forked from RangeNetworks/CommonLibs
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInterthread.h
786 lines (647 loc) · 20.8 KB
/
Interthread.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/*
* Copyright 2008, 2011 Free Software Foundation, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INTERTHREAD_H
#define INTERTHREAD_H
#include "Defines.h"
#include "Timeval.h"
#include "Threads.h"
#include "LinkedLists.h"
#include <map>
#include <vector>
#include <queue>
#include <list>
/**@defgroup Templates for interthread mechanisms. */
//@{
// A list designed for pointers so we can use get methods that return NULL on error.
template<class T>
class PtrList : public std::list<T*> {
//typedef typename std::list<T*> type_t;
public:
typedef typename std::list<T*>::iterator iter_t;
// Like pop_front but return the value, or NULL if none.
T* pop_frontr() {
if (this->empty()) { return NULL; }
T* result = this->front();
this->pop_front();
return result;
}
// Like pop_back but return the value, or NULL if none.
T* pop_backr() {
if (this->empty()) { return NULL; }
T* result = this->back();
this->pop_back();
return result;
}
// These functions are solely for use by InterthreadQueue, necessitated by backward compatibility with PointerFIFO.
void put(T*v) { this->push_back(v); }
T* get() { return this->pop_frontr(); }
};
// (pat 8-2013) The scoped iterators are a great idea and worked fine, but it is not KISS, so I stopped using it.
// If you want to iterate through an InterthreadQueue or InterthreadMap, just get the lock using the appropropriate qGetLock method.
#if USE_SCOPED_ITERATORS
// This ScopedIterator locks the container for as long as the iterator exists.
// You have to create the ScopedIterator using the thread-safe container object, example:
// ThreadSafeMap<a,b> mymap;
// ScopedIterator it(mymap);
// for (it = mymap.begin(); it != mymap.end(); it++) {}
// Then begin() and end() are passed through to the normal underlying iterator.
// An alternative implementation would have been to modify begin and end to return scoped iterators,
// but that is more complicated and would probably require multiple locks/unlocks on the Mutex.
template <class BaseType,class DerivedType,class ValueType>
class ScopedIteratorTemplate : public BaseType::iterator {
Mutex &mLockRef;
public:
ScopedIteratorTemplate(DerivedType &wOwner) : mLockRef(wOwner.qGetLock()) { mLockRef.lock(); }
~ScopedIteratorTemplate() { mLockRef.unlock(); }
void operator=(typename BaseType::iterator it) { this->BaseType::iterator::operator=(it); }
void operator++() { this->BaseType::iterator::operator++(); } // ++prefix
void operator++(int) { this->BaseType::iterator::operator++(0); } // postfix++
ValueType& operator*() { return this->BaseType::iterator::operator*(); }
ValueType* operator->() { return this->BaseType::iterator::operator->(); }
};
#endif
// (pat) There was a transition period from the old to the new InterthreadQueue when the new
// one was named InterthreadQueue2, and that still exists in some versions of the SGSN/GPRS code.
#define InterthreadQueue2 InterthreadQueue
// (pat) The original InterthreadQueue had a complicated threading problem that this version fixed.
// I started out using this new version only in GPRS and SGSN, for fear of breaking something in GSM,
// but in release 4 I removed the old version above.
// 5-2013: Changed the ultimate base class to a PtrList and added ScopedIterator.
// 8-2013: Removed the ScopedIterator even though it is an elegant solution, because it is easy to
// just use the internal lock directly when one needs to iterate through one of these.
//template <class T, class Fifo=PointerFIFO> class InterthreadQueue {
template <class T, class Fifo=PtrList<T> > class InterthreadQueue {
//protected:
Fifo mQ;
// (pat) DO NOT USE mLock and mWriteSignal; instead use mLockPointer and mWriteSignalPointer.
// That allows us to connect two InterthreadQueue together such that a single thread can wait on either.
mutable Mutex mLock, *mLockPointer;
mutable Signal mWriteSignal, *mWriteSignalPointer;
protected:
public:
InterthreadQueue() : mLockPointer(&mLock), mWriteSignalPointer(&mWriteSignal) {}
// This connects the two InterthreadQueue permanently so they use the same lock and Signal.
