-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata_training.py
67 lines (46 loc) · 1.3 KB
/
data_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import numpy as np
import cv2
from tensorflow.keras.utils import to_categorical
from keras.layers import Input, Dense
from keras.models import Model
is_init = False
size = -1
label = []
dictionary = {}
c = 0
for i in os.listdir():
if i.split(".")[-1] == "npy" and not(i.split(".")[0] == "labels"):
if not(is_init):
is_init = True
X = np.load(i)
size = X.shape[0]
y = np.array([i.split('.')[0]]*size).reshape(-1,1)
else:
X = np.concatenate((X, np.load(i)))
y = np.concatenate((y, np.array([i.split('.')[0]]*size).reshape(-1,1)))
label.append(i.split('.')[0])
dictionary[i.split('.')[0]] = c
c = c+1
for i in range(y.shape[0]):
y[i, 0] = dictionary[y[i, 0]]
y = np.array(y, dtype="int32")
y = to_categorical(y)
X_new = X.copy()
y_new = y.copy()
counter = 0
cnt = np.arange(X.shape[0])
np.random.shuffle(cnt)
for i in cnt:
X_new[counter] = X[i]
y_new[counter] = y[i]
counter = counter + 1
ip = Input(shape=(X.shape[1]))
m = Dense(128, activation="tanh")(ip)
m = Dense(64, activation="tanh")(m)
op = Dense(y.shape[1], activation="softmax")(m)
model = Model(inputs=ip, outputs=op)
model.compile(optimizer='rmsprop', loss="categorical_crossentropy", metrics=['acc'])
model.fit(X_new, y_new, epochs=80)
model.save("model.h5")
np.save("labels.npy", np.array(label))