.add!(tmp4027, ρ0s2_S, coeff0_S, ord) - TaylorSeries.mul!(tmp4028, k_20E_div_r0s5_S, tmp4027, ord) - TaylorSeries.mul!(a_tid_0_S_x, tmp4028, X_bf[mo, ea], ord) - TaylorSeries.add!(tmp4030, ρ0s2_S, coeff0_S, ord) - TaylorSeries.mul!(tmp4031, k_20E_div_r0s5_S, tmp4030, ord) - TaylorSeries.mul!(a_tid_0_S_y, tmp4031, Y_bf[mo, ea], ord) - TaylorSeries.mul!(tmp4034, 2, z0s2_S, ord) - TaylorSeries.add!(tmp4035, tmp4034, coeff0_S, ord) - TaylorSeries.mul!(tmp4036, k_20E_div_r0s5_S, tmp4035, ord) - TaylorSeries.mul!(a_tid_0_S_z, tmp4036, Z_bf[mo, ea], ord) + TaylorSeries.add!(tmp3476, ρ0s2_M, coeff0_M, ord) + TaylorSeries.mul!(tmp3477, k_20E_div_r0s5_M, tmp3476, ord) + TaylorSeries.mul!(a_tid_0_M_x, tmp3477, X_bf[mo, ea], ord) + TaylorSeries.add!(tmp3479, ρ0s2_M, coeff0_M, ord) + TaylorSeries.mul!(tmp3480, k_20E_div_r0s5_M, tmp3479, ord) + TaylorSeries.mul!(a_tid_0_M_y, tmp3480, Y_bf[mo, ea], ord) + TaylorSeries.mul!(tmp3483, 2, z0s2_M, ord) + TaylorSeries.add!(tmp3484, tmp3483, coeff0_M, ord) + TaylorSeries.mul!(tmp3485, k_20E_div_r0s5_M, tmp3484, ord) + TaylorSeries.mul!(a_tid_0_M_z, tmp3485, Z_bf[mo, ea], ord) + TaylorSeries.add!(tmp3487, ρ0s2_S, coeff0_S, ord) + TaylorSeries.mul!(tmp3488, k_20E_div_r0s5_S, tmp3487, ord) + TaylorSeries.mul!(a_tid_0_S_x, tmp3488, X_bf[mo, ea], ord) + TaylorSeries.add!(tmp3490, ρ0s2_S, coeff0_S, ord) + TaylorSeries.mul!(tmp3491, k_20E_div_r0s5_S, tmp3490, ord) + TaylorSeries.mul!(a_tid_0_S_y, tmp3491, Y_bf[mo, ea], ord) + TaylorSeries.mul!(tmp3494, 2, z0s2_S, ord) + TaylorSeries.add!(tmp3495, tmp3494, coeff0_S, ord) + TaylorSeries.mul!(tmp3496, k_20E_div_r0s5_S, tmp3495, ord) + TaylorSeries.mul!(a_tid_0_S_z, tmp3496, Z_bf[mo, ea], ord) TaylorSeries.identity!(x1s_M, r_star_M_1[1], ord) TaylorSeries.identity!(y1s_M, r_star_M_1[2], ord) TaylorSeries.identity!(z1s_M, r_star_M_1[3], ord) - TaylorSeries.pow!(tmp4039, x1s_M, 2, ord) - TaylorSeries.pow!(tmp4041, y1s_M, 2, ord) - TaylorSeries.add!(ρ1s2_M, tmp4039, tmp4041, ord) + TaylorSeries.pow!(tmp3499, x1s_M, 2, ord) + TaylorSeries.pow!(tmp3501, y1s_M, 2, ord) + TaylorSeries.add!(ρ1s2_M, tmp3499, tmp3501, ord) TaylorSeries.sqrt!(ρ1s_M, ρ1s2_M, ord) TaylorSeries.pow!(z1s2_M, z1s_M, 2, ord) TaylorSeries.add!(r1s2_M, ρ1s2_M, z1s2_M, ord) @@ -10591,66 +11407,66 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x1s_S, r_star_S_1[1], ord) TaylorSeries.identity!(y1s_S, r_star_S_1[2], ord) TaylorSeries.identity!(z1s_S, r_star_S_1[3], ord) - TaylorSeries.pow!(tmp4051, x1s_S, 2, ord) - TaylorSeries.pow!(tmp4053, y1s_S, 2, ord) - TaylorSeries.add!(ρ1s2_S, tmp4051, tmp4053, ord) + TaylorSeries.pow!(tmp3511, x1s_S, 2, ord) + TaylorSeries.pow!(tmp3513, y1s_S, 2, ord) + TaylorSeries.add!(ρ1s2_S, tmp3511, tmp3513, ord) TaylorSeries.sqrt!(ρ1s_S, ρ1s2_S, ord) TaylorSeries.pow!(z1s2_S, z1s_S, 2, ord) TaylorSeries.add!(r1s2_S, ρ1s2_S, z1s2_S, ord) TaylorSeries.sqrt!(r1s_S, r1s2_S, ord) TaylorSeries.pow!(r1s5_S, r1s_S, 5, ord) - TaylorSeries.mul!(tmp4062, X_bf[mo, ea], r_star_M_1[1], ord) - TaylorSeries.mul!(tmp4063, Y_bf[mo, ea], r_star_M_1[2], ord) - TaylorSeries.add!(coeff1_1_M, tmp4062, tmp4063, ord) - TaylorSeries.mul!(tmp4065, X_bf[mo, ea], r_star_S_1[1], ord) - TaylorSeries.mul!(tmp4066, Y_bf[mo, ea], r_star_S_1[2], ord) - TaylorSeries.add!(coeff1_1_S, tmp4065, tmp4066, ord) + TaylorSeries.mul!(tmp3522, X_bf[mo, ea], r_star_M_1[1], ord) + TaylorSeries.mul!(tmp3523, Y_bf[mo, ea], r_star_M_1[2], ord) + TaylorSeries.add!(coeff1_1_M, tmp3522, tmp3523, ord) + TaylorSeries.mul!(tmp3525, X_bf[mo, ea], r_star_S_1[1], ord) + TaylorSeries.mul!(tmp3526, Y_bf[mo, ea], r_star_S_1[2], ord) + TaylorSeries.add!(coeff1_1_S, tmp3525, tmp3526, ord) TaylorSeries.mul!(coeff2_1_M, Z_bf[mo, ea], r_star_M_1[3], ord) TaylorSeries.mul!(coeff2_1_S, Z_bf[mo, ea], r_star_S_1[3], ord) - TaylorSeries.mul!(tmp4071, 10, coeff1_1_M, ord) - TaylorSeries.mul!(tmp4072, tmp4071, coeff2_1_M, ord) - TaylorSeries.div!(coeff3_1_M, tmp4072, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp4075, 10, coeff1_1_S, ord) - TaylorSeries.mul!(tmp4076, tmp4075, coeff2_1_S, ord) - TaylorSeries.div!(coeff3_1_S, tmp4076, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3531, 10, coeff1_1_M, ord) + TaylorSeries.mul!(tmp3532, tmp3531, coeff2_1_M, ord) + TaylorSeries.div!(coeff3_1_M, tmp3532, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3535, 10, coeff1_1_S, ord) + TaylorSeries.mul!(tmp3536, tmp3535, coeff2_1_S, ord) + TaylorSeries.div!(coeff3_1_S, tmp3536, r_p2[mo, ea], ord) TaylorSeries.div!(k_21E_div_r1s5_M, k_21E, r1s5_M, ord) TaylorSeries.div!(k_21E_div_r1s5_S, k_21E, r1s5_S, ord) - TaylorSeries.mul!(tmp4081, 2, coeff2_1_M, ord) - TaylorSeries.mul!(tmp4082, tmp4081, r_star_M_1[1], ord) - TaylorSeries.mul!(tmp4083, coeff3_1_M, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4084, tmp4082, tmp4083, ord) - TaylorSeries.mul!(a_tid_1_M_x, k_21E_div_r1s5_M, tmp4084, ord) - TaylorSeries.mul!(tmp4087, 2, coeff2_1_M, ord) - TaylorSeries.mul!(tmp4088, tmp4087, r_star_M_1[2], ord) - TaylorSeries.mul!(tmp4089, coeff3_1_M, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4090, tmp4088, tmp4089, ord) - TaylorSeries.mul!(a_tid_1_M_y, k_21E_div_r1s5_M, tmp4090, ord) - TaylorSeries.mul!(tmp4093, 2, coeff1_1_M, ord) - TaylorSeries.mul!(tmp4094, tmp4093, r_star_M_1[3], ord) - TaylorSeries.mul!(tmp4095, coeff3_1_M, Z_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4096, tmp4094, tmp4095, ord) - TaylorSeries.mul!(a_tid_1_M_z, k_21E_div_r1s5_M, tmp4096, ord) - TaylorSeries.mul!(tmp4099, 2, coeff2_1_S, ord) - TaylorSeries.mul!(tmp4100, tmp4099, r_star_S_1[1], ord) - TaylorSeries.mul!(tmp4101, coeff3_1_S, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4102, tmp4100, tmp4101, ord) - TaylorSeries.mul!(a_tid_1_S_x, k_21E_div_r1s5_S, tmp4102, ord) - TaylorSeries.mul!(tmp4105, 2, coeff2_1_S, ord) - TaylorSeries.mul!(tmp4106, tmp4105, r_star_S_1[2], ord) - TaylorSeries.mul!(tmp4107, coeff3_1_S, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4108, tmp4106, tmp4107, ord) - TaylorSeries.mul!(a_tid_1_S_y, k_21E_div_r1s5_S, tmp4108, ord) - TaylorSeries.mul!(tmp4111, 2, coeff1_1_S, ord) - TaylorSeries.mul!(tmp4112, tmp4111, r_star_S_1[3], ord) - TaylorSeries.mul!(tmp4113, coeff3_1_S, Z_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4114, tmp4112, tmp4113, ord) - TaylorSeries.mul!(a_tid_1_S_z, k_21E_div_r1s5_S, tmp4114, ord) + TaylorSeries.mul!(tmp3541, 2, coeff2_1_M, ord) + TaylorSeries.mul!(tmp3542, tmp3541, r_star_M_1[1], ord) + TaylorSeries.mul!(tmp3543, coeff3_1_M, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3544, tmp3542, tmp3543, ord) + TaylorSeries.mul!(a_tid_1_M_x, k_21E_div_r1s5_M, tmp3544, ord) + TaylorSeries.mul!(tmp3547, 2, coeff2_1_M, ord) + TaylorSeries.mul!(tmp3548, tmp3547, r_star_M_1[2], ord) + TaylorSeries.mul!(tmp3549, coeff3_1_M, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3550, tmp3548, tmp3549, ord) + TaylorSeries.mul!(a_tid_1_M_y, k_21E_div_r1s5_M, tmp3550, ord) + TaylorSeries.mul!