-
Notifications
You must be signed in to change notification settings - Fork 40
/
iDLG.py
268 lines (212 loc) · 9.27 KB
/
iDLG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import time
import os
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torchvision import datasets, transforms
import pickle
import PIL.Image as Image
class LeNet(nn.Module):
def __init__(self, channel=3, hideen=768, num_classes=10):
super(LeNet, self).__init__()
act = nn.Sigmoid
self.body = nn.Sequential(
nn.Conv2d(channel, 12, kernel_size=5, padding=5 // 2, stride=2),
act(),
nn.Conv2d(12, 12, kernel_size=5, padding=5 // 2, stride=2),
act(),
nn.Conv2d(12, 12, kernel_size=5, padding=5 // 2, stride=1),
act(),
)
self.fc = nn.Sequential(
nn.Linear(hideen, num_classes)
)
def forward(self, x):
out = self.body(x)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def weights_init(m):
try:
if hasattr(m, "weight"):
m.weight.data.uniform_(-0.5, 0.5)
except Exception:
print('warning: failed in weights_init for %s.weight' % m._get_name())
try:
if hasattr(m, "bias"):
m.bias.data.uniform_(-0.5, 0.5)
except Exception:
print('warning: failed in weights_init for %s.bias' % m._get_name())
class Dataset_from_Image(Dataset):
def __init__(self, imgs, labs, transform=None):
self.imgs = imgs # img paths
self.labs = labs # labs is ndarray
self.transform = transform
del imgs, labs
def __len__(self):
return self.labs.shape[0]
def __getitem__(self, idx):
lab = self.labs[idx]
img = Image.open(self.imgs[idx])
if img.mode != 'RGB':
img = img.convert('RGB')
img = self.transform(img)
return img, lab
def lfw_dataset(lfw_path, shape_img):
images_all = []
labels_all = []
folders = os.listdir(lfw_path)
for foldidx, fold in enumerate(folders):
files = os.listdir(os.path.join(lfw_path, fold))
for f in files:
if len(f) > 4 and f[-4:] == '.jpg':
images_all.append(os.path.join(lfw_path, fold, f))
labels_all.append(foldidx)
transform = transforms.Compose([transforms.Resize(size=shape_img)])
dst = Dataset_from_Image(images_all, np.asarray(labels_all, dtype=int), transform=transform)
return dst
def main():
dataset = 'lfw'
root_path = '.'
data_path = os.path.join(root_path, '../data').replace('\\', '/')
save_path = os.path.join(root_path, 'results/iDLG_%s'%dataset).replace('\\', '/')
lr = 1.0
num_dummy = 1
Iteration = 300
num_exp = 1000
use_cuda = torch.cuda.is_available()
device = 'cuda' if use_cuda else 'cpu'
tt = transforms.Compose([transforms.ToTensor()])
tp = transforms.Compose([transforms.ToPILImage()])
print(dataset, 'root_path:', root_path)
print(dataset, 'data_path:', data_path)
print(dataset, 'save_path:', save_path)
if not os.path.exists('results'):
os.mkdir('results')
if not os.path.exists(save_path):
os.mkdir(save_path)
''' load data '''
if dataset == 'MNIST':
shape_img = (28, 28)
num_classes = 10
channel = 1
hidden = 588
dst = datasets.MNIST(data_path, download=False)
elif dataset == 'cifar100':
shape_img = (32, 32)
num_classes = 100
channel = 3
hidden = 768
dst = datasets.CIFAR100(data_path, download=False)
elif dataset == 'lfw':
shape_img = (32, 32)
num_classes = 5749
channel = 3
hidden = 768
lfw_path = os.path.join(root_path, '../data/lfw')
dst = lfw_dataset(lfw_path, shape_img)
else:
exit('unknown dataset')
''' train DLG and iDLG '''
for idx_net in range(num_exp):
net = LeNet(channel=channel, hideen=hidden, num_classes=num_classes)
net.apply(weights_init)
print('running %d|%d experiment'%(idx_net, num_exp))
net = net.to(device)
idx_shuffle = np.random.permutation(len(dst))
