在上一小节中我们主要讨论了Prometheus Server自身的高可用问题。而接下来,重点将放在告警处理也就是Alertmanager部分。如下所示。
为了提升Promthues的服务可用性,通常用户会部署两个或者两个以上的Promthus Server,它们具有完全相同的配置包括Job配置,以及告警配置等。当某一个Prometheus Server发生故障后可以确保Promthues持续可用。
同时基于Alertmanager的告警分组机制即使不同的Prometheus Sever分别发送相同的告警给Alertmanager,Alertmanager也可以自动将这些告警合并为一个通知向receiver发送。
但不幸的是,虽然Alertmanager能够同时处理多个相同的Prometheus Server所产生的告警。但是由于单个Alertmanager的存在,当前的部署结构存在明显的单点故障风险,当Alertmanager单点失效后,告警的后续所有业务全部失效。
如下所示,最直接的方式,就是尝试部署多套Alertmanager。但是由于Alertmanager之间不存在并不了解彼此的存在,因此则会出现告警通知被不同的Alertmanager重复发送多次的问题。
为了解决这一问题,如下所示。Alertmanager引入了Gossip机制。Gossip机制为多个Alertmanager之间提供了信息传递的机制。确保及时在多个Alertmanager分别接收到相同告警信息的情况下,也只有一个告警通知被发送给Receiver。
Gossip是分布式系统中被广泛使用的协议,用于实现分布式节点之间的信息交换和状态同步。Gossip协议同步状态类似于流言或者病毒的传播,如下所示:
一般来说Gossip有两种实现方式分别为Push-based和Pull-based。在Push-based当集群中某一节点A完成一个工作后,随机的从其它节点B并向其发送相应的消息,节点B接收到消息后在重复完成相同的工作,直到传播到集群中的所有节点。而Pull-based的实现中节点A会随机的向节点B发起询问是否有新的状态需要同步,如果有则返回。
在简单了解了Gossip协议之后,我们来看Alertmanager是如何基于Gossip协议实现集群高可用的。如下所示,当Alertmanager接收到来自Prometheus的告警消息后,会按照以下流程对告警进行处理:
- 在第一个阶段Silence中,Alertmanager会判断当前通知是否匹配到任何的静默规则,如果没有则进入下一个阶段,否则则中断流水线不发送通知。
- 在第二个阶段Wait中,Alertmanager会根据当前Alertmanager在集群中所在的顺序(index)等待index * 5s的时间。
- 当前Alertmanager等待阶段结束后,Dedup阶段则会判断当前Alertmanager数据库中该通知是否已经发送,如果已经发送则中断流水线,不发送告警,否则则进入下一阶段Send对外发送告警通知。
- 告警发送完成后该Alertmanager进入最后一个阶段Gossip,Gossip会通知其他Alertmanager实例当前告警已经发送。其他实例接收到Gossip消息后,则会在自己的数据库中保存该通知已发送的记录。
因此如下所示,Gossip机制的关键在于两点:
- Silence设置同步:Alertmanager启动阶段基于Pull-based从集群其它节点同步Silence状态,当有新的Silence产生时使用Push-based方式在集群中传播Gossip信息。
- 通知发送状态同步:告警通知发送完成后,基于Push-based同步告警发送状态。Wait阶段可以确保集群状态一致。
Alertmanager基于Gossip实现的集群机制虽然不能保证所有实例上的数据时刻保持一致,但是实现了CAP理论中的AP系统,即可用性和分区容错性。同时对于Prometheus Server而言保持了配置了简单性,Promthues Server之间不需要任何的状态同步。
为了能够让Alertmanager节点之间进行通讯,需要在Alertmanager启动时设置相应的参数。其中主要的参数包括:
- --cluster.listen-address string: 当前实例集群服务监听地址
- --cluster.peer value: 初始化时关联的其它实例的集群服务地址
例如:
定义Alertmanager实例a1,其中Alertmanager的服务运行在9093端口,集群服务地址运行在8001端口。
alertmanager --web.listen-address=":9093" --cluster.listen-address="127.0.0.1:8001" --config.file=/etc/prometheus/alertmanager.yml --storage.path=/data/alertmanager/
定义Alertmanager实例a2,其中主服务运行在9094端口,集群服务运行在8002端口。为了将a1,a2组成集群。 a2启动时需要定义--cluster.peer参数并且指向a1实例的集群服务地址:8001。
alertmanager --web.listen-address=":9094" --cluster.listen-address="127.0.0.1:8002" --cluster.peer=127.0.0.1:8001 --config.file=/etc/prometheus/alertmanager.yml --storage.path=/data/alertmanager2/
为了能够在本地模拟集群环境,这里使用了一个轻量级的多线程管理工具goreman。使用以下命令可以在本地安装goreman命令行工具。
go get github.com/mattn/goreman
创建Alertmanager配置文件/etc/prometheus/alertmanager-ha.yml, 为了验证Alertmanager的集群行为,这里在本地启动一个webhook服务用于打印Alertmanager发送的告警通知信息。
route:
receiver: 'default-receiver'