// Subsequently you can use iqWaitForEither.
void iqConnect(InterthreadQueue &other) {
mLockPointer = other.mLockPointer;
mWriteSignalPointer = other.mWriteSignalPointer;
}
// (pat) This provides a client the ability to lock the InterthreadQueue and iterate it.
Mutex &qGetLock() const { return mLock; }
typedef typename Fifo::iterator iterator;
typedef typename Fifo::const_iterator const_iterator;
iterator begin() { assert(mLock.lockcnt()); return mQ.begin(); }
iterator end() { assert(mLock.lockcnt()); return mQ.end(); }
const_iterator begin() const { assert(mLock.lockcnt()); return mQ.begin(); }
const_iterator end() const { assert(mLock.lockcnt()); return mQ.end(); }
#if USE_SCOPED_ITERATORS
// The Iterator locks the InterthreadQueue until the Iterator falls out of scope.
// Semantics are different from normal C++ iterators - the begin,end,erase methods are in
// the Iterator, not the base type.
// Use like this:
// InterthreadQueue<T>::ScopedIterator sit(someInterthreadQueue);
// for (T*val = sit.front(); val = *sit; sit++) ...
// if (something) val.erase();
typedef typename Fifo::iterator iterator;
class ScopedIterator {
typedef InterthreadQueue<T,Fifo> BaseType_t;
typedef typename Fifo::iterator iterator_t;
BaseType_t &mParent;
iterator_t mit;
public:
ScopedIterator(BaseType_t&wParent) : mParent(wParent) { mParent.mLockPointer->lock(); }
~ScopedIterator() { mParent.mLockPointer->unlock(); }
// Regular old iterators in case you want to use em.
iterator_t begin() { return mParent.mQ.begin(); }
iterator_t end() { return mParent.mQ.end(); }
// Accessors and operators. Accessors move the iterator, eg, using front() rewinds iter to begin().
T* current() { return mit != end() ? *mit : NULL; }
T* front() { mit = begin(); return current(); }
T* next() { if (mit != end()) { ++mit; } return current(); }
// Erase current element and advance the iterator forward.
void erase() { if (mit != end()) mit = mParent.mQ.erase(mit); }
T* operator++() { return next(); } // prefix ++
T* operator++(int) { T*result = current(); next(); return result; } // postfix ++
T* operator*() { return current(); }
// And here is random access in case you want it.
// Note that this is inefficient, so dont use it unless you know the queue is small.
// This is inside ScopedIterator so that the entire InterthreadQueue is locked while you do whatever it is you are doing.
// Eg: { InterthreadQueue<T>::ScopedIterator sit(myinterthreadqueue); for (unsigned i=0; i<10; i++) { T*foo = sit[i]; ... } }
T* operator[](unsigned ind) {
unsigned i = 0;
for (iterator_t itr = begin(); itr != end(); itr++) { if (i++ == ind) return *itr; }
return NULL; // Out of bounds.
}
};
#endif
/** Delete contents. */
void clear()
{
ScopedLock lock(*mLockPointer);
while (mQ.size()>0) delete (T*)mQ.get();
}
/** Empty the queue, but don't delete. */
void flushNoDelete()
{
ScopedLock lock(*mLockPointer);
while (mQ.size()>0) mQ.get();
}
~InterthreadQueue()
{ clear(); }
size_t size() const
{
ScopedLock lock(*mLockPointer);
return mQ.size();
}
size_t totalSize() const // pat added
{
ScopedLock lock(*mLockPointer);
return mQ.totalSize();
}
// Wait for something on either of the two queues connected by iqConnect. Kind of hokey, but it works. Timeout is in msecs.
void iqWaitForEither(InterthreadQueue &other, unsigned timeout) {
ScopedLock lock(*mLockPointer);
if (timeout) {
Timeval waitTime(timeout);
while (mQ.size() == 0 && other.mQ.size() == 0) {
mWriteSignalPointer->wait(*mLockPointer,waitTime.remaining());
}
} else { // Wait forever.
while (mQ.size() == 0 && other.mQ.size() == 0) {
mWriteSignalPointer->wait(*mLockPointer);
}
}
}
// (pat 8-2013) Removed. Bad idea to use this name - conflicts with wait() in InterthreadQueueWithWait
//void wait() { // (pat 7-25-2013) Added. Wait for something to appear in the queue.