(tmp3553, 2, coeff1_1_M, ord) + TaylorSeries.mul!(tmp3554, tmp3553, r_star_M_1[3], ord) + TaylorSeries.mul!(tmp3555, coeff3_1_M, Z_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3556, tmp3554, tmp3555, ord) + TaylorSeries.mul!(a_tid_1_M_z, k_21E_div_r1s5_M, tmp3556, ord) + TaylorSeries.mul!(tmp3559, 2, coeff2_1_S, ord) + TaylorSeries.mul!(tmp3560, tmp3559, r_star_S_1[1], ord) + TaylorSeries.mul!(tmp3561, coeff3_1_S, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3562, tmp3560, tmp3561, ord) + TaylorSeries.mul!(a_tid_1_S_x, k_21E_div_r1s5_S, tmp3562, ord) + TaylorSeries.mul!(tmp3565, 2, coeff2_1_S, ord) + TaylorSeries.mul!(tmp3566, tmp3565, r_star_S_1[2], ord) + TaylorSeries.mul!(tmp3567, coeff3_1_S, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3568, tmp3566, tmp3567, ord) + TaylorSeries.mul!(a_tid_1_S_y, k_21E_div_r1s5_S, tmp3568, ord) + TaylorSeries.mul!(tmp3571, 2, coeff1_1_S, ord) + TaylorSeries.mul!(tmp3572, tmp3571, r_star_S_1[3], ord) + TaylorSeries.mul!(tmp3573, coeff3_1_S, Z_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3574, tmp3572, tmp3573, ord) + TaylorSeries.mul!(a_tid_1_S_z, k_21E_div_r1s5_S, tmp3574, ord) TaylorSeries.identity!(x2s_M, r_star_M_2[1], ord) TaylorSeries.identity!(y2s_M, r_star_M_2[2], ord) TaylorSeries.identity!(z2s_M, r_star_M_2[3], ord) - TaylorSeries.pow!(tmp4117, x2s_M, 2, ord) - TaylorSeries.pow!(tmp4119, y2s_M, 2, ord) - TaylorSeries.add!(ρ2s2_M, tmp4117, tmp4119, ord) + TaylorSeries.pow!(tmp3577, x2s_M, 2, ord) + TaylorSeries.pow!(tmp3579, y2s_M, 2, ord) + TaylorSeries.add!(ρ2s2_M, tmp3577, tmp3579, ord) TaylorSeries.sqrt!(ρ2s_M, ρ2s2_M, ord) TaylorSeries.pow!(z2s2_M, z2s_M, 2, ord) TaylorSeries.add!(r2s2_M, ρ2s2_M, z2s2_M, ord) @@ -10659,433 +11475,433 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x2s_S, r_star_S_2[1], ord) TaylorSeries.identity!(y2s_S, r_star_S_2[2], ord) TaylorSeries.identity!(z2s_S, r_star_S_2[3], ord) - TaylorSeries.pow!(tmp4129, x2s_S, 2, ord) - TaylorSeries.pow!(tmp4131, y2s_S, 2, ord) - TaylorSeries.add!(ρ2s2_S, tmp4129, tmp4131, ord) + TaylorSeries.pow!(tmp3589, x2s_S, 2, ord) + TaylorSeries.pow!(tmp3591, y2s_S, 2, ord) + TaylorSeries.add!(ρ2s2_S, tmp3589, tmp3591, ord) TaylorSeries.sqrt!(ρ2s_S, ρ2s2_S, ord) TaylorSeries.pow!(z2s2_S, z2s_S, 2, ord) TaylorSeries.add!(r2s2_S, ρ2s2_S, z2s2_S, ord) TaylorSeries.sqrt!(r2s_S, r2s2_S, ord) TaylorSeries.pow!(r2s5_S, r2s_S, 5, ord) - TaylorSeries.mul!(tmp4140, X_bf[mo, ea], r_star_M_2[1], ord) - TaylorSeries.mul!(tmp4141, Y_bf[mo, ea], r_star_M_2[2], ord) - TaylorSeries.add!(coeff1_2_M, tmp4140, tmp4141, ord) - TaylorSeries.mul!(tmp4143, X_bf[mo, ea], r_star_S_2[1], ord) - TaylorSeries.mul!(tmp4144, Y_bf[mo, ea], r_star_S_2[2], ord) - TaylorSeries.add!(coeff1_2_S, tmp4143, tmp4144, ord) - TaylorSeries.pow!(tmp4148, coeff1_2_M, 2, ord) - TaylorSeries.pow!(tmp4151, r_xy[mo, ea], 2, ord) - TaylorSeries.mul!(tmp4152, 0.5, tmp4151, ord) - TaylorSeries.mul!(tmp4153, tmp4152, ρ2s2_M, ord) - TaylorSeries.subst!(tmp4154, tmp4148, tmp4153, ord) - TaylorSeries.mul!(tmp4155, 5, tmp4154, ord) - TaylorSeries.div!(coeff3_2_M, tmp4155, r_p2[mo, ea], ord) - TaylorSeries.pow!(tmp4159, coeff1_2_S, 2, ord) - TaylorSeries.pow!(tmp4162, r_xy[mo, ea], 2, ord) - TaylorSeries.mul!(tmp4163, 0.5, tmp4162, ord) - TaylorSeries.mul!(tmp4164, tmp4163, ρ2s2_S, ord) - TaylorSeries.subst!(tmp4165, tmp4159, tmp4164, ord) - TaylorSeries.mul!(tmp4166, 5, tmp4165, ord) - TaylorSeries.div!(coeff3_2_S, tmp4166, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3600, X_bf[mo, ea], r_star_M_2[1], ord) + TaylorSeries.mul!(tmp3601, Y_bf[mo, ea], r_star_M_2[2], ord) + TaylorSeries.add!(coeff1_2_M, tmp3600, tmp3601, ord) + TaylorSeries.mul!(tmp3603, X_bf[mo, ea], r_star_S_2[1], ord) + TaylorSeries.mul!(tmp3604, Y_bf[mo, ea], r_star_S_2[2], ord) + TaylorSeries.add!(coeff1_2_S, tmp3603, tmp3604, ord) + TaylorSeries.pow!(tmp3608, coeff1_2_M, 2, ord) + TaylorSeries.pow!(tmp3611, r_xy[mo, ea], 2, ord) + TaylorSeries.mul!(tmp3612, 0.5, tmp3611, ord) + TaylorSeries.mul!(tmp3613, tmp3612, ρ2s2_M, ord) + TaylorSeries.subst!(tmp3614, tmp3608, tmp3613, ord) + TaylorSeries.mul!(tmp3615, 5, tmp3614, ord) + TaylorSeries.div!(coeff3_2_M, tmp3615, r_p2[mo, ea], ord) + TaylorSeries.pow!(tmp3619, coeff1_2_S, 2, ord) + TaylorSeries.pow!(tmp3622, r_xy[mo, ea], 2, ord) + TaylorSeries.mul!(tmp3623, 0.5, tmp3622, ord) + TaylorSeries.mul!(tmp3624, tmp3623, ρ2s2_S, ord) + TaylorSeries.subst!(tmp3625, tmp3619, tmp3624, ord) + TaylorSeries.mul!(tmp3626, 5, tmp3625, ord) + TaylorSeries.div!(coeff3_2_S, tmp3626, r_p2[mo, ea], ord) TaylorSeries.div!(k_22E_div_r2s5_M, k_22E, r2s5_M, ord) TaylorSeries.div!(k_22E_div_r2s5_S, k_22E, r2s5_S, ord) - TaylorSeries.mul!(tmp4171, 2, coeff1_2_M, ord) - TaylorSeries.mul!(tmp4172, tmp4171, r_star_M_2[1], ord) - TaylorSeries.add!(tmp4173, ρ2s2_M, coeff3_2_M, ord) - TaylorSeries.mul!(tmp4174, tmp4173, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4175, tmp4172, tmp4174, ord) - TaylorSeries.mul!(a_tid_2_M_x, k_22E_div_r2s5_M, tmp4175, ord) - TaylorSeries.mul!(tmp4178, 2, coeff1_2_M, ord) - TaylorSeries.mul!(tmp4179, tmp4178, r_star_M_2[2], ord) - TaylorSeries.add!(tmp4180, ρ2s2_M, coeff3_2_M, ord) - TaylorSeries.mul!(tmp4181, tmp4180, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4182, tmp4179, tmp4181, ord) - TaylorSeries.mul!(a_tid_2_M_y, k_22E_div_r2s5_M, tmp4182, ord) - TaylorSeries.subst!(tmp4184, coeff3_2_M, ord) - TaylorSeries.mul!(tmp4185, k_22E_div_r2s5_M, tmp4184, ord) - TaylorSeries.mul!(a_tid_2_M_z, tmp4185, Z_bf[mo, ea], ord) - TaylorSeries.mul!(tmp4188, 2, coeff1_2_S, ord) - TaylorSeries.mul!(tmp4189, tmp4188, r_star_S_2[1], ord) - TaylorSeries.add!(tmp4190, ρ2s2_S, coeff3_2_S, ord) - TaylorSeries.mul!(tmp4191, tmp4190, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4192, tmp4189, tmp4191, ord) - TaylorSeries.mul!(a_tid_2_S_x, k_22E_div_r2s5_S, tmp4192, ord) - TaylorSeries.mul!(tmp4195, 2, coeff1_2_S, ord) - TaylorSeries.mul!(tmp4196, tmp4195, r_star_S_2[2], ord) - TaylorSeries.add!(tmp4197, ρ2s2_S, coeff3_2_S, ord) - TaylorSeries.mul!(tmp4198, tmp4197, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp4199, tmp4196, tmp4198, ord) - TaylorSeries.mul!(a_tid_2_S_y, k_22E_div_r2s5_S, tmp4199, ord) - TaylorSeries.subst!(tmp4201, coeff3_2_S, ord) - TaylorSeries.mul!(tmp4202, k_22E_div_r2s5_S, tmp4201, ord) - TaylorSeries.mul!(a_tid_2_S_z, tmp4202, Z_bf[mo, ea], ord) - TaylorSeries.div!(tmp4204, RE_au, r_p1d2[mo, ea], ord) - TaylorSeries.pow!(RE_div_r_p5, tmp4204, 5, ord) + TaylorSeries.mul!(tmp3631, 2, coeff1_2_M, ord) + TaylorSeries.mul!(tmp3632, tmp3631, r_star_M_2[1], ord) + TaylorSeries.add!(tmp3633, ρ2s2_M, coeff3_2_M, ord) + TaylorSeries.mul!(tmp3634, tmp3633, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3635, tmp3632, tmp3634, ord) + TaylorSeries.mul!(a_tid_2_M_x, k_22E_div_r2s5_M, tmp3635, ord) + TaylorSeries.mul!(tmp3638, 2, coeff1_2_M, ord) + TaylorSeries.mul!(tmp3639, tmp3638, r_star_M_2[2], ord) + TaylorSeries.add!