-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweather_plots.R
executable file
·109 lines (89 loc) · 4.44 KB
/
weather_plots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Multiple plot function
#
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols: Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
#
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
#
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
require(grid)
# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)
numPlots = length(plots)
# If layout is NULL, then use 'cols' to determine layout
if (is.null(layout)) {
# Make the panel
# ncol: Number of columns of plots
# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
print(plots[[1]])
} else {
# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
# Make each plot, in the correct location
for (i in 1:numPlots) {
# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))
}
}
}
library(grid);library(ggplot2);library(scales)
weather_daily <- read.csv("weather_daily.csv")
weather_daily$date = as.Date(as.character(weather_daily$date),"%Y-%m-%d")
weather_daily$boug = format(weather_daily$date, format="%b %d")
weather_daily_recent = weather_daily[weather_daily$date >= Sys.Date(),]
weather_daily_recent$rain_adj <- NA
weather_daily_recent[weather_daily_recent$rain_in > 0,]$rain_adj <- weather_daily_recent[weather_daily_recent$rain_in > 0,]$high_f
p1 <- ggplot(data=weather_daily_recent[weather_daily_recent$city=='Washington',])+
geom_line(aes(x=date,y=low_f,group=city,colour='Low'),stat='identity')+
geom_line(aes(x=date,y=high_f,group=city,colour='High'))+
geom_point(aes(x=date,y=rain_adj,group=city,colour='Rain',size=rain_in))+
scale_y_continuous(limits=c(min(weather_daily_recent$low_f)-10,max(weather_daily_recent$high_f)+10)
,breaks=seq(0,110,5))+
ggtitle('Upcoming Forecast for Washington DC')+
xlab("Date")+
ylab("Tempature")+
scale_x_date(breaks = date_breaks('days'),labels = date_format("%b %d"))
p2 <- ggplot(data=weather_daily_recent[weather_daily_recent$city=='New_York',])+
geom_line(aes(x=date,y=low_f,group=city,colour='Low'))+
geom_line(aes(x=date,y=high_f,group=city,colour='High'))+
geom_point(aes(x=date,y=rain_adj,group=city,colour='Rain',size=rain_in))+
scale_y_continuous(limits=c(min(weather_daily_recent$low_f)-10,max(weather_daily_recent$high_f)+10)
,breaks=seq(0,110,5))+
ggtitle('Upcoming Forecast for New York, NY')+
xlab("Date")+
ylab("Tempature")+
scale_x_date(breaks = date_breaks('days'),labels = date_format("%b %d"))
p3 <- ggplot(data=weather_daily_recent[weather_daily_recent$city=='Liverpool',])+
geom_line(aes(x=date,y=low_f,group=city,colour='Low'))+
geom_line(aes(x=date,y=high_f,group=city,colour='High'))+
geom_point(aes(x=date,y=rain_adj,group=city,colour='Rain',size=rain_in))+
scale_y_continuous(limits=c(min(weather_daily_recent$low_f)-10,max(weather_daily_recent$high_f)+10)
,breaks=seq(0,110,5))+
ggtitle('Upcoming Forecast for Liverpool, England')+
xlab("Date")+
ylab("Tempature")+
scale_x_date(breaks = date_breaks('days'),labels = date_format("%b %d"))
p4 <- ggplot(data=weather_daily_recent[weather_daily_recent$city=='Sydney',])+
geom_line(aes(x=date,y=low_f,group=city,colour='Low'))+
geom_line(aes(x=date,y=high_f,group=city,colour='High'))+
geom_point(aes(x=date,y=rain_adj,group=city,colour='Rain',size=rain_in))+
scale_y_continuous(limits=c(min(weather_daily_recent$low_f)-10,max(weather_daily_recent$high_f)+10)
,breaks=seq(0,110,5))+
ggtitle('Upcoming Forecast for Sydney, Australia')+
xlab("Date")+
ylab("Tempature")+
scale_x_date(breaks = date_breaks('days'),labels = date_format("%b %d"))
p5 <- multiplot(p1, p2, p3, p4, cols=2)
png(paste('weather_daily_',Sys.Date(),'.png',sep=''),width =900,height =580)
multiplot(p1, p2, p3, p4, cols=2)
dev.off()