// ScopedLock lock(*mLockPointer);
// while (mQ.size() == 0) {
// mWriteSignalPointer->wait(*mLockPointer);
// }
//}
/**
Blocking read from back of queue.
@return Pointer to object (will not be NULL).
*/
T* read()
{
ScopedLock lock(*mLockPointer);
T* retVal = (T*)mQ.get();
while (retVal==NULL) {
mWriteSignalPointer->wait(*mLockPointer);
retVal = (T*)mQ.get();
}
return retVal;
}
/** Non-blocking peek at the first element; returns NULL if empty. */
T* front() const
{
ScopedLock lock(*mLockPointer);
return (T*) (mQ.size() ? mQ.front() : NULL);
}
/**
Blocking read with a timeout.
@param timeout The read timeout in ms.
@return Pointer to object or NULL on timeout.
*/
T* read(unsigned timeout)
{
if (timeout==0) return readNoBlock();
Timeval waitTime(timeout);
ScopedLock lock(*mLockPointer);
while (mQ.size()==0) {
long remaining = waitTime.remaining();
// (pat) How high do we expect the precision here to be? I dont think they used precision timers,
// so dont try to wait if the remainder is just a few msecs.
if (remaining < 2) { return NULL; }
mWriteSignalPointer->wait(*mLockPointer,remaining);
}
T* retVal = (T*)mQ.get();
return retVal;
}
/**
Non-blocking read. aka pop_front.
@return Pointer to object or NULL if FIFO is empty.
*/
T* readNoBlock()
{
ScopedLock lock(*mLockPointer);
return (T*)mQ.get();
}
/** Non-blocking write. aka push_back */
void write(T* val)
{
// (pat) The Mutex mLock must be released before signaling the mWriteSignal condition.
// This is an implicit requirement of pthread_cond_wait() called from signal().
// If you do not do that, the InterthreadQueue read() function cannot start
// because the mutex is still locked by the thread calling the write(),
// so the read() thread yields its immediate execution opportunity.
// This recurs (and the InterthreadQueue fills up with data)
// until the read thread's accumulated temporary priority causes it to
// get a second pre-emptive activation over the writing thread,
// resulting in bursts of activity by the read thread.
{ ScopedLock lock(*mLockPointer);
mQ.put(val);
}
mWriteSignalPointer->signal();
}
/** Non-block write to the front of the queue. aka push_front */
void write_front(T* val) // pat added
{
// (pat) See comments above.
{ ScopedLock lock(*mLockPointer);
mQ.push_front(val);
}
mWriteSignalPointer->signal();
}
};
/** Pointer FIFO for interthread operations. */
// Pat thinks this should be combined with InterthreadQueue by simply moving the wait method there.
template <class T> class InterthreadQueueWithWait {
protected:
PointerFIFO mQ;
mutable Mutex mLock;
mutable Signal mWriteSignal;
mutable Signal mReadSignal;
virtual void freeElement(T* element) const { delete element; };
public:
/** Delete contents. */
void clear()
{
ScopedLock lock(mLock);
while (mQ.size()>0) freeElement((T*)mQ.get());
mReadSignal.signal();
}
virtual ~InterthreadQueueWithWait()
{ clear(); }
size_t size() const
{
ScopedLock lock(mLock);
return mQ.size();
}
/**
Blocking read.
@return Pointer to object (will not be NULL).
*/
T* read()
{
ScopedLock lock(mLock);
T* retVal = (T*)mQ.get();
while (retVal==NULL) {
mWriteSignal.wait(mLock);
retVal = (T*)mQ.get();
}
mReadSignal.signal();
return retVal;
}
/**
Blocking read with a timeout.
@param timeout The read timeout in ms.
@return Pointer to object or NULL on timeout.
*/
T* read(unsigned timeout)
{
if (timeout==0) return readNoBlock();
Timeval waitTime(timeout);
ScopedLock lock(mLock);
// (pat 8-2013) This commented out code has a deadlock problem.