(tmp3640, ρ2s2_M, coeff3_2_M, ord) + TaylorSeries.mul!(tmp3641, tmp3640, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3642, tmp3639, tmp3641, ord) + TaylorSeries.mul!(a_tid_2_M_y, k_22E_div_r2s5_M, tmp3642, ord) + TaylorSeries.subst!(tmp3644, coeff3_2_M, ord) + TaylorSeries.mul!(tmp3645, k_22E_div_r2s5_M, tmp3644, ord) + TaylorSeries.mul!(a_tid_2_M_z, tmp3645, Z_bf[mo, ea], ord) + TaylorSeries.mul!(tmp3648, 2, coeff1_2_S, ord) + TaylorSeries.mul!(tmp3649, tmp3648, r_star_S_2[1], ord) + TaylorSeries.add!(tmp3650, ρ2s2_S, coeff3_2_S, ord) + TaylorSeries.mul!(tmp3651, tmp3650, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3652, tmp3649, tmp3651, ord) + TaylorSeries.mul!(a_tid_2_S_x, k_22E_div_r2s5_S, tmp3652, ord) + TaylorSeries.mul!(tmp3655, 2, coeff1_2_S, ord) + TaylorSeries.mul!(tmp3656, tmp3655, r_star_S_2[2], ord) + TaylorSeries.add!(tmp3657, ρ2s2_S, coeff3_2_S, ord) + TaylorSeries.mul!(tmp3658, tmp3657, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3659, tmp3656, tmp3658, ord) + TaylorSeries.mul!(a_tid_2_S_y, k_22E_div_r2s5_S, tmp3659, ord) + TaylorSeries.subst!(tmp3661, coeff3_2_S, ord) + TaylorSeries.mul!(tmp3662, k_22E_div_r2s5_S, tmp3661, ord) + TaylorSeries.mul!(a_tid_2_S_z, tmp3662, Z_bf[mo, ea], ord) + TaylorSeries.div!(tmp3664, RE_au, r_p1d2[mo, ea], ord) + TaylorSeries.pow!(RE_div_r_p5, tmp3664, 5, ord) TaylorSeries.mul!(aux_tidacc, tid_num_coeff, RE_div_r_p5, ord) TaylorSeries.mul!(a_tidal_coeff_M, μ[mo], aux_tidacc, ord) TaylorSeries.mul!(a_tidal_coeff_S, μ[su], aux_tidacc, ord) - TaylorSeries.add!(tmp4210, a_tid_0_M_x, a_tid_1_M_x, ord) - TaylorSeries.add!(tmp4211, tmp4210, a_tid_2_M_x, ord) - TaylorSeries.mul!(tmp4212, a_tidal_coeff_M, tmp4211, ord) - TaylorSeries.add!(tmp4213, a_tid_0_S_x, a_tid_1_S_x, ord) - TaylorSeries.add!(tmp4214, tmp4213, a_tid_2_S_x, ord) - TaylorSeries.mul!(tmp4215, a_tidal_coeff_S, tmp4214, ord) - TaylorSeries.add!(a_tidal_tod_x, tmp4212, tmp4215, ord) - TaylorSeries.add!(tmp4217, a_tid_0_M_y, a_tid_1_M_y, ord) - TaylorSeries.add!(tmp4218, tmp4217, a_tid_2_M_y, ord) - TaylorSeries.mul!(tmp4219, a_tidal_coeff_M, tmp4218, ord) - TaylorSeries.add!(tmp4220, a_tid_0_S_y, a_tid_1_S_y, ord) - TaylorSeries.add!(tmp4221, tmp4220, a_tid_2_S_y, ord) - TaylorSeries.mul!(tmp4222, a_tidal_coeff_S, tmp4221, ord) - TaylorSeries.add!(a_tidal_tod_y, tmp4219, tmp4222, ord) - TaylorSeries.add!(tmp4224, a_tid_0_M_z, a_tid_1_M_z, ord) - TaylorSeries.add!(tmp4225, tmp4224, a_tid_2_M_z, ord) - TaylorSeries.mul!(tmp4226, a_tidal_coeff_M, tmp4225, ord) - TaylorSeries.add!(tmp4227, a_tid_0_S_z, a_tid_1_S_z, ord) - TaylorSeries.add!(tmp4228, tmp4227, a_tid_2_S_z, ord) - TaylorSeries.mul!(tmp4229, a_tidal_coeff_S, tmp4228, ord) - TaylorSeries.add!(a_tidal_tod_z, tmp4226, tmp4229, ord) - TaylorSeries.mul!(tmp4231, RotM[1, 1, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp4232, RotM[2, 1, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp4233, tmp4231, tmp4232, ord) - TaylorSeries.mul!(tmp4234, RotM[3, 1, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_x, tmp4233, tmp4234, ord) - TaylorSeries.mul!(tmp4236, RotM[1, 2, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp4237, RotM[2, 2, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp4238, tmp4236, tmp4237, ord) - TaylorSeries.mul!(tmp4239, RotM[3, 2, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_y, tmp4238, tmp4239, ord) - TaylorSeries.mul!(tmp4241, RotM[1, 3, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp4242, RotM[2, 3, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp4243, tmp4241, tmp4242, ord) - TaylorSeries.mul!(tmp4244, RotM[3, 3, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_z, tmp4243, tmp4244, ord) + TaylorSeries.add!(tmp3670, a_tid_0_M_x, a_tid_1_M_x, ord) + TaylorSeries.add!(tmp3671, tmp3670, a_tid_2_M_x, ord) + TaylorSeries.mul!(tmp3672, a_tidal_coeff_M, tmp3671, ord) + TaylorSeries.add!(tmp3673, a_tid_0_S_x, a_tid_1_S_x, ord) + TaylorSeries.add!(tmp3674, tmp3673, a_tid_2_S_x, ord) + TaylorSeries.mul!(tmp3675, a_tidal_coeff_S, tmp3674, ord) + TaylorSeries.add!(a_tidal_tod_x, tmp3672, tmp3675, ord) + TaylorSeries.add!(tmp3677, a_tid_0_M_y, a_tid_1_M_y, ord) + TaylorSeries.add!(tmp3678, tmp3677, a_tid_2_M_y, ord) + TaylorSeries.mul!(tmp3679, a_tidal_coeff_M, tmp3678, ord) + TaylorSeries.add!(tmp3680, a_tid_0_S_y, a_tid_1_S_y, ord) + TaylorSeries.add!(tmp3681, tmp3680, a_tid_2_S_y, ord) + TaylorSeries.mul!(tmp3682, a_tidal_coeff_S, tmp3681, ord) + TaylorSeries.add!(a_tidal_tod_y, tmp3679, tmp3682, ord) + TaylorSeries.add!(tmp3684, a_tid_0_M_z, a_tid_1_M_z, ord) + TaylorSeries.add!(tmp3685, tmp3684, a_tid_2_M_z, ord) + TaylorSeries.mul!(tmp3686, a_tidal_coeff_M, tmp3685, ord) + TaylorSeries.add!(tmp3687, a_tid_0_S_z, a_tid_1_S_z, ord) + TaylorSeries.add!(tmp3688, tmp3687, a_tid_2_S_z, ord) + TaylorSeries.mul!(tmp3689, a_tidal_coeff_S, tmp3688, ord) + TaylorSeries.add!(a_tidal_tod_z, tmp3686, tmp3689, ord) + TaylorSeries.mul!(tmp3691, RotM[1, 1, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp3692, RotM[2, 1, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp3693, tmp3691, tmp3692, ord) + TaylorSeries.mul!(tmp3694, RotM[3, 1, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_x, tmp3693, tmp3694, ord) + TaylorSeries.mul!(tmp3696, RotM[1, 2, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp3697, RotM[2, 2, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp3698, tmp3696, tmp3697, ord) + TaylorSeries.mul!(tmp3699, RotM[3, 2, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_y, tmp3698, tmp3699, ord) + TaylorSeries.mul!(tmp3701, RotM[1, 3, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp3702, RotM[2, 3, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp3703, tmp3701, tmp3702, ord) + TaylorSeries.mul!(tmp3704, RotM[3, 3, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_z, tmp3703, tmp3704, ord) TaylorSeries.add!(accX_mo_tides, accX[mo], a_tidal_x, ord) TaylorSeries.add!(accY_mo_tides, accY[mo], a_tidal_y, ord) TaylorSeries.add!(accZ_mo_tides, accZ[mo], a_tidal_z, ord) TaylorSeries.identity!(accX[mo], accX_mo_tides, ord) TaylorSeries.identity!(accY[mo], accY_mo_tides, ord) TaylorSeries.identity!(accZ[mo], accZ_mo_tides, ord) - #= In[6]:990 =# Threads.@threads for i = 1:N_ext + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1896 =# Threads.@threads for i = 1:N_ext TaylorSeries.add!(dq[3 * (N + i) - 2], postNewtonX[i], accX[i], ord) TaylorSeries.add!(dq[3 * (N + i) - 1], postNewtonY[i], accY[i], ord) TaylorSeries.add!(dq[3 * (N + i)], postNewtonZ[i], accZ[i], ord) end - #= In[6]:995 =# Threads.@threads for i = N_ext + 1:N + #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1901 =# Threads.@threads for i = N_ext + 1:N TaylorSeries.identity!(dq[3 * (N + i) - 2], postNewtonX[i], ord) TaylorSeries.identity!(dq[3 * (N + i) - 1], postNewtonY[i], ord) TaylorSeries.identity!(dq[3 * (N + i)], postNewtonZ[i], ord) end - TaylorSeries.mul!