diff --git a/doc/releases/changelog-dev.md b/doc/releases/changelog-dev.md index 506504f631b..559f1f20b6e 100644 --- a/doc/releases/changelog-dev.md +++ b/doc/releases/changelog-dev.md @@ -10,18 +10,14 @@ [(#6061)](https://github.com/PennyLaneAI/pennylane/pull/6061) * `qml.qchem.excitations` now optionally returns fermionic operators. - [(#6171)](https://github.com/PennyLaneAI/pennylane/pull/6171) + [(#6171)](https://github.com/PennyLaneAI/pennylane/pull/6171) * The `diagonalize_measurements` transform now uses a more efficient method of diagonalization when possible, based on the `pauli_rep` of the relevant observables. [#6113](https://github.com/PennyLaneAI/pennylane/pull/6113/) -

Capturing and representing hybrid programs

- -* Differentiation of hybrid programs via `qml.grad` can now be captured into plxpr. - When evaluating a captured `qml.grad` instruction, it will dispatch to `jax.grad`, - which differs from the Autograd implementation of `qml.grad` itself. - [(#6120)](https://github.com/PennyLaneAI/pennylane/pull/6120) +* The `Hermitian` operator now has a `compute_sparse_matrix` implementation. + [(#6225)](https://github.com/PennyLaneAI/pennylane/pull/6225)

Capturing and representing hybrid programs

@@ -120,12 +116,19 @@ * The ``qml.FABLE`` template now returns the correct value when JIT is enabled. [(#6263)](https://github.com/PennyLaneAI/pennylane/pull/6263) -*

Contributors ✍️

+* Fixes a bug where a circuit using the `autograd` interface sometimes returns nested values that are not of the `autograd` interface. + [(#6225)](https://github.com/PennyLaneAI/pennylane/pull/6225) + +* Fixes a bug where a simple circuit with no parameters or only builtin/numpy arrays as parameters returns autograd tensors. + [(#6225)](https://github.com/PennyLaneAI/pennylane/pull/6225) + +

Contributors ✍️

This release contains contributions from (in alphabetical order): Guillermo Alonso, Utkarsh Azad, +Astral Cai, Lillian M. A. Frederiksen, Pietropaolo Frisoni, Emiliano Godinez, diff --git a/pennylane/devices/execution_config.py b/pennylane/devices/execution_config.py index 5b7af096d81..7f3866d9e86 100644 --- a/pennylane/devices/execution_config.py +++ b/pennylane/devices/execution_config.py @@ -17,7 +17,7 @@ from dataclasses import dataclass, field from typing import Optional, Union -from pennylane.workflow import SUPPORTED_INTERFACES +from pennylane.workflow import SUPPORTED_INTERFACE_NAMES @dataclass @@ -110,9 +110,9 @@ def __post_init__(self): Note that this hook is automatically called after init via the dataclass integration. """ - if self.interface not in SUPPORTED_INTERFACES: + if self.interface not in SUPPORTED_INTERFACE_NAMES: raise ValueError( - f"Unknown interface. interface must be in {SUPPORTED_INTERFACES}, got {self.interface} instead." + f"Unknown interface. interface must be in {SUPPORTED_INTERFACE_NAMES}, got {self.interface} instead." ) if self.grad_on_execution not in {True, False, None}: diff --git a/pennylane/devices/legacy_facade.py b/pennylane/devices/legacy_facade.py index 41c1e0dea2c..bd2190f0fe1 100644 --- a/pennylane/devices/legacy_facade.py +++ b/pennylane/devices/legacy_facade.py @@ -24,6 +24,7 @@ import pennylane as qml from pennylane.measurements import MidMeasureMP, Shots from pennylane.transforms.core.transform_program import TransformProgram +from pennylane.workflow.execution import INTERFACE_MAP from .device_api import Device from .execution_config import DefaultExecutionConfig @@ -322,25 +323,24 @@ def _validate_backprop_method(self, tape): return False params = tape.get_parameters(trainable_only=False) interface = qml.math.get_interface(*params) + if interface != "numpy": + interface = INTERFACE_MAP.get(interface, interface) if tape and any(isinstance(m.obs, qml.SparseHamiltonian) for m in tape.measurements): return False - if interface == "numpy": - interface = None - mapped_interface = qml.workflow.execution.INTERFACE_MAP.get(interface, interface) # determine if the device supports backpropagation backprop_interface = self._device.capabilities().get("passthru_interface", None) if backprop_interface is not None: # device supports backpropagation natively - return mapped_interface in [backprop_interface, "Numpy"] + return interface in [backprop_interface, "numpy"] # determine if the device has any child devices that support backpropagation backprop_devices = self._device.capabilities().get("passthru_devices", None) if backprop_devices is None: return False - return mapped_interface in backprop_devices or mapped_interface == "Numpy" + return interface in backprop_devices or interface == "numpy" def _validate_adjoint_method(self, tape): # The conditions below provide a minimal set of requirements that we can likely improve upon in diff --git a/pennylane/devices/qubit/simulate.py b/pennylane/devices/qubit/simulate.py index 56e4a8f1a48..89c041b8f3e 100644 --- a/pennylane/devices/qubit/simulate.py +++ b/pennylane/devices/qubit/simulate.py @@ -922,7 +922,7 @@ def _(original_measurement: ExpectationMP, measures): # pylint: disable=unused- for v in measures.values(): if not v[0] or v[1] is tuple(): continue - cum_value += v[0] * v[1] + cum_value += qml.math.multiply(v[0], v[1]) total_counts += v[0] return cum_value / total_counts @@ -935,7 +935,7 @@ def _(original_measurement: ProbabilityMP, measures): # pylint: disable=unused- for v in measures.values(): if not v[0] or v[1] is tuple(): continue - cum_value += v[0] * v[1] + cum_value += qml.math.multiply(v[0], v[1]) total_counts += v[0] return cum_value / total_counts diff --git a/pennylane/ops/qubit/observables.py b/pennylane/ops/qubit/observables.py index 8f992c81bc2..4fc4a98c092 100644 --- a/pennylane/ops/qubit/observables.py +++ b/pennylane/ops/qubit/observables.py @@ -137,6 +137,10 @@ def compute_matrix(A: TensorLike) -> TensorLike: # pylint: disable=arguments-di Hermitian._validate_input(A) return A + @staticmethod + def compute_sparse_matrix(A) -> csr_matrix: # pylint: disable=arguments-differ + return csr_matrix(Hermitian.compute_matrix(A)) + @property def eigendecomposition(self) -> dict[str, TensorLike]: """Return the eigendecomposition of the matrix specified by the Hermitian observable. diff --git a/pennylane/workflow/__init__.py b/pennylane/workflow/__init__.py index 55068804b68..b41c031e8a4 100644 --- a/pennylane/workflow/__init__.py +++ b/pennylane/workflow/__init__.py @@ -56,6 +56,6 @@ """ from .construct_batch import construct_batch, get_transform_program -from .execution import INTERFACE_MAP, SUPPORTED_INTERFACES, execute +from .execution import INTERFACE_MAP, SUPPORTED_INTERFACE_NAMES, execute from .qnode import QNode, qnode from .set_shots import set_shots diff --git a/pennylane/workflow/execution.py b/pennylane/workflow/execution.py index 7445bcea2b7..8d8f0adb9ef 100644 --- a/pennylane/workflow/execution.py +++ b/pennylane/workflow/execution.py @@ -51,12 +51,9 @@ "autograd", "numpy", "torch", - "pytorch", "jax", - "jax-python", "jax-jit", "tf", - "tensorflow", } SupportedInterfaceUserInput = Literal[ @@ -78,30 +75,29 @@ ] _mapping_output = ( - "Numpy", + "numpy", "auto", "autograd", "autograd", "numpy", "jax", - "jax", + "jax-jit", "jax", "jax", "torch", "torch", "tf", "tf", - "tf", - "tf", + "tf-autograph", + "tf-autograph", ) + INTERFACE_MAP = dict(zip(get_args(SupportedInterfaceUserInput), _mapping_output)) """dict[str, str]: maps an allowed interface specification to its canonical name.""" -#: list[str]: allowed interface strings -SUPPORTED_INTERFACES = list(INTERFACE_MAP) +SUPPORTED_INTERFACE_NAMES = list(INTERFACE_MAP) """list[str]: allowed interface strings""" - _CACHED_EXECUTION_WITH_FINITE_SHOTS_WARNINGS = ( "Cached execution with finite shots detected!\n" "Note that samples as well as all noisy quantities computed via sampling " @@ -135,23 +131,21 @@ def _get_ml_boundary_execute( pennylane.QuantumFunctionError if the required package is not installed. """ - mapped_interface = INTERFACE_MAP[interface] try: - if mapped_interface == "autograd": + if interface == "autograd": from .interfaces.autograd import autograd_execute as ml_boundary - elif mapped_interface == "tf": - if "autograph" in interface: - from .interfaces.tensorflow_autograph import execute as ml_boundary + elif interface == "tf-autograph": + from .interfaces.tensorflow_autograph import execute as ml_boundary - ml_boundary = partial(ml_boundary, grad_on_execution=grad_on_execution) + ml_boundary = partial(ml_boundary, grad_on_execution=grad_on_execution) - else: - from .interfaces.tensorflow import tf_execute as full_ml_boundary + elif interface == "tf": + from .interfaces.tensorflow import tf_execute as full_ml_boundary - ml_boundary = partial(full_ml_boundary, differentiable=differentiable) + ml_boundary = partial(full_ml_boundary, differentiable=differentiable) - elif mapped_interface == "torch": + elif interface == "torch": from .interfaces.torch import execute as ml_boundary elif interface == "jax-jit": @@ -159,7 +153,8 @@ def _get_ml_boundary_execute( from .interfaces.jax_jit import jax_jit_vjp_execute as ml_boundary else: from .interfaces.jax_jit import jax_jit_jvp_execute as ml_boundary - else: # interface in {"jax", "jax-python", "JAX"}: + + else: # interface is jax if device_vjp: from .interfaces.jax_jit import jax_jit_vjp_execute as ml_boundary else: @@ -167,9 +162,10 @@ def _get_ml_boundary_execute( except ImportError as e: # pragma: no cover raise qml.QuantumFunctionError( - f"{mapped_interface} not found. Please install the latest " - f"version of {mapped_interface} to enable the '{mapped_interface}' interface." + f"{interface} not found. Please install the latest " + f"version of {interface} to enable the '{interface}' interface." ) from e + return ml_boundary @@ -263,12 +259,22 @@ def _get_interface_name(tapes, interface): Returns: str: Interface name""" + + if interface not in SUPPORTED_INTERFACE_NAMES: + raise qml.QuantumFunctionError( + f"Unknown interface {interface}. Interface must