//while ((mQ.size()==0) && (!waitTime.passed()))
// mWriteSignal.wait(mLock,waitTime.remaining());
while (mQ.size()==0) {
long remaining = waitTime.remaining();
// (pat) How high do we expect the precision here to be? I dont think they are used as precision timers,
// so dont try to wait if the remainder is just a few msecs.
if (remaining < 2) { return NULL; }
mWriteSignal.wait(mLock,remaining);
}
T* retVal = (T*)mQ.get();
if (retVal!=NULL) mReadSignal.signal();
return retVal;
}
/**
Non-blocking read.
@return Pointer to object or NULL if FIFO is empty.
*/
T* readNoBlock()
{
ScopedLock lock(mLock);
T* retVal = (T*)mQ.get();
if (retVal!=NULL) mReadSignal.signal();
return retVal;
}
/** Non-blocking write. */
void write(T* val)
{
{
ScopedLock lock(mLock);
mQ.put(val);
}
mWriteSignal.signal();
}
/** Wait until the queue falls below a low water mark. */
// (pat) This function suffers from the same problem as documented
// at InterthreadQueue.write(), but I am not fixing it because I cannot test it.
// The caller of this function will eventually get to run, just not immediately
// after the mReadSignal condition is fulfilled.
void wait(size_t sz=0)
{
ScopedLock lock(mLock);
while (mQ.size()>sz) mReadSignal.wait(mLock);
}
};
// (pat) Same as an InterthreadMap but the mapped type is "D" instead of "D*";
// the only difference is that we cannot automatically delete the content on destruction (no clear method).
template <class K, class D > class InterthreadMap1
{
public:
typedef std::map<K,D> Map;
protected:
Map mMap;
mutable Mutex mLock;
Signal mWriteSignal;
public:
// User can over-ride this method if they want to delete type D elements.
virtual void vdelete(D) {}
~InterthreadMap1() {
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.begin();
while (iter != mMap.end()) {
vdelete(iter->second);
++iter;
}
mMap.clear();
}
/**
Non-blocking write. WARNING: This deletes any pre-existing element!
@param key The index to write to.
@param wData Pointer to data, not to be deleted until removed from the map.
*/
void write(const K &key, D wData)
{
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.find(key);
if (iter!=mMap.end()) {
vdelete(iter->second);
iter->second = wData;
} else {
mMap[key] = wData;
}
mWriteSignal.broadcast();
}
/**
Identical to readNoBlock but with element removal.
@param key Key to read from.
@return Pointer at key or NULL if key not found, to be deleted by caller.
*/
bool getNoBlock(const K& key, D &result, bool bRemove = true)
{
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.find(key);
if (iter==mMap.end()) return false;
result = iter->second;
if (bRemove) { mMap.erase(iter); }
return true;
}
/**
Blocking read with a timeout and element removal.
@param key The key to read from.
@param timeout The blocking timeout in ms.
@return Pointer at key or NULL on timeout, to be deleted by caller.
*/
bool get(const K &key, D &result, unsigned timeout, bool bRemove = true)
{
if (timeout==0) return getNoBlock(key,result,bRemove);
ScopedLock lock(mLock);
Timeval waitTime(timeout);
while (1) {
typename Map::iterator iter = mMap.find(key);
if (iter!=mMap.end()) {
result = iter->second;
if (bRemove) { mMap.erase(iter); }
return true;
}
long remaining = waitTime.remaining();
if (remaining < 2) { return false; }
mWriteSignal.wait(mLock,remaining);
}
}
/**
Blocking read with and element removal.
@param key The key to read from.
@return Pointer at key, to be deleted by caller.
This always returns true.
*/
bool get(const K &key, D &result, bool bRemove = true)
{
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.find(key);
while (iter==mMap.end()) {
mWriteSignal.wait(mLock);
iter = mMap.find(key);
}
result = iter->second;
if (bRemove) { mMap.erase(iter); }
return true;
}
/**
Remove an entry and delete it.
@param key The key of the entry to delete.
@return True if it was actually found and deleted.
(pat) If you just want remove without deleting, see getNoBlock.
*/
bool remove(const K &key )
{
D val;
if (getNoBlock(key,val,true)) {
vdelete(val);
return true;
} else {
return false;
}
}
/**
Non-blocking read. (pat) Actually, it blocks until the map is available.
@param key Key to read from.
@return Pointer at key or NULL if key not found.