(tmp4252, I_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp4253, I_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp4254, I_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp4255, tmp4253, tmp4254, ord) - TaylorSeries.add!(Iω_x, tmp4252, tmp4255, ord) - TaylorSeries.mul!(tmp4257, I_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp4258, I_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp4259, I_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp4260, tmp4258, tmp4259, ord) - TaylorSeries.add!(Iω_y, tmp4257, tmp4260, ord) - TaylorSeries.mul!(tmp4262, I_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp4263, I_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp4264, I_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp4265, tmp4263, tmp4264, ord) - TaylorSeries.add!(Iω_z, tmp4262, tmp4265, ord) - TaylorSeries.mul!(tmp4267, q[6N + 5], Iω_z, ord) - TaylorSeries.mul!(tmp4268, q[6N + 6], Iω_y, ord) - TaylorSeries.subst!(ωxIω_x, tmp4267, tmp4268, ord) - TaylorSeries.mul!(tmp4270, q[6N + 6], Iω_x, ord) - TaylorSeries.mul!(tmp4271, q[6N + 4], Iω_z, ord) - TaylorSeries.subst!(ωxIω_y, tmp4270, tmp4271, ord) - TaylorSeries.mul!(tmp4273, q[6N + 4], Iω_y, ord) - TaylorSeries.mul!(tmp4274, q[6N + 5], Iω_x, ord) - TaylorSeries.subst!(ωxIω_z, tmp4273, tmp4274, ord) - TaylorSeries.mul!(tmp4276, dI_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp4277, dI_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp4278, dI_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp4279, tmp4277, tmp4278, ord) - TaylorSeries.add!(dIω_x, tmp4276, tmp4279, ord) - TaylorSeries.mul!(tmp4281, dI_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp4282, dI_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp4283, dI_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp4284, tmp4282, tmp4283, ord) - TaylorSeries.add!(dIω_y, tmp4281, tmp4284, ord) - TaylorSeries.mul!(tmp4286, dI_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp4287, dI_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp4288, dI_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp4289, tmp4287, tmp4288, ord) - TaylorSeries.add!(dIω_z, tmp4286, tmp4289, ord) + TaylorSeries.mul!(tmp3712, I_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3713, I_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3714, I_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3715, tmp3713, tmp3714, ord) + TaylorSeries.add!(Iω_x, tmp3712, tmp3715, ord) + TaylorSeries.mul!(tmp3717, I_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3718, I_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3719, I_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3720, tmp3718, tmp3719, ord) + TaylorSeries.add!(Iω_y, tmp3717, tmp3720, ord) + TaylorSeries.mul!(tmp3722, I_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3723, I_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3724, I_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3725, tmp3723, tmp3724, ord) + TaylorSeries.add!(Iω_z, tmp3722, tmp3725, ord) + TaylorSeries.mul!(tmp3727, q[6N + 5], Iω_z, ord) + TaylorSeries.mul!(tmp3728, q[6N + 6], Iω_y, ord) + TaylorSeries.subst!(ωxIω_x, tmp3727, tmp3728, ord) + TaylorSeries.mul!(tmp3730, q[6N + 6], Iω_x, ord) + TaylorSeries.mul!(tmp3731, q[6N + 4], Iω_z, ord) + TaylorSeries.subst!(ωxIω_y, tmp3730, tmp3731, ord) + TaylorSeries.mul!(tmp3733, q[6N + 4], Iω_y, ord) + TaylorSeries.mul!(tmp3734, q[6N + 5], Iω_x, ord) + TaylorSeries.subst!(ωxIω_z, tmp3733, tmp3734, ord) + TaylorSeries.mul!(tmp3736, dI_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3737, dI_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3738, dI_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3739, tmp3737, tmp3738, ord) + TaylorSeries.add!(dIω_x, tmp3736, tmp3739, ord) + TaylorSeries.mul!(tmp3741, dI_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3742, dI_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3743, dI_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3744, tmp3742, tmp3743, ord) + TaylorSeries.add!(dIω_y, tmp3741, tmp3744, ord) + TaylorSeries.mul!(tmp3746, dI_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3747, dI_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3748, dI_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3749, tmp3747, tmp3748, ord) + TaylorSeries.add!(dIω_z, tmp3746, tmp3749, ord) TaylorSeries.div!(er_EM_I_1, X[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_2, Y[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_3, Z[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.identity!(p_E_I_1, RotM[3, 1, ea], ord) TaylorSeries.identity!(p_E_I_2, RotM[3, 2, ea], ord) TaylorSeries.identity!(p_E_I_3, RotM[3, 3, ea], ord) - TaylorSeries.mul!(tmp4294, RotM[1, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp4295, RotM[1, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp4296, RotM[1, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp4297, tmp4295, tmp4296, ord) - TaylorSeries.add!(er_EM_1, tmp4294, tmp4297, ord) - TaylorSeries.mul!(tmp4299, RotM[2, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp4300, RotM[2, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp4301, RotM[2, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp4302, tmp4300, tmp4301, ord) - TaylorSeries.add!(er_EM_2, tmp4299, tmp4302, ord) - TaylorSeries.mul!(tmp4304, RotM[3, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp4305, RotM[3, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp4306, RotM[3, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp4307, tmp4305, tmp4306, ord) - TaylorSeries.add!(er_EM_3, tmp4304, tmp4307, ord) - TaylorSeries.mul!(tmp4309, RotM[1, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp4310, RotM[1, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp4311, RotM[1, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp4312, tmp4310, tmp4311, ord) - TaylorSeries.add!(p_E_1, tmp4309, tmp4312, ord) - TaylorSeries.mul!(tmp4314, RotM[2, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp4315, RotM[2, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp4316, RotM[2, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp4317, tmp4315, tmp4316, ord) - TaylorSeries.add!(p_E_2, tmp4314, tmp4317, ord) - TaylorSeries.mul!(tmp4319, RotM[3, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp4320, RotM[3, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp4321, RotM[3, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp4322, tmp4320, tmp4321, ord) - TaylorSeries.add!(p_E_3, tmp4319, tmp4322, ord) - TaylorSeries.mul!(tmp4324, I_m_t[1, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp4325, I_m_t[1, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp4326, I_m_t[1, 3], er_EM_3, ord) - TaylorSeries.add!(tmp4327, tmp4325, tmp4326, ord) - TaylorSeries.add!(I_er_EM_1, tmp4324, tmp4327, ord) - TaylorSeries.mul!(tmp4329, I_m_t[2, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp4330, I_m_t[2, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp4331, I_m_t[2, 3], er_EM_3, ord) - TaylorSeries.add!