receivers:
- name: default-receiver
webhook_configs:
- url: 'http://127.0.0.1:5001/'
本地webhook服务可以直接从Github获取。
# 获取alertmanager提供的webhook示例,如果该目录下定义了main函数,go get会自动将其编译成可执行文件
go get github.com/prometheus/alertmanager/examples/webhook
# 设置环境变量指向GOPATH的bin目录
export PATH=$GOPATH/bin:$PATH
# 启动服务
webhook
示例结构如下所示:
创建alertmanager.procfile文件,并且定义了三个Alertmanager节点(a1,a2,a3)以及用于接收告警通知的webhook服务:
a1: alertmanager --web.listen-address=":9093" --cluster.listen-address="127.0.0.1:8001" --config.file=/etc/prometheus/alertmanager-ha.yml --storage.path=/data/alertmanager/ --log.level=debug
a2: alertmanager --web.listen-address=":9094" --cluster.listen-address="127.0.0.1:8002" --cluster.peer=127.0.0.1:8001 --config.file=/etc/prometheus/alertmanager-ha.yml --storage.path=/data/alertmanager2/ --log.level=debug
a3: alertmanager --web.listen-address=":9095" --cluster.listen-address="127.0.0.1:8003" --cluster.peer=127.0.0.1:8001 --config.file=/etc/prometheus/alertmanager-ha.yml --storage.path=/data/alertmanager2/ --log.level=debug
webhook: webhook
在Procfile文件所在目录,执行goreman start命令,启动所有进程:
$ goreman -f alertmanager.procfile start
10:27:57 a1 | level=debug ts=2018-03-12T02:27:57.399166371Z caller=cluster.go:125 component=cluster msg="joined cluster" peers=0
10:27:57 a3 | level=info ts=2018-03-12T02:27:57.40004678Z caller=main.go:346 msg=Listening address=:9095
10:27:57 a1 | level=info ts=2018-03-12T02:27:57.400212246Z caller=main.go:271 msg="Loading configuration file" file=/etc/prometheus/alertmanager.yml
10:27:57 a1 | level=info ts=2018-03-12T02:27:57.405638714Z caller=main.go:346 msg=Listening address=:9093
启动完成后访问任意Alertmanager节点http://localhost:9093/#/status,可以查看当前Alertmanager集群的状态。
当集群中的Alertmanager节点不在一台主机时,通常需要使用--cluster.advertise-address参数指定当前节点所在网络地址。
注意:由于goreman不保证进程之间的启动顺序,如果集群状态未达到预期,可以使用
goreman -f alertmanager.procfile run restart a2
重启a2,a3服务。
当Alertmanager集群启动完成后,可以使用send-alerts.sh脚本对集群进行简单测试,这里利用curl分别向3个Alertmanager实例发送告警信息。
alerts1='[
{
"labels": {
"alertname": "DiskRunningFull",
"dev": "sda1",
"instance": "example1"
},
"annotations": {
"info": "The disk sda1 is running full",
"summary": "please check the instance example1"
}
},
{
"labels": {
"alertname": "DiskRunningFull",
"dev": "sdb2",
"instance": "example2"
},
"annotations": {
"info": "The disk sdb2 is running full",
"summary": "please check the instance example2"
}
},
{
"labels": {
"alertname": "DiskRunningFull",
"dev": "sda1",
"instance": "example3",
"severity": "critical"
}
},
{
"labels": {
"alertname": "DiskRunningFull",
"dev": "sda1",
"instance": "example3",
"severity": "warning"
}
}
]'
curl -XPOST -d"$alerts1" http://localhost:9093/api/v1/alerts
curl -XPOST -d"$