*/
D readNoBlock(const K& key) const
{
D result = NULL;
Unconst(this)->getNoBlock(key,result,false);
return result;
}
/**
Blocking read with a timeout.
@param key The key to read from.
@param timeout The blocking timeout in ms.
@return Pointer at key or NULL on timeout.
*/
D read(const K &key, unsigned timeout) const
{
D result = NULL;
Unconst(this)->get(key,result,timeout,false);
return result;
}
/**
Blocking read. Blocks until the key exists.
@param key The key to read from.
@return Pointer at key.
*/
D read(const K &key) const
{
D result;
Unconst(this)->get(key,result,false);
return result;
}
// pat added.
unsigned size() const { ScopedLock(mLock); return mMap.size(); }
// WARNING: These iterators are not intrinsically thread safe.
// Caller must use ScopedIterator or the modification lock or enclose the entire iteration in some higher level lock.
Mutex &qGetLock() { return mLock; }
typedef typename Map::iterator iterator;
typename Map::iterator begin() { return mMap.begin(); }
typename Map::iterator end() { return mMap.end(); }
};
// (pat) The original InterthreadMap works only for pointers; now it is derived from the more general version above.
/** Thread-safe map of pointers to class D, keyed by class K. */
template <class K, class D > class InterthreadMap : public InterthreadMap1<K,D*>
{
void vdelete(D* foo) { delete foo; }
};
/** This class is used to provide pointer-based comparison in priority_queues. */
// The priority_queue sorts the largest element to the 'top' of the priority_queue, which is the back of the underlying vector.
template <class T> class PointerCompare {
public:
/** Compare the objects pointed to, not the pointers themselves. */
bool operator()(const T *v1, const T *v2)
{ return (*v1)>(*v2); }
};
/**
Priority queue for interthread operations.
Passes pointers to objects.
*/
template <class T, class C = std::vector<T*>, class Cmp = PointerCompare<T> > class InterthreadPriorityQueue
{
protected:
std::priority_queue<T*,C,Cmp> mQ;
mutable Mutex mLock;
mutable Signal mWriteSignal;
// Assumes caller holds the lock.
T*ipqGet() {
if (!mQ.size()) { return NULL; }
T*result = mQ.top();
mQ.pop();
return result;
}
public:
/** Clear the FIFO. */
void clear()
{
ScopedLock lock(mLock);
while (mQ.size()>0) {
T* ptr = mQ.top();
mQ.pop();
delete ptr;
}
}
~InterthreadPriorityQueue()
{
clear();
}
size_t size() const
{
ScopedLock lock(mLock);
return mQ.size();
}
/** Non-blocking read. */
T* readNoBlock()
{
ScopedLock lock(mLock);
return ipqGet();
}
/** Blocking read. */
T* read()
{
ScopedLock lock(mLock);
while (mQ.size()==0) mWriteSignal.wait(mLock);
return ipqGet();
}
T* read(unsigned timeout)
{
if (timeout==0) return readNoBlock();
Timeval waitTime(timeout);
ScopedLock lock(mLock);
while (mQ.size()==0) {
long remaining = waitTime.remaining();
// (pat) How high do we expect the precision here to be? I dont think they used precision timers,
// so dont try to wait if the remainder is just a few msecs.
if (remaining < 2) { return NULL; }
mWriteSignal.wait(mLock,remaining);
}
return ipqGet();
}
// pat added 4-2014. Return but do not pop the top element, if any, or NULL.
T* peek()
{
ScopedLock lock(mLock);
return mQ.size() ? mQ.top() : NULL;
}
/** Non-blocking write. */
void write(T* val)
{
{ ScopedLock lock(mLock);
mQ.push(val);
}
mWriteSignal.signal();
}
};
class Semaphore {
private:
bool mFlag;
Signal mSignal;
mutable Mutex mLock;
public:
Semaphore()
:mFlag(false)
{ }
void post()
{
ScopedLock lock(mLock);
mFlag=true;
mSignal.signal();
}
void get()
{
ScopedLock lock(mLock);
while (!mFlag) mSignal.wait(mLock);
mFlag=false;
}
bool semtry()
{
ScopedLock lock(mLock);
bool retVal = mFlag;
mFlag = false;
return retVal;
}
};
//@}
#endif
// vim: ts=4 sw=4