(tmp4332, tmp4330, tmp4331, ord) - TaylorSeries.add!(I_er_EM_2, tmp4329, tmp4332, ord) - TaylorSeries.mul!(tmp4334, I_m_t[3, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp4335, I_m_t[3, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp4336, I_m_t[3, 3], er_EM_3, ord) - TaylorSeries.add!(tmp4337, tmp4335, tmp4336, ord) - TaylorSeries.add!(I_er_EM_3, tmp4334, tmp4337, ord) - TaylorSeries.mul!(tmp4339, I_m_t[1, 1], p_E_1, ord) - TaylorSeries.mul!(tmp4340, I_m_t[1, 2], p_E_2, ord) - TaylorSeries.mul!(tmp4341, I_m_t[1, 3], p_E_3, ord) - TaylorSeries.add!(tmp4342, tmp4340, tmp4341, ord) - TaylorSeries.add!(I_p_E_1, tmp4339, tmp4342, ord) - TaylorSeries.mul!(tmp4344, I_m_t[2, 1], p_E_1, ord) - TaylorSeries.mul!(tmp4345, I_m_t[2, 2], p_E_2, ord) - TaylorSeries.mul!(tmp4346, I_m_t[2, 3], p_E_3, ord) - TaylorSeries.add!(tmp4347, tmp4345, tmp4346, ord) - TaylorSeries.add!(I_p_E_2, tmp4344, tmp4347, ord) - TaylorSeries.mul!(tmp4349, I_m_t[3, 1], p_E_1, ord) - TaylorSeries.mul!(tmp4350, I_m_t[3, 2], p_E_2, ord) - TaylorSeries.mul!(tmp4351, I_m_t[3, 3], p_E_3, ord) - TaylorSeries.add!(tmp4352, tmp4350, tmp4351, ord) - TaylorSeries.add!(I_p_E_3, tmp4349, tmp4352, ord) - TaylorSeries.mul!(tmp4354, er_EM_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp4355, er_EM_3, I_er_EM_2, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp4354, tmp4355, ord) - TaylorSeries.mul!(tmp4357, er_EM_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp4358, er_EM_1, I_er_EM_3, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp4357, tmp4358, ord) - TaylorSeries.mul!(tmp4360, er_EM_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp4361, er_EM_2, I_er_EM_1, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp4360, tmp4361, ord) - TaylorSeries.mul!(tmp4363, er_EM_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp4364, er_EM_3, I_p_E_2, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp4363, tmp4364, ord) - TaylorSeries.mul!(tmp4366, er_EM_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp4367, er_EM_1, I_p_E_3, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp4366, tmp4367, ord) - TaylorSeries.mul!(tmp4369, er_EM_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp4370, er_EM_2, I_p_E_1, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp4369, tmp4370, ord) - TaylorSeries.mul!(tmp4372, p_E_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp4373, p_E_3, I_er_EM_2, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp4372, tmp4373, ord) - TaylorSeries.mul!(tmp4375, p_E_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp4376, p_E_1, I_er_EM_3, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp4375, tmp4376, ord) - TaylorSeries.mul!(tmp4378, p_E_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp4379, p_E_2, I_er_EM_1, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp4378, tmp4379, ord) - TaylorSeries.mul!(tmp4381, p_E_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp4382, p_E_3, I_p_E_2, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp4381, tmp4382, ord) - TaylorSeries.mul!(tmp4384, p_E_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp4385, p_E_1, I_p_E_3, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp4384, tmp4385, ord) - TaylorSeries.mul!(tmp4387, p_E_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp4388, p_E_2, I_p_E_1, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp4387, tmp4388, ord) - TaylorSeries.pow!(tmp4392, sin_ϕ[ea, mo], 2, ord) - TaylorSeries.mul!(tmp4393, 7, tmp4392, ord) - TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp4393, ord) + TaylorSeries.mul!(tmp3754, RotM[1, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3755, RotM[1, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3756, RotM[1, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp3757, tmp3755, tmp3756, ord) + TaylorSeries.add!(er_EM_1, tmp3754, tmp3757, ord) + TaylorSeries.mul!(tmp3759, RotM[2, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3760, RotM[2, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3761, RotM[2, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp3762, tmp3760, tmp3761, ord) + TaylorSeries.add!(er_EM_2, tmp3759, tmp3762, ord) + TaylorSeries.mul!(tmp3764, RotM[3, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3765, RotM[3, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3766, RotM[3, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp3767, tmp3765, tmp3766, ord) + TaylorSeries.add!(er_EM_3, tmp3764, tmp3767, ord) + TaylorSeries.mul!(tmp3769, RotM[1, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3770, RotM[1, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3771, RotM[1, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp3772, tmp3770, tmp3771, ord) + TaylorSeries.add!(p_E_1, tmp3769, tmp3772, ord) + TaylorSeries.mul!(tmp3774, RotM[2, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3775, RotM[2, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3776, RotM[2, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp3777, tmp3775, tmp3776, ord) + TaylorSeries.add!(p_E_2, tmp3774, tmp3777, ord) + TaylorSeries.mul!(tmp3779, RotM[3, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3780, RotM[3, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3781, RotM[3, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp3782, tmp3780, tmp3781, ord) + TaylorSeries.add!(p_E_3, tmp3779, tmp3782, ord) + TaylorSeries.mul!(tmp3784, I_m_t[1, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3785, I_m_t[1, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3786, I_m_t[1, 3], er_EM_3, ord) + TaylorSeries.add!(tmp3787, tmp3785, tmp3786, ord) + TaylorSeries.add!(I_er_EM_1, tmp3784, tmp3787, ord) + TaylorSeries.mul!(tmp3789, I_m_t[2, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3790, I_m_t[2, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3791, I_m_t[2, 3], er_EM_3, ord) + TaylorSeries.add!(tmp3792, tmp3790, tmp3791, ord) + TaylorSeries.add!(I_er_EM_2, tmp3789, tmp3792, ord) + TaylorSeries.mul!(tmp3794, I_m_t[3, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3795, I_m_t[3, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3796, I_m_t[3, 3], er_EM_3, ord) + TaylorSeries.add!(tmp3797, tmp3795, tmp3796, ord) + TaylorSeries.add!(I_er_EM_3, tmp3794, tmp3797, ord) + TaylorSeries.mul!(tmp3799, I_m_t[1, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3800, I_m_t[1, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3801, I_m_t[1, 3], p_E_3, ord) + TaylorSeries.add!(tmp3802, tmp3800, tmp3801, ord) + TaylorSeries.add!(I_p_E_1, tmp3799, tmp3802, ord) + TaylorSeries.mul!(tmp3804, I_m_t[2, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3805, I_m_t[2, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3806, I_m_t[2, 3], p_E_3, ord) + TaylorSeries.add!(tmp3807, tmp3805, tmp3806, ord) + TaylorSeries.add!(I_p_E_2, tmp3804, tmp3807, ord) + TaylorSeries.mul!