be one of {SUPPORTED_INTERFACE_NAMES}." + ) + + interface = INTERFACE_MAP[interface] + if interface == "auto": params = [] for tape in tapes: params.extend(tape.get_parameters(trainable_only=False)) interface = qml.math.get_interface(*params) - if INTERFACE_MAP.get(interface, "") == "tf" and _use_tensorflow_autograph(): + if interface != "numpy": + interface = INTERFACE_MAP[interface] + if interface == "tf" and _use_tensorflow_autograph(): interface = "tf-autograph" if interface == "jax": try: # pragma: no cover @@ -439,6 +445,7 @@ def cost_fn(params, x): ### Specifying and preprocessing variables #### + _interface_user_input = interface interface = _get_interface_name(tapes, interface) # Only need to calculate derivatives with jax when we know it will be executed later. if interface in {"jax", "jax-jit"}: @@ -460,7 +467,11 @@ def cost_fn(params, x): ) # Mid-circuit measurement configuration validation - mcm_interface = interface or _get_interface_name(tapes, "auto") + # If the user specifies `interface=None`, regular execution considers it numpy, but the mcm + # workflow still needs to know if jax-jit is used + mcm_interface = ( + _get_interface_name(tapes, "auto") if _interface_user_input is None else interface + ) finite_shots = any(tape.shots for tape in tapes) _update_mcm_config(config.mcm_config, mcm_interface, finite_shots) @@ -479,12 +490,12 @@ def cost_fn(params, x): cache = None # changing this set of conditions causes a bunch of tests to break. - no_interface_boundary_required = interface is None or config.gradient_method in { + no_interface_boundary_required = interface == "numpy" or config.gradient_method in { None, "backprop", } device_supports_interface_data = no_interface_boundary_required and ( - interface is None + interface == "numpy" or config.gradient_method == "backprop" or getattr(device, "short_name", "") == "default.mixed" ) @@ -497,9 +508,9 @@ def cost_fn(params, x): numpy_only=not device_supports_interface_data, ) - # moved to its own explicit step so it will be easier to remove + # moved to its own explicit step so that it will be easier to remove def inner_execute_with_empty_jac(tapes, **_): - return (inner_execute(tapes), []) + return inner_execute(tapes), [] if interface in jpc_interfaces: execute_fn = inner_execute @@ -522,7 +533,7 @@ def inner_execute_with_empty_jac(tapes, **_): and getattr(device, "short_name", "") in ("lightning.gpu", "lightning.kokkos") and interface in jpc_interfaces ): # pragma: no cover - if INTERFACE_MAP[interface] == "jax" and "use_device_state" in gradient_kwargs: + if "jax" in interface and "use_device_state" in gradient_kwargs: gradient_kwargs["use_device_state"] = False jpc = LightningVJPs(device, gradient_kwargs=gradient_kwargs) @@ -563,7 +574,7 @@ def execute_fn(internal_tapes) -> tuple[ResultBatch, tuple]: config: the ExecutionConfig that specifies how to perform the simulations. """ numpy_tapes, _ = qml.transforms.convert_to_numpy_parameters(internal_tapes) - return (device.execute(numpy_tapes, config), tuple()) + return device.execute(numpy_tapes, config), tuple() def gradient_fn(internal_tapes): """A partial function that wraps compute_derivatives method of the device. @@ -612,7 +623,7 @@ def gradient_fn(internal_tapes): # trainable parameters can only be set on the first pass for jax # not higher order passes for higher order derivatives - if interface in {"jax", "jax-python", "jax-jit"}: + if "jax" in interface: for tape in tapes: params = tape.get_parameters(trainable_only=False) tape.trainable_params = qml.math.get_trainable_indices(params) diff --git a/pennylane/workflow/interfaces/autograd.py b/pennylane/workflow/interfaces/autograd.py index 9452af31854..cb5731ddc8b 100644 --- a/pennylane/workflow/interfaces/autograd.py +++ b/pennylane/workflow/interfaces/autograd.py @@ -147,6 +147,21 @@ def autograd_execute( return _execute(parameters, tuple(tapes), execute_fn, jpc) +def _to_autograd(result: qml.typing.ResultBatch) -> qml.typing.ResultBatch: + """Converts an arbitrary result batch to one with autograd arrays. + Args: + result (ResultBatch): a nested structure of lists, tuples, dicts, and numpy arrays + Returns: + ResultBatch: a nested structure of tuples, dicts, and jax arrays + """ + if isinstance(result, dict): + return result + # pylint: disable=no-member + if isinstance(result, (list, tuple, autograd.builtins.tuple, autograd.builtins.list)): + return tuple(_to_autograd(r) for r in result) + return autograd.numpy.array(result) + + @autograd.extend.primitive def _execute( parameters, @@ -165,7 +180,7 @@ def _execute( for the input tapes. """ - return execute_fn(tapes) + return _to_autograd(execute_fn(tapes)) # pylint: disable=unused-argument diff --git a/pennylane/workflow/qnode.py b/pennylane/workflow/qnode.py index 408a0794674..ab68a9ad147 100644 --- a/pennylane/workflow/qnode.py +++ b/pennylane/workflow/qnode.py @@ -32,7 +32,7 @@ from pennylane.tape import QuantumScript, QuantumTape from pennylane.transforms.core