-
Notifications
You must be signed in to change notification settings - Fork 239
/
AllomVignette.Rmd
81 lines (60 loc) · 3.04 KB
/
AllomVignette.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
title: "PEcAn.allometry Vignette"
author: "Mike Dietze"
date: "April 23, 2015"
output: html_vignette
vignette: >
%\VignetteIndexEntry{PEcAn.allometry Vignette}
%\VignetteEngine{knitr::rmarkdown}
---
## install package from Github
Only needs to be done the first time
```{r, eval=FALSE}
library(devtools)
install_github("PecanProject/pecan",subdir="modules/allometry")
```
## Define species groups
```{r}
library(PEcAn.allometry)
## define the Plant Functional Types you want to fit based on USDA acronyms and USFS species codes (spcd)
## can involve one or many species
## multiple PFTs can be fit at once by putting them in a list
## Note that the name used in the PFT list defines the name that the code will match against when making predictions for new individuals
pfts = list(FAGR = data.frame(spcd=531,acronym="FAGR"))
## example of a PFT with multiple species (LH = late hardwood)
## note that if you're just using Jenkins the acronym column is optional
pfts = list(LH = data.frame(spcd = c(531,318),acronym=c("FAGR","ACSA3")))
```
## Run the Bayesian allometry model
Note the side effects of this function are that it will create two files in your working directory for every PFT and component pair, a pdf file of diagnostics and a RData file saving the full output. These files will be named based on the PFT and the component.
The return from this function will be a summary table of statistics. The function will actually run two variants of the model, a "global" modelthat fits a single equation to all equations and a 'hierarchical' model that accounts for the variability among equations. This function also print out DIC statistics on which fit was better (lowest score wins): DIC is the hierarchical model, DICg is the global model.
```{r}
allom.stats = AllomAve(pfts,ngibbs=500)
```
If you want to run with a response variable other than the default (e.g. components = 6; stem biomass), look up the relevant component IDs in data(allom.components). The default component is 3 (total aboveground biomass). Note that if you specify multiple PFTs (as a list) and multiple components (as a vector) then AllomAve will generate allometries for all PFT x component combinations
```{r}
allom.stats = AllomAve(pfts,ngibbs=500,components=c(3,6))
```
## Predict for individual trees
```{r}
allom.fit = load.allom(getwd())
dbh = 1:50
pred = allom.predict(allom.fit,dbh = dbh,pft = "LH",component = 3,use = "Bg",interval = "prediction")
conf = allom.predict(allom.fit,dbh = dbh,pft = "LH",component = 3,use = "Bg",interval = "confidence")
PI = apply(pred,2,quantile,c(0.025,0.5,0.975),na.rm=TRUE)
CI = apply(conf,2,quantile,c(0.025,0.5,0.975),na.rm=TRUE)
plot(dbh,CI[2,],type='l',lwd=3,ylim=range(PI),ylab="Biomass (kg)")
lines(dbh,CI[1,],lty=2,col="blue")
lines(dbh,CI[3,],lty=2,col="blue")
lines(dbh,PI[1,],lty=3,col="red")
lines(dbh,PI[3,],lty=3,col="red")
```
## Predict for a stand
```{r}
## simulated DBH's
dbh = rpois(100,20)
hist(dbh)
stand = allom.predict(allom.fit,dbh = dbh,pft = "LH",component = 3,use = "Bg",interval = "prediction")
AGB = apply(stand,1,sum)
hist(AGB)
```