(tmp3809, I_m_t[3, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3810, I_m_t[3, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3811, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.add!(tmp3812, tmp3810, tmp3811, ord) + TaylorSeries.add!(I_p_E_3, tmp3809, tmp3812, ord) + TaylorSeries.mul!(tmp3814, er_EM_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp3815, er_EM_3, I_er_EM_2, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp3814, tmp3815, ord) + TaylorSeries.mul!(tmp3817, er_EM_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp3818, er_EM_1, I_er_EM_3, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp3817, tmp3818, ord) + TaylorSeries.mul!(tmp3820, er_EM_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp3821, er_EM_2, I_er_EM_1, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp3820, tmp3821, ord) + TaylorSeries.mul!(tmp3823, er_EM_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp3824, er_EM_3, I_p_E_2, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp3823, tmp3824, ord) + TaylorSeries.mul!(tmp3826, er_EM_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp3827, er_EM_1, I_p_E_3, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp3826, tmp3827, ord) + TaylorSeries.mul!(tmp3829, er_EM_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp3830, er_EM_2, I_p_E_1, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp3829, tmp3830, ord) + TaylorSeries.mul!(tmp3832, p_E_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp3833, p_E_3, I_er_EM_2, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp3832, tmp3833, ord) + TaylorSeries.mul!(tmp3835, p_E_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp3836, p_E_1, I_er_EM_3, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp3835, tmp3836, ord) + TaylorSeries.mul!(tmp3838, p_E_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp3839, p_E_2, I_er_EM_1, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp3838, tmp3839, ord) + TaylorSeries.mul!(tmp3841, p_E_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp3842, p_E_3, I_p_E_2, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp3841, tmp3842, ord) + TaylorSeries.mul!(tmp3844, p_E_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp3845, p_E_1, I_p_E_3, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp3844, tmp3845, ord) + TaylorSeries.mul!(tmp3847, p_E_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp3848, p_E_2, I_p_E_1, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp3847, tmp3848, ord) + TaylorSeries.pow!(tmp3852, sin_ϕ[ea, mo], 2, ord) + TaylorSeries.mul!(tmp3853, 7, tmp3852, ord) + TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp3853, ord) TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp4398, r_p1d2[mo, ea], 5, ord) - TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp4398, ord) - TaylorSeries.mul!(tmp4400, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) - TaylorSeries.add!(tmp4401, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) - TaylorSeries.mul!(tmp4402, two_sinϕEM, tmp4401, ord) - TaylorSeries.add!(tmp4403, tmp4400, tmp4402, ord) - TaylorSeries.mul!(tmp4405, 0.4, p_E_cross_I_p_E_1, ord) - TaylorSeries.subst!(tmp4406, tmp4403, tmp4405, ord) - TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp4406, ord) - TaylorSeries.mul!(tmp4408, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) - TaylorSeries.add!(tmp4409, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) - TaylorSeries.mul!(tmp4410, two_sinϕEM, tmp4409, ord) - TaylorSeries.add!(tmp4411, tmp4408, tmp4410, ord) - TaylorSeries.mul!(tmp4413, 0.4, p_E_cross_I_p_E_2, ord) - TaylorSeries.subst!(tmp4414, tmp4411, tmp4413, ord) - TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp4414, ord) - TaylorSeries.mul!(tmp4416, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) - TaylorSeries.add!(tmp4417, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) - TaylorSeries.mul!(tmp4418, two_sinϕEM, tmp4417, ord) - TaylorSeries.add!(tmp4419, tmp4416, tmp4418, ord) - TaylorSeries.mul!(tmp4421, 0.4, p_E_cross_I_p_E_3, ord) - TaylorSeries.subst!(tmp4422, tmp4419, tmp4421, ord) - TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp4422, ord) - TaylorSeries.mul!(tmp4424, RotM[1, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp4425, RotM[1, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp4426, RotM[1, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp4427, tmp4425, tmp4426, ord) - TaylorSeries.add!(N_1_LMF, tmp4424, tmp4427, ord) - TaylorSeries.mul!(tmp4429, RotM[2, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp4430, RotM[2, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp4431, RotM[2, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp4432, tmp4430, tmp4431, ord) - TaylorSeries.add!(N_2_LMF, tmp4429, tmp4432, ord) - TaylorSeries.mul!(tmp4434, RotM[3, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp4435, RotM[3, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp4436, RotM[3, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp4437, tmp4435, tmp4436, ord) - TaylorSeries.add!(N_3_LMF, tmp4434, tmp4437, ord) - TaylorSeries.subst!(tmp4439, q[6N + 10], q[6N + 4], ord) - TaylorSeries.mul!(tmp4440, k_ν, tmp4439, ord) - TaylorSeries.mul!(tmp4441, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp4442, tmp4441, q[6N + 11], ord) - TaylorSeries.subst!(N_cmb_1, tmp4440, tmp4442, ord) - TaylorSeries.subst!(tmp4444, q[6N + 11], q[6N + 5], ord) - TaylorSeries.mul!(tmp4445, k_ν, tmp4444, ord) - TaylorSeries.mul!(tmp4446, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp4447, tmp4446, q[6N + 10], ord) - TaylorSeries.add!(N_cmb_2, tmp4445, tmp4447, ord) - TaylorSeries.subst!(tmp4449, q[6N + 12], q[6N + 6], ord) - TaylorSeries.mul!(N_cmb_3, k_ν, tmp4449, ord) - TaylorSeries.mul!(tmp4451, μ[mo], N_1_LMF, ord) - TaylorSeries.add!(tmp4452, N_MfigM_figE_1, tmp4451, ord) - TaylorSeries.add!(tmp4453, tmp4452, N_cmb_1, ord) - TaylorSeries.add!(tmp4454, dIω_x, ωxIω_x, ord) - TaylorSeries.subst!(I_dω_1, tmp4453, tmp4454, ord) - TaylorSeries.mul!(tmp4456, μ[mo], N_2_LMF, ord) - TaylorSeries.add!(tmp4457, N_MfigM_figE_2, tmp4456, ord) - TaylorSeries.add!(tmp4458, tmp4457, N_cmb_2, ord) - TaylorSeries.add!(tmp4459, dIω_y, ωxIω_y, ord) - TaylorSeries.subst!(I_dω_2, tmp4458, tmp4459, ord) - TaylorSeries.mul!(tmp4461, μ[mo], N_3_LMF, ord) - TaylorSeries.add!(tmp4462, N_MfigM_figE_3, tmp4461, ord) - TaylorSeries.add!(tmp4463, tmp4462, N_cmb_3, ord) - TaylorSeries.add!(tmp4464, dIω_z, ωxIω_z, ord) - TaylorSeries.subst!(I_dω_3, tmp4463, tmp4464, ord) + TaylorSeries.pow!(tmp3858, r_p1d2[mo, ea], 5, ord) + TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp3858, ord) + TaylorSeries.mul!(tmp3860, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) + TaylorSeries.add!(tmp3861, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) + TaylorSeries.mul!(tmp3862, two_sinϕEM, tmp3861, ord) + TaylorSeries.add!(tmp3863, tmp3860, tmp3862, ord) + TaylorSeries.mul!(tmp3865, 0.4, p_E_cross_I_p_E_1, ord) + TaylorSeries.subst!(tmp3866, tmp3863, tmp3865, ord) + TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp3866, ord) + TaylorSeries.mul!