import TransformContainer, TransformDispatcher, TransformProgram -from .execution import INTERFACE_MAP, SUPPORTED_INTERFACES, SupportedInterfaceUserInput +from .execution import INTERFACE_MAP, SUPPORTED_INTERFACE_NAMES, SupportedInterfaceUserInput logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) @@ -56,9 +56,8 @@ def _convert_to_interface(res, interface): """ Recursively convert res to the given interface. """ - interface = INTERFACE_MAP[interface] - if interface in ["Numpy"]: + if interface == "numpy": return res if isinstance(res, (list, tuple)): @@ -67,7 +66,18 @@ def _convert_to_interface(res, interface): if isinstance(res, dict): return {k: _convert_to_interface(v, interface) for k, v in res.items()} - return qml.math.asarray(res, like=interface if interface != "tf" else "tensorflow") + interface_conversion_map = { + "autograd": "autograd", + "jax": "jax", + "jax-jit": "jax", + "torch": "torch", + "tf": "tensorflow", + "tf-autograph": "tensorflow", + } + + interface_name = interface_conversion_map[interface] + + return qml.math.asarray(res, like=interface_name) def _make_execution_config( @@ -495,10 +505,10 @@ def __init__( gradient_kwargs, ) - if interface not in SUPPORTED_INTERFACES: + if interface not in SUPPORTED_INTERFACE_NAMES: raise qml.QuantumFunctionError( f"Unknown interface {interface}. Interface must be " - f"one of {SUPPORTED_INTERFACES}." + f"one of {SUPPORTED_INTERFACE_NAMES}." ) if not isinstance(device, (qml.devices.LegacyDevice, qml.devices.Device)): @@ -524,7 +534,7 @@ def __init__( # input arguments self.func = func self.device = device - self._interface = None if diff_method is None else interface + self._interface = "numpy" if diff_method is None else INTERFACE_MAP[interface] self.diff_method = diff_method mcm_config = qml.devices.MCMConfig(mcm_method=mcm_method, postselect_mode=postselect_mode) cache = (max_diff > 1) if cache == "auto" else cache @@ -617,10 +627,10 @@ def interface(self) -> str: @interface.setter def interface(self, value: SupportedInterfaceUserInput): - if value not in SUPPORTED_INTERFACES: + if value not in SUPPORTED_INTERFACE_NAMES: raise qml.QuantumFunctionError( - f"Unknown interface {value}. Interface must be one of {SUPPORTED_INTERFACES}." + f"Unknown interface {value}. Interface must be one of {SUPPORTED_INTERFACE_NAMES}." ) self._interface = INTERFACE_MAP[value] @@ -923,12 +933,18 @@ def _execution_component(self, args: tuple, kwargs: dict) -> qml.typing.Result: execute_kwargs["mcm_config"] = mcm_config + # Mapping numpy to None here because `qml.execute` will map None back into + # numpy. If we do not do this, numpy will become autograd in `qml.execute`. + # If the user specified interface="numpy", it would've already been converted to + # "autograd", and it wouldn't be affected. + interface = None if self.interface == "numpy" else self.interface + # pylint: disable=unexpected-keyword-arg res = qml.execute( (self._tape,), device=self.device, gradient_fn=gradient_fn, - interface=self.interface, + interface=interface, transform_program=full_transform_program, inner_transform=inner_transform_program, config=config, @@ -961,7 +977,9 @@ def _impl_call(self, *args, **kwargs) -> qml.typing.Result: if qml.capture.enabled() else qml.math.get_interface(*args, *list(kwargs.values())) ) - self._interface = INTERFACE_MAP[interface] + if interface != "numpy": + interface = INTERFACE_MAP[interface] + self._interface = interface try: res = self._execution_component(args, kwargs) diff --git a/tests/devices/default_qubit/test_default_qubit.py b/tests/devices/default_qubit/test_default_qubit.py index 8b3a1e257dd..d3049d90eae 100644 --- a/tests/devices/default_qubit/test_default_qubit.py +++ b/tests/devices/default_qubit/test_default_qubit.py @@ -1960,7 +1960,7 @@ def test_postselection_invalid_analytic( dev = qml.device("default.qubit") @qml.defer_measurements - @qml.qnode(dev, interface=interface) + @qml.qnode(dev, interface=None if interface == "numpy" else interface) def circ(): qml.RX(np.pi, 0) qml.CNOT([0, 1]) diff --git a/tests/devices/qubit/test_simulate.py b/tests/devices/qubit/test_simulate.py index dbe9573b8df..4dce5afd4c5 100644 --- a/tests/devices/qubit/test_simulate.py +++ b/tests/devices/qubit/test_simulate.py @@ -205,7 +205,7 @@ def test_result_has_correct_interface(self, op): def test_expand_state_keeps_autograd_interface(self): """Test that expand_state doesn't convert autograd to numpy.""" - @qml.qnode(qml.device("default.qubit", wires=2)) + @qml.qnode(qml.device("default.qubit", wires=2), interface="autograd") def circuit(x): qml.RX(x, 0) return qml.probs(wires=[0, 1]) diff --git a/tests/gradients/finite_diff/test_spsa_gradient.py b/tests/gradients/finite_diff/test_spsa_gradient.py index d8f19dcf826..2730cd53d00 100644 --- a/tests/gradients/finite_diff/test_spsa_gradient.py +++ b/tests/gradients/finite_diff/test_spsa_gradient.py @@ -14,11 +14,11 @@ """ Tests for the gradients.spsa_gradient module. """ -import numpy +import numpy as np import pytest import pennylane as qml -from pennylane import numpy as np +from pennylane import numpy as pnp from pennylane.devices import DefaultQubitLegacy from pennylane.gradients import spsa_grad from pennylane.gradients.spsa_gradient import _rademacher_sampler @@ -168,7 +168,7 @@ def circuit(param): expected_message = "The argument sampler_rng is expected to be a NumPy PRNG" with pytest.raises(ValueError, match=expected_message): - qml.grad(circuit)(np.array(1.0)) + qml.grad(circuit)(pnp.array(1.0)) def test_trainable_batched_tape_raises(self): """Test that an error is raised for a broadcasted/batched tape if the broadcasted @@ -202,7 +202,7 @@ def test_nontrainable_batched_tape(self): def test_non_differentiable_error(self): """Test error raised if attempting to differentiate with respect to a non-differentiable argument""" - psi = np.array([1, 0, 1, 0], requires_grad=False) / np.sqrt(2) + psi = pnp.array([1, 0, 1, 0], requires_grad=False) / np.sqrt(2) with qml.queuing.AnnotatedQueue() as q: qml.StatePrep(psi, wires=[0, 1]) @@ -227,10 +227,10 @@ def test_non_differentiable_error(self): assert isinstance(res, tuple) assert len(res) == 2 - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == (4,) - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == (4,) @pytest.mark.parametrize("num_directions", [1, 10]) @@ -252,8 +252,8 @@ def test_independent_parameter(self, num_directions, mocker): assert isinstance(res, tuple) assert len(res) == 2 - assert isinstance(res[0], numpy.ndarray) - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[0], np.ndarray) + assert isinstance(res[1], np.ndarray) # 2 tapes per direction because the default strategy for SPSA is "center" assert len(spy.call_args_list) == num_directions @@ -282,7 +282,7 @@ def test_no_trainable_params_tape(self): res = post_processing(qml.execute(g_tapes, dev, None)) assert g_tapes == [] - assert isinstance(res, numpy.ndarray) + assert isinstance(res, np.ndarray) assert res.shape == (0,) def test_no_trainable_params_multiple_return_tape(self): @@ -383,7 +383,7 @@ def circuit(params): qml.Rot(*params, wires=0) return qml.probs([2, 3]) - params = np.array([0.5, 0.5, 0.5], requires_grad=True) + params = pnp.array([0.5, 0.5, 0.5], requires_grad=True) result = spsa_grad(circuit)(params) @@ -402,7 +402,7 @@ def circuit(params): qml.Rot(*params, wires=0) return qml.expval(qml.PauliZ(wires=2)), qml.probs([2, 3]) - params = np.array([0.5, 0.5, 0.5], requires_grad=True) + params = pnp.array([0.5, 0.5, 0.5], requires_grad=True) result = spsa_grad(circuit)(params) @@ -514,7 +514,7 @@ def cost6(x): qml.Rot(*x, wires=0) return qml.probs([0, 1]), qml.probs([2, 3]) - x = np.random.rand(3) + x = pnp.random.rand(3) circuits = [qml.QNode(cost, dev) for cost in (cost1, cost2, cost3, cost4, cost5, cost6)] transform = [qml.math.shape(spsa_grad(c)(x)) for c in circuits] @@ -576,7 +576,7 @@ class DeviceSupportingSpecialObservable(DefaultQubitLegacy): @staticmethod def _asarray(arr, dtype=None): - return np.array(arr, dtype=dtype) + return pnp.array(arr, dtype=dtype) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @@ -603,9 +603,11 @@ def reference_qnode(x): qml.RY(x, wires=0) return qml.expval(qml.PauliZ(wires=0)) - par = np.array(0.2, requires_grad=True) - assert np.isclose(qnode(par).item().val, reference_qnode(par)) - assert np.isclose(qml.jacobian(qnode)(par).item().val, qml.jacobian(reference_qnode)(par)) + par = pnp.array(0.2, requires_grad=True) + assert np.isclose(qnode(par).item().val, reference_qnode(par).item()) + assert np.isclose( + qml.jacobian(qnode)(par).item().val, qml.jacobian(reference_qnode)(par).item() + ) @pytest.mark.parametrize("approx_order", [2, 4]) @@ -684,10 +686,10 @@ def test_single_expectation_value(self, approx_order, strategy, validate, tol): # 1 / num_params here. res = tuple(qml.math.convert_like(r * 2, r) for r in res) - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == () - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == () expected = np.array([[-np.sin(y) * np.sin(x), np.cos(y) * np.cos(x)]]) @@ -728,10 +730,10 @@ def test_single_expectation_value_with_argnum_all(self, approx_order, strategy, # 1 / num_params here. res = tuple(qml.math.convert_like(r * 2, r) for r in res) - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == () - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == () expected = np.array([[-np.sin(y) * np.sin(x), np.cos(y) * np.cos(x)]]) @@ -772,10 +774,10 @@ def test_single_expectation_value_with_argnum_one(self, approx_order, strategy, assert isinstance(res, tuple) assert len(res) == 2 - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == () - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == () expected = [0, np.cos(y) * np.cos(x)] @@ -856,14 +858,14 @@ def test_multiple_expectation_values(self, approx_order, strategy, validate, tol assert isinstance(res[0], tuple) assert len(res[0]) == 2 assert np.allclose(res[0], [-np.sin(x), 0], atol=tol, rtol=0) - assert