for method in ['DLG', 'iDLG']:
print('%s, Try to generate %d images' % (method, num_dummy))
criterion = nn.CrossEntropyLoss().to(device)
imidx_list = []
for imidx in range(num_dummy):
idx = idx_shuffle[imidx]
imidx_list.append(idx)
tmp_datum = tt(dst[idx][0]).float().to(device)
tmp_datum = tmp_datum.view(1, *tmp_datum.size())
tmp_label = torch.Tensor([dst[idx][1]]).long().to(device)
tmp_label = tmp_label.view(1, )
if imidx == 0:
gt_data = tmp_datum
gt_label = tmp_label
else:
gt_data = torch.cat((gt_data, tmp_datum), dim=0)
gt_label = torch.cat((gt_label, tmp_label), dim=0)
# compute original gradient
out = net(gt_data)
y = criterion(out, gt_label)
dy_dx = torch.autograd.grad(y, net.parameters())
original_dy_dx = list((_.detach().clone() for _ in dy_dx))
# generate dummy data and label
dummy_data = torch.randn(gt_data.size()).to(device).requires_grad_(True)
dummy_label = torch.randn((gt_data.shape[0], num_classes)).to(device).requires_grad_(True)
if method == 'DLG':
optimizer = torch.optim.LBFGS([dummy_data, dummy_label], lr=lr)
elif method == 'iDLG':
optimizer = torch.optim.LBFGS([dummy_data, ], lr=lr)
# predict the ground-truth label
label_pred = torch.argmin(torch.sum(original_dy_dx[-2], dim=-1), dim=-1).detach().reshape((1,)).requires_grad_(False)
history = []
history_iters = []
losses = []
mses = []
train_iters = []
print('lr =', lr)
for iters in range(Iteration):
def closure():
optimizer.zero_grad()
pred = net(dummy_data)
if method == 'DLG':
dummy_loss = - torch.mean(torch.sum(torch.softmax(dummy_label, -1) * torch.log(torch.softmax(pred, -1)), dim=-1))
# dummy_loss = criterion(pred, gt_label)
elif method == 'iDLG':
dummy_loss = criterion(pred, label_pred)
dummy_dy_dx = torch.autograd.grad(dummy_loss, net.parameters(), create_graph=True)
grad_diff = 0
for gx, gy in zip(dummy_dy_dx, original_dy_dx):
grad_diff += ((gx - gy) ** 2).sum()
grad_diff.backward()
return grad_diff
optimizer.step(closure)
current_loss = closure().item()
train_iters.append(iters)
losses.append(current_loss)
mses.append(torch.mean((dummy_data-gt_data)**2).item())
if iters % int(Iteration / 30) == 0:
current_time = str(time.strftime("[%Y-%m-%d %H:%M:%S]", time.localtime()))
print(current_time, iters, 'loss = %.8f, mse = %.8f' %(current_loss, mses[-1]))
history.append([tp(dummy_data[imidx].cpu()) for imidx in range(num_dummy)])
history_iters.append(iters)
for imidx in range(num_dummy):
plt.figure(figsize=(12, 8))
plt.subplot(3, 10, 1)
plt.imshow(tp(gt_data[imidx].cpu()))
for i in range(min(len(history), 29)):
plt.subplot(3, 10, i + 2)
plt.imshow(history[i][imidx])
plt.title('iter=%d' % (history_iters[i]))
plt.axis('off')
if method == 'DLG':
plt.savefig('%s/DLG_on_%s_%05d.png' % (save_path, imidx_list, imidx_list[imidx]))
plt.close()
elif method == 'iDLG':
plt.savefig('%s/iDLG_on_%s_%05d.png' % (save_path, imidx_list, imidx_list[imidx]))
plt.close()
if current_loss < 0.000001: # converge
break
if method == 'DLG':
loss_DLG = losses
label_DLG = torch.argmax(dummy_label, dim=-1).detach().item()
mse_DLG = mses
elif method == 'iDLG':
loss_iDLG = losses
label_iDLG = label_pred.item()
mse_iDLG = mses
print('imidx_list:', imidx_list)
print('loss_DLG:', loss_DLG[-1], 'loss_iDLG:', loss_iDLG[-1])
print('mse_DLG:', mse_DLG[-1], 'mse_iDLG:', mse_iDLG[-1])
print('gt_label:', gt_label.detach().cpu().data.numpy(), 'lab_DLG:', label_DLG, 'lab_iDLG:', label_iDLG)
print('----------------------\n\n')
if __name__ == '__main__':
main()