(tmp3868, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) + TaylorSeries.add!(tmp3869, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) + TaylorSeries.mul!(tmp3870, two_sinϕEM, tmp3869, ord) + TaylorSeries.add!(tmp3871, tmp3868, tmp3870, ord) + TaylorSeries.mul!(tmp3873, 0.4, p_E_cross_I_p_E_2, ord) + TaylorSeries.subst!(tmp3874, tmp3871, tmp3873, ord) + TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp3874, ord) + TaylorSeries.mul!(tmp3876, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) + TaylorSeries.add!(tmp3877, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) + TaylorSeries.mul!(tmp3878, two_sinϕEM, tmp3877, ord) + TaylorSeries.add!(tmp3879, tmp3876, tmp3878, ord) + TaylorSeries.mul!(tmp3881, 0.4, p_E_cross_I_p_E_3, ord) + TaylorSeries.subst!(tmp3882, tmp3879, tmp3881, ord) + TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp3882, ord) + TaylorSeries.mul!(tmp3884, RotM[1, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3885, RotM[1, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3886, RotM[1, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3887, tmp3885, tmp3886, ord) + TaylorSeries.add!(N_1_LMF, tmp3884, tmp3887, ord) + TaylorSeries.mul!(tmp3889, RotM[2, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3890, RotM[2, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3891, RotM[2, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3892, tmp3890, tmp3891, ord) + TaylorSeries.add!(N_2_LMF, tmp3889, tmp3892, ord) + TaylorSeries.mul!(tmp3894, RotM[3, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3895, RotM[3, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3896, RotM[3, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3897, tmp3895, tmp3896, ord) + TaylorSeries.add!(N_3_LMF, tmp3894, tmp3897, ord) + TaylorSeries.subst!(tmp3899, q[6N + 10], q[6N + 4], ord) + TaylorSeries.mul!(tmp3900, k_ν, tmp3899, ord) + TaylorSeries.mul!(tmp3901, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp3902, tmp3901, q[6N + 11], ord) + TaylorSeries.subst!(N_cmb_1, tmp3900, tmp3902, ord) + TaylorSeries.subst!(tmp3904, q[6N + 11], q[6N + 5], ord) + TaylorSeries.mul!(tmp3905, k_ν, tmp3904, ord) + TaylorSeries.mul!(tmp3906, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp3907, tmp3906, q[6N + 10], ord) + TaylorSeries.add!(N_cmb_2, tmp3905, tmp3907, ord) + TaylorSeries.subst!(tmp3909, q[6N + 12], q[6N + 6], ord) + TaylorSeries.mul!(N_cmb_3, k_ν, tmp3909, ord) + TaylorSeries.mul!(tmp3911, μ[mo], N_1_LMF, ord) + TaylorSeries.add!(tmp3912, N_MfigM_figE_1, tmp3911, ord) + TaylorSeries.add!(tmp3913, tmp3912, N_cmb_1, ord) + TaylorSeries.add!(tmp3914, dIω_x, ωxIω_x, ord) + TaylorSeries.subst!(I_dω_1, tmp3913, tmp3914, ord) + TaylorSeries.mul!(tmp3916, μ[mo], N_2_LMF, ord) + TaylorSeries.add!(tmp3917, N_MfigM_figE_2, tmp3916, ord) + TaylorSeries.add!(tmp3918, tmp3917, N_cmb_2, ord) + TaylorSeries.add!(tmp3919, dIω_y, ωxIω_y, ord) + TaylorSeries.subst!(I_dω_2, tmp3918, tmp3919, ord) + TaylorSeries.mul!(tmp3921, μ[mo], N_3_LMF, ord) + TaylorSeries.add!(tmp3922, N_MfigM_figE_3, tmp3921, ord) + TaylorSeries.add!(tmp3923, tmp3922, N_cmb_3, ord) + TaylorSeries.add!(tmp3924, dIω_z, ωxIω_z, ord) + TaylorSeries.subst!(I_dω_3, tmp3923, tmp3924, ord) TaylorSeries.mul!(Ic_ωc_1, I_c_t[1, 1], q[6N + 10], ord) TaylorSeries.mul!(Ic_ωc_2, I_c_t[2, 2], q[6N + 11], ord) TaylorSeries.mul!(Ic_ωc_3, I_c_t[3, 3], q[6N + 12], ord) - TaylorSeries.mul!(tmp4469, q[6N + 6], Ic_ωc_2, ord) - TaylorSeries.mul!(tmp4470, q[6N + 5], Ic_ωc_3, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp4469, tmp4470, ord) - TaylorSeries.mul!(tmp4472, q[6N + 4], Ic_ωc_3, ord) - TaylorSeries.mul!(tmp4473, q[6N + 6], Ic_ωc_1, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp4472, tmp4473, ord) - TaylorSeries.mul!(tmp4475, q[6N + 5], Ic_ωc_1, ord) - TaylorSeries.mul!(tmp4476, q[6N + 4], Ic_ωc_2, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp4475, tmp4476, ord) + TaylorSeries.mul!(tmp3929, q[6N + 6], Ic_ωc_2, ord) + TaylorSeries.mul!(tmp3930, q[6N + 5], Ic_ωc_3, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp3929, tmp3930, ord) + TaylorSeries.mul!(tmp3932, q[6N + 4], Ic_ωc_3, ord) + TaylorSeries.mul!(tmp3933, q[6N + 6], Ic_ωc_1, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp3932, tmp3933, ord) + TaylorSeries.mul!(tmp3935, q[6N + 5], Ic_ωc_1, ord) + TaylorSeries.mul!(tmp3936, q[6N + 4], Ic_ωc_2, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp3935, tmp3936, ord) TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp4481, tmp4612, q[6N + 3], ord) - TaylorSeries.mul!(tmp4482, q[6N + 4], tmp4481, ord) - TaylorSeries.sincos!(tmp4613, tmp4483, q[6N + 3], ord) - TaylorSeries.mul!(tmp4484, q[6N + 5], tmp4483, ord) - TaylorSeries.add!(tmp4485, tmp4482, tmp4484, ord) - TaylorSeries.sincos!(tmp4486, tmp4614, q[6N + 2], ord) - TaylorSeries.div!(dq[6N + 1], tmp4485, tmp4486, ord) - TaylorSeries.sincos!(tmp4615, tmp4488, q[6N + 3], ord) - TaylorSeries.mul!(tmp4489, q[6N + 4], tmp4488, ord) - TaylorSeries.sincos!(tmp4490, tmp4616, q[6N + 3], ord) - TaylorSeries.mul!(tmp4491, q[6N + 5], tmp4490, ord) - TaylorSeries.subst!(dq[6N + 2], tmp4489, tmp4491, ord) - TaylorSeries.sincos!(tmp4617, tmp4493, q[6N + 2], ord) - TaylorSeries.mul!(tmp4494, dq[6N + 1], tmp4493, ord) - TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp4494, ord) - TaylorSeries.mul!(tmp4496, inv_I_m_t[1, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp4497, inv_I_m_t[1, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp4498, inv_I_m_t[1, 3], I_dω_3, ord) - TaylorSeries.add!(tmp4499, tmp4497, tmp4498, ord) - TaylorSeries.add!(dq[6N + 4], tmp4496, tmp4499, ord) - TaylorSeries.mul!(tmp4501, inv_I_m_t[2, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp4502, inv_I_m_t[2, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp4503, inv_I_m_t[2, 3], I_dω_3, ord) - TaylorSeries.add!(tmp4504, tmp4502, tmp4503, ord) - TaylorSeries.add!(dq[6N + 5], tmp4501, tmp4504, ord) - TaylorSeries.mul!(tmp4506, inv_I_m_t[3, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp4507, inv_I_m_t[3, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp4508, inv_I_m_t[3, 3], I_dω_3, ord) - TaylorSeries.add!(tmp4509, tmp4507, tmp4508, ord) - TaylorSeries.add!(dq[6N + 6], tmp4506, tmp4509, ord) - TaylorSeries.sincos!(tmp4511, tmp4618, q[6N + 8], ord) - TaylorSeries.div!(tmp4512, ω_c_CE_2, tmp4511, ord) - TaylorSeries.subst!(dq[6N + 9], tmp4512, ord) - TaylorSeries.sincos!(tmp4619, tmp4514, q[6N + 8], ord) - TaylorSeries.mul!(tmp4515, dq[6N + 9], tmp4514, ord) - TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp4515, ord) + TaylorSeries.sincos!(tmp3941, tmp4072, q[6N + 3], ord) + TaylorSeries.mul!(tmp3942, q[6N + 4], tmp3941, ord) + TaylorSeries.sincos!(tmp4073, tmp3943, q[6N + 3], ord) + TaylorSeries.mul!(tmp3944, q[6N + 5], tmp3943, ord) + TaylorSeries.add!(tmp3945, tmp3942, tmp3944, ord) + TaylorSeries.sincos!(tmp3946, tmp4074, q[6N + 2], ord) + TaylorSeries.div!(dq[6N + 1], tmp3945, tmp3946, ord) + TaylorSeries.sincos!(tmp4075, tmp3948, q[6N + 3], ord) + TaylorSeries.mul!(tmp3949, q[6N + 4], tmp3948, ord) + TaylorSeries.sincos!(tmp3950, tmp4076, q[6N + 3], ord) + TaylorSeries.mul!(tmp3951, q[6N + 5], tmp3950, ord) + TaylorSeries.subst!(dq[6N + 2], tmp3949, tmp3951, ord) + TaylorSeries.sincos!(tmp4077, tmp3953, q[6N + 2], ord) + TaylorSeries.mul!(tmp3954, dq[6N + 1], tmp3953, ord) + TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp3954, ord) + TaylorSeries.mul!(tmp3956, inv_I_m_t[1, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3957, inv_I_m_t[1, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3958, inv_I_m_t[1, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3959, tmp3957, tmp3958, ord) + TaylorSeries.add!(dq[6N + 4], tmp3956, tmp3959, ord) + TaylorSeries.mul!(tmp3961, inv_I_m_t[2, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3962, inv_I_m_t[2, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3963, inv_I_m_t[2, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3964, tmp3962, tmp3963, ord) + TaylorSeries.add!(dq[6N + 5], tmp3961, tmp3964, ord) + TaylorSeries.mul!(tmp3966, inv_I_m_t[3, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3967, inv_I_m_t[3, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3968, inv_I_m_t[3, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3969, tmp3967, tmp3968, ord) + TaylorSeries.add!(dq[6N + 6], tmp3966, tmp3969, ord) + TaylorSeries.sincos!(tmp3971, tmp4078, q[6N + 8], ord) + TaylorSeries.div!(tmp3972, ω_c_CE_2, tmp3971, ord) + TaylorSeries.subst!(dq[6N + 9], tmp3972, ord) + TaylorSeries.sincos!(tmp4079, tmp3974, q[6N + 8], ord) + TaylorSeries.mul!(tmp3975, dq[6N + 9], tmp3974, ord) + TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp3975, ord) TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) TaylorSeries.mul!(dq[6N + 10], inv_I_c_t[1, 1], Ic_dωc_1, ord) TaylorSeries.mul!(dq[6N + 11], inv_I_c_t[2, 2], Ic_dωc_2, ord) TaylorSeries.mul!(dq[6N + 12], inv_I_c_t[3, 3], Ic_dωc_3, ord) - TaylorSeries.mul!(tmp4520, newtonianCoeff[su, ea], J2_t[su], ord) - TaylorSeries.pow!(tmp4523, sin_ϕ[su, ea], 2, ord) - TaylorSeries.mul!(tmp4524, 3, tmp4523, ord) - TaylorSeries.subst!(tmp4525, one_t, tmp4524, ord) - TaylorSeries.div!(tmp4527, tmp4525, 2, ord) - TaylorSeries.mul!(w_LE, tmp4520, tmp4527, ord) - TaylorSeries.mul!(tmp4530, 0.5, v2[ea], ord) - TaylorSeries.add!(tmp4531, tmp4530, newtonianNb_Potential[ea], ord) - TaylorSeries.add!(α_TTmTDB, tmp4531, w_LE, ord) + TaylorSeries.mul!(tmp3980, newtonianCoeff[su, ea], J2_t[su], ord) + TaylorSeries.pow!(tmp3983, sin_ϕ[su, ea], 2, ord) + TaylorSeries.mul!(tmp3984, 3, tmp3983, ord) + TaylorSeries.subst!(tmp3985, one_t, tmp3984, ord) + TaylorSeries.div!(tmp3987, tmp3985, 2, ord) + TaylorSeries.mul!(w_LE, tmp3980, tmp3987, ord) + TaylorSeries.mul!(tmp3990, 0.5, v2[ea], ord) + TaylorSeries.add!(tmp3991, tmp3990, newtonianNb_Potential[ea], ord) + TaylorSeries.add!(α_TTmTDB, tmp3991, w_LE, ord) TaylorSeries.pow!(v4E, v2[ea], 2, ord) TaylorSeries.pow!(ϕ_Earth_Newtonian_sq, newtonianNb_Potential[ea], 2, ord) - TaylorSeries.div!(tmp4538, ϕ_Earth_Newtonian_sq, 2, ord) - TaylorSeries.div!(tmp4540, v4E, 8, ord) - TaylorSeries.subst!(β_TTmTDB, tmp4538, tmp4540, ord) + TaylorSeries.div!(tmp3998, ϕ_Earth_Newtonian_sq, 2, ord) + TaylorSeries.div!(tmp4000, v4E, 8, ord) + TaylorSeries.subst!(β_TTmTDB, tmp3998, tmp4000, ord) for i = 1:N if i == ea continue else TaylorSeries.mul!(β_TTmTDB_i_1[i, ea], 4, vi_dot_vj[i, ea], ord) - TaylorSeries.mul!(tmp4545[ea], 1.5, v2[ea], ord) - TaylorSeries.mul!(tmp4547[i], 2, v2[i], ord) - TaylorSeries.add!(tmp4548[ea], tmp4545[ea], tmp4547[i], ord) - TaylorSeries.subst!(β_TTmTDB_i_2[i], newtonianNb_Potential[i], tmp4548[ea], ord) - TaylorSeries.mul!(tmp4550[i, ea], dq[3 * (N + i) - 2], X[i, ea], ord) - TaylorSeries.mul!(tmp4551[i, ea], dq[3 * (N + i) - 1], Y[i, ea], ord) - TaylorSeries.add!(tmp4552[i, ea], tmp4550[i, ea], tmp4551[i, ea], ord) - TaylorSeries.mul!(tmp4553[i, ea], dq[3 * (N + i)], Z[i, ea], ord) - TaylorSeries.add!(tmp4554[i, ea], tmp4552[i, ea], tmp4553[i, ea], ord) - TaylorSeries.div!(β_TTmTDB_i_3[i, ea], tmp4554[i, ea], 2, ord) + TaylorSeries.mul!(tmp4005[ea], 1.5, v2[ea], ord) + TaylorSeries.mul!(tmp4007[i], 2, v2[i], ord) + TaylorSeries.add!(tmp4008[ea], tmp4005[ea], tmp4007[i], ord) + TaylorSeries.subst!(β_TTmTDB_i_2[i], newtonianNb_Potential[i], tmp4008[ea], ord) + TaylorSeries.mul!(tmp4010[i, ea], dq[3 * (N + i) - 2], X[i, ea], ord) + TaylorSeries.mul!(tmp4011[i, ea], dq[3 * (N + i) - 1], Y[i, ea], ord) + TaylorSeries.add!(tmp4012[i, ea], tmp4010[i, ea], tmp4011[i, ea], ord) + TaylorSeries.mul!(tmp4013[i, ea], dq[3 * (N + i)], Z[i, ea], ord) + TaylorSeries.add!(tmp4014[i, ea], tmp4012[i, ea], tmp4013[i, ea], ord) + TaylorSeries.div!(β_TTmTDB_i_3[i, ea], tmp4014[i, ea], 2, ord) TaylorSeries.div!(β_TTmTDB_i_4[i, ea], rij_dot_vi_div_rij_sq[i, ea], 2, ord) - TaylorSeries.add!(tmp4559[i, ea], β_TTmTDB_i_1[i, ea], β_TTmTDB_i_2[i], ord) - TaylorSeries.add!(tmp4560[i, ea], β_TTmTDB_i_3[i, ea], β_TTmTDB_i_4[i, ea], ord) - TaylorSeries.add!(β_TTmTDB_i[i, ea], tmp4559[i, ea], tmp4560[i, ea], ord) - TaylorSeries.mul!(tmp4562[i, ea], newtonian1b_Potential[i, ea], β_TTmTDB_i[i, ea], ord) - TaylorSeries.add!(temp_β_TTmTDB[i, ea], β_TTmTDB, tmp4562[i, ea], ord) + TaylorSeries.add!(tmp4019[i, ea], β_TTmTDB_i_1[i, ea], β_TTmTDB_i_2[i], ord) + TaylorSeries.add!(tmp4020[i, ea], β_TTmTDB_i_3[i, ea], β_TTmTDB_i_4[i, ea], ord) + TaylorSeries.add!(β_TTmTDB_i[i, ea], tmp4019[i, ea], tmp4020[i, ea], ord) + TaylorSeries.mul!(tmp4022[i, ea], newtonian1b_Potential[i, ea], β_TTmTDB_i[i, ea], ord) + TaylorSeries.add!(temp_β_TTmTDB[i, ea], β_TTmTDB, tmp4022[i, ea], ord) TaylorSeries.identity!(β_TTmTDB, temp_β_TTmTDB[i, ea], ord) end end - TaylorSeries.mul!(tmp4564, c_m2, α_TTmTDB, ord) - TaylorSeries.subst!(tmp4565, L_B, tmp4564, ord) - TaylorSeries.mul!(tmp4566, tmp4565, one_plus_L_B_minus_L_G, ord) - TaylorSeries.mul!(tmp4567, c_m4, β_TTmTDB, ord) - TaylorSeries.subst!(tmp4568, tmp4567, L_G, ord) - TaylorSeries.add!(tmp4569, tmp4566, tmp4568, ord) - TaylorSeries.mul!(dq[6N + 13], daysec, tmp4569, ord) + TaylorSeries.mul!(tmp4024, c_m2, α_TTmTDB, ord) + TaylorSeries.subst!(tmp4025, L_B, tmp4024, ord) + TaylorSeries.mul!(tmp4026, tmp4025, one_plus_L_B_minus_L_G, ord) + TaylorSeries.mul!(tmp4027, c_m4, β_TTmTDB, ord) + TaylorSeries.subst!(tmp4028, tmp4027, L_G, ord) + TaylorSeries.add!(tmp4029, tmp4026, tmp4028, ord) + TaylorSeries.mul!(dq[6N + 13], daysec, tmp4029, ord) for __idx = eachindex(q) (q[__idx]).coeffs[ordnext + 1] = (dq[__idx]).coeffs[ordnext] / ordnext end diff --git a/test/Project.toml b/test/Project.toml index 34ab1c0..4236bc5 100644 --- a/test/Project.toml +++ b/test/Project.toml @@ -12,4 +12,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" JLD2 = "0.4" Quadmath = "0.5" SPICE = "0.2" -TaylorSeries = "0.16" +TaylorSeries = "0.17"