isinstance(res[0][0], numpy.ndarray) - assert isinstance(res[0][1], numpy.ndarray) + assert isinstance(res[0][0], np.ndarray) + assert isinstance(res[0][1], np.ndarray) assert isinstance(res[1], tuple) assert len(res[1]) == 2 assert np.allclose(res[1], [0, np.cos(y)], atol=tol, rtol=0) - assert isinstance(res[1][0], numpy.ndarray) - assert isinstance(res[1][1], numpy.ndarray) + assert isinstance(res[1][0], np.ndarray) + assert isinstance(res[1][1], np.ndarray) def test_var_expectation_values(self, approx_order, strategy, validate, tol): """Tests correct output shape and evaluation for a tape @@ -901,14 +903,14 @@ def test_var_expectation_values(self, approx_order, strategy, validate, tol): assert isinstance(res[0], tuple) assert len(res[0]) == 2 assert np.allclose(res[0], [-np.sin(x), 0], atol=tol, rtol=0) - assert isinstance(res[0][0], numpy.ndarray) - assert isinstance(res[0][1], numpy.ndarray) + assert isinstance(res[0][0], np.ndarray) + assert isinstance(res[0][1], np.ndarray) assert isinstance(res[1], tuple) assert len(res[1]) == 2 assert np.allclose(res[1], [0, -2 * np.cos(y) * np.sin(y)], atol=tol, rtol=0) - assert isinstance(res[1][0], numpy.ndarray) - assert isinstance(res[1][1], numpy.ndarray) + assert isinstance(res[1][0], np.ndarray) + assert isinstance(res[1][1], np.ndarray) def test_prob_expectation_values(self, approx_order, strategy, validate, tol): """Tests correct output shape and evaluation for a tape @@ -946,9 +948,9 @@ def test_prob_expectation_values(self, approx_order, strategy, validate, tol): assert isinstance(res[0], tuple) assert len(res[0]) == 2 assert np.allclose(res[0][0], -np.sin(x), atol=tol, rtol=0) - assert isinstance(res[0][0], numpy.ndarray) + assert isinstance(res[0][0], np.ndarray) assert np.allclose(res[0][1], 0, atol=tol, rtol=0) - assert isinstance(res[0][1], numpy.ndarray) + assert isinstance(res[0][1], np.ndarray) assert isinstance(res[1], tuple) assert len(res[1]) == 2 @@ -963,7 +965,7 @@ def test_prob_expectation_values(self, approx_order, strategy, validate, tol): atol=tol, rtol=0, ) - assert isinstance(res[1][0], numpy.ndarray) + assert isinstance(res[1][0], np.ndarray) assert np.allclose( res[1][1], [ @@ -975,7 +977,7 @@ def test_prob_expectation_values(self, approx_order, strategy, validate, tol): atol=tol, rtol=0, ) - assert isinstance(res[1][1], numpy.ndarray) + assert isinstance(res[1][1], np.ndarray) @pytest.mark.parametrize( @@ -989,7 +991,7 @@ def test_autograd(self, sampler, num_directions, atol): """Tests that the output of the SPSA gradient transform can be differentiated using autograd, yielding second derivatives.""" dev = qml.device("default.qubit", wires=2) - params = np.array([0.543, -0.654], requires_grad=True) + params = pnp.array([0.543, -0.654], requires_grad=True) rng = np.random.default_rng(42) def cost_fn(x): @@ -1004,7 +1006,7 @@ def cost_fn(x): tapes, fn = spsa_grad( tape, n=1, num_directions=num_directions, sampler=sampler, sampler_rng=rng ) - jac = np.array(fn(dev.execute(tapes))) + jac = pnp.array(fn(dev.execute(tapes))) if sampler is coordinate_sampler: jac *= 2 return jac @@ -1025,7 +1027,7 @@ def test_autograd_ragged(self, sampler, num_directions, atol): """Tests that the output of the SPSA gradient transform of a ragged tape can be differentiated using autograd, yielding second derivatives.""" dev = qml.device("default.qubit", wires=2) - params = np.array([0.543, -0.654], requires_grad=True) + params = pnp.array([0.543, -0.654], requires_grad=True) rng = np.random.default_rng(42) def cost_fn(x): diff --git a/tests/gradients/finite_diff/test_spsa_gradient_shot_vec.py b/tests/gradients/finite_diff/test_spsa_gradient_shot_vec.py index 46f8aa1288e..2c771dc2832 100644 --- a/tests/gradients/finite_diff/test_spsa_gradient_shot_vec.py +++ b/tests/gradients/finite_diff/test_spsa_gradient_shot_vec.py @@ -14,11 +14,11 @@ """ Tests for the gradients.spsa_gradient module using shot vectors. """ -import numpy +import numpy as np import pytest import pennylane as qml -from pennylane import numpy as np +from pennylane import numpy as pnp from pennylane.devices import DefaultQubitLegacy from pennylane.gradients import spsa_grad from pennylane.measurements import Shots @@ -49,7 +49,7 @@ class TestSpsaGradient: def test_non_differentiable_error(self): """Test error raised if attempting to differentiate with respect to a non-differentiable argument""" - psi = np.array([1, 0, 1, 0], requires_grad=False) / np.sqrt(2) + psi = pnp.array([1, 0, 1, 0], requires_grad=False) / np.sqrt(2) with qml.queuing.AnnotatedQueue() as q: qml.StatePrep(psi, wires=[0, 1]) @@ -78,10 +78,10 @@ def test_non_differentiable_error(self): for res in all_res: assert isinstance(res, tuple) - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == (4,) - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == (4,) @pytest.mark.parametrize("num_directions", [1, 6]) @@ -107,8 +107,8 @@ def test_independent_parameter(self, num_directions, mocker): assert isinstance(res, tuple) assert len(res) == 2 - assert isinstance(res[0], numpy.ndarray) - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[0], np.ndarray) + assert isinstance(res[1], np.ndarray) # 2 tapes per direction because the default strategy for SPSA is "center" assert len(spy.call_args_list) == num_directions @@ -139,7 +139,7 @@ def test_no_trainable_params_tape(self): for res in all_res: assert g_tapes == [] - assert isinstance(res, numpy.ndarray) + assert isinstance(res, np.ndarray) assert res.shape == (0,) def test_no_trainable_params_multiple_return_tape(self): @@ -244,7 +244,7 @@ def circuit(params): qml.Rot(*params, wires=0) return qml.probs([2, 3]) - params = np.array([0.5, 0.5, 0.5], requires_grad=True) + params = pnp.array([0.5, 0.5, 0.5], requires_grad=True) grad_fn = spsa_grad(circuit, h=h_val, sampler_rng=rng) all_result = grad_fn(params) @@ -269,7 +269,7 @@ def circuit(params): qml.Rot(*params, wires=0) return qml.expval(qml.PauliZ(wires=2)), qml.probs([2, 3]) - params = np.array([0.5, 0.5, 0.5], requires_grad=True) + params = pnp.array([0.5, 0.5, 0.5], requires_grad=True) grad_fn = spsa_grad(circuit, h=h_val, sampler_rng=rng) all_result = grad_fn(params) @@ -416,7 +416,7 @@ def cost6(x): qml.Rot(*x, wires=0) return qml.probs([0, 1]), qml.probs([2, 3]) - x = np.random.rand(3) + x = pnp.random.rand(3) circuits = [qml.QNode(cost, dev) for cost in (cost1, cost2, cost3, cost4, cost5, cost6)] transform = [qml.math.shape(spsa_grad(c, h=h_val)(x)) for c in circuits] @@ -498,9 +498,11 @@ def reference_qnode(x): qml.RY(x, wires=0) return qml.expval(qml.PauliZ(wires=0)) - par = np.array(0.2, requires_grad=True) - assert np.isclose(qnode(par).item().val, reference_qnode(par)) - assert np.isclose(qml.jacobian(qnode)(par).item().val, qml.jacobian(reference_qnode)(par)) + par = pnp.array(0.2, requires_grad=True) + assert np.isclose(qnode(par).item().val, reference_qnode(par).item()) + assert np.isclose( + qml.jacobian(qnode)(par).item().val, qml.jacobian(reference_qnode)(par).item() + ) @pytest.mark.parametrize("approx_order", [2, 4]) @@ -586,10 +588,10 @@ def test_single_expectation_value(self, approx_order, strategy, validate): assert isinstance(res, tuple) assert len(res) == 2 - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == () - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == () # The coordinate_sampler produces the right evaluation points, but the tape execution @@ -635,10 +637,10 @@ def test_single_expectation_value_with_argnum_all(self, approx_order, strategy, assert isinstance(res, tuple) assert len(res) == 2 - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == () - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == () # The coordinate_sampler produces the right evaluation points, but the tape execution @@ -689,10 +691,10 @@ def test_single_expectation_value_with_argnum_one(self, approx_order, strategy, assert isinstance(res, tuple) assert len(res) == 2 - assert isinstance(res[0], numpy.ndarray) + assert isinstance(res[0], np.ndarray) assert res[0].shape == () - assert isinstance(res[1], numpy.ndarray) + assert isinstance(res[1], np.ndarray) assert res[1].shape == () # The coordinate_sampler produces the right evaluation points and there is just one @@ -783,13 +785,13 @@ def test_multiple_expectation_values(self, approx_order, strategy, validate): assert isinstance(res[0], tuple) assert len(res[0]) == 2 - assert isinstance(res[0][0], numpy.ndarray) - assert isinstance(res[0][1], numpy.ndarray) + assert isinstance(res[0][0], np.ndarray) + assert isinstance(res[0][1], np.ndarray) assert isinstance(res[1], tuple) assert len(res[1]) == 2 - assert isinstance(res[1][0], numpy.ndarray) - assert isinstance(res[1][1], numpy.ndarray) + assert isinstance(res[1][0], np.ndarray) + assert isinstance(res[1][1], np.ndarray) # The coordinate_sampler produces the right evaluation points, but the tape execution # results are averaged instead of added, so that we need to revert the prefactor @@ -837,13 +839,13 @@ def test_var_expectation_values(self, approx_order, strategy, validate): assert isinstance(res[0], tuple) assert len(res[0]) == 2 - assert isinstance(res[0][0], numpy.ndarray) - assert isinstance(res[0][1], numpy.ndarray) + assert isinstance(res[0][0], np.ndarray) + assert isinstance(res[0][1], np.ndarray) assert isinstance(res[1], tuple) assert len(res[1]) == 2 - assert isinstance(res[1][0], numpy.ndarray) - assert isinstance(res[1][1], numpy.ndarray) + assert isinstance(res[1][0], np.ndarray) + assert isinstance(res[1][1], np.ndarray) # The coordinate_sampler produces the right evaluation points, but the tape execution # results are averaged instead of added, so that we need to revert the prefactor @@ -892,13 +894,13 @@ def test_prob_expectation_values(self, approx_order, strategy, validate): assert isinstance(res[0], tuple) assert len(res[0]) == 2 - assert isinstance(res[0][0], numpy.ndarray) - assert isinstance(res[0][1], numpy.ndarray) + assert isinstance(res[0][0], np.ndarray) + assert isinstance(res[0][1], np.ndarray) assert isinstance(res[1], tuple) assert len(res[1]) == 2 - assert isinstance(res[1][0], numpy.ndarray) - assert isinstance(res[1][1], numpy.ndarray) + assert isinstance(res[1][0], np.ndarray) + assert isinstance(res[1][1], np.ndarray) # The coordinate_sampler produces the right evaluation points, but the tape execution # results are averaged instead of added, so that we need to revert the prefactor @@ -943,7 +945,7 @@ def test_autograd(self, approx_order, strategy): """Tests that the output of the SPSA gradient transform can be differentiated using autograd, yielding second derivatives.""" dev = qml.device("default.qubit", wires=2, shots=many_shots_shot_vector) - params = np.array([0.543, -0.654], requires_grad=True) + params = pnp.array([0.543, -0.654], requires_grad=True) rng = np.random.default_rng(42) def cost_fn(x): @@ -986,7 +988,7 @@ def test_autograd_ragged(self, approx_order, strategy): """Tests that the output of the SPSA gradient transform of a ragged tape can be differentiated using autograd, yielding second derivatives.""" dev = qml.device("default.qubit", wires=2, shots=many_shots_shot_vector) - params = np.array([0.543, -0.654], requires_grad=True) + params = pnp.array([0.543, -0.654], requires_grad=True) rng = np.random.default_rng(42) def cost_fn(x): diff --git a/tests/interfaces/test_jax_jit.py b/tests/interfaces/test_jax_jit.py index a9927dad7fb..eea7b6be52a 100644 --- a/tests/interfaces/test_jax_jit.py +++ b/tests/interfaces/test_jax_jit.py @@ -107,7 +107,7 @@ def cost(a, device): interface="None", )[0] - with pytest.raises(ValueError, match="Unknown interface"): + with pytest.raises(qml.QuantumFunctionError, match="Unknown interface"): cost(a, device=dev) def test_grad_on_execution(self, mocker): diff --git a/tests/measurements/test_sample.py b/tests/measurements/test_sample.py index e0d4ec25724..d31ce97d4a5 100644 --- a/tests/measurements/test_sample.py +++ b/tests/measurements/test_sample.py @@ -121,8 +121,8 @@ def circuit(): # If all the dimensions are equal the result will end up to be a proper rectangular array assert len(result) == 3 - assert isinstance(result[0], np.ndarray) - assert isinstance(result[1], np.ndarray) + assert isinstance(result[0], float) + assert isinstance(result[1], float) assert result[2].dtype == np.dtype("float") assert np.array_equal(result[2].shape, (n_sample,)) diff --git a/tests/qnn/test_keras.py b/tests/qnn/test_keras.py index f4f9769edc2..1115460922d 100644 --- a/tests/qnn/test_keras.py +++ b/tests/qnn/test_keras.py @@ -588,7 +588,11 @@ def circuit(inputs, w1): return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1)) qlayer = KerasLayer(circuit, weight_shapes, output_dim=2) - assert qlayer.qnode.interface == circuit.interface == interface + assert ( + qlayer.qnode.interface + == circuit.interface + == qml.workflow.execution.INTERFACE_MAP[interface] + ) @pytest.mark.tf diff --git a/tests/qnn/test_qnn_torch.py b/tests/qnn/test_qnn_torch.py index 64aeb9b1a9c..e2642df0e4b 100644 --- a/tests/qnn/test_qnn_torch.py +++ b/tests/qnn/test_qnn_torch.py @@ -632,7 +632,11 @@ def circuit(inputs, w1): return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1)) qlayer = TorchLayer(circuit, weight_shapes) - assert qlayer.qnode.interface == circuit.interface == interface + assert ( + qlayer.qnode.interface + == circuit.interface + == qml.workflow.execution.INTERFACE_MAP[interface] + ) @pytest.mark.torch diff --git a/tests/test_qnode.py b/tests/test_qnode.py index 38b8847106d..1322ca62c16 100644 --- a/tests/test_qnode.py +++ b/tests/test_qnode.py @@ -434,7 +434,7 @@ def circuit(x): qml.RX(x, wires=0) return qml.expval(qml.PauliZ(0)) - assert circuit.interface is None + assert circuit.interface == "numpy" with pytest.warns( qml.PennyLaneDeprecationWarning, match=r"QNode.gradient_fn is deprecated" ): @@ -1139,6 +1139,20 @@ def circuit(): assert q.queue == [] # pylint: disable=use-implicit-booleaness-not-comparison assert len(circuit.tape.operations) == 1 + def test_qnode_preserves_inferred_numpy_interface(self): + """Tests that the QNode respects the inferred numpy interface.""" + + dev = qml.device("default.qubit", wires=1) + + @qml.qnode(dev) + def circuit(x): + qml.RX(x, wires=0) + return qml.expval(qml.PauliZ(0)) + + x = np.array(0.8) + res = circuit(x) + assert qml.math.get_interface(res) == "numpy" + class TestShots: """Unit tests for specifying shots per call.""" @@ -1899,7 +1913,7 @@ def circuit(x): else: spy = mocker.spy(circuit.device, "execute") - x = np.array(0.5) + x = pnp.array(0.5) circuit(x) tape = spy.call_args[0][0][0] diff --git a/tests/test_qnode_legacy.py b/tests/test_qnode_legacy.py index 3ee36d99bdb..73eaf29b302 100644 --- a/tests/test_qnode_legacy.py +++ b/tests/test_qnode_legacy.py @@ -1488,7 +1488,7 @@ def circuit(x): else: spy = mocker.spy(circuit.device, "execute") - x = np.array(0.5) + x = pnp.array(0.5) circuit(x) tape = spy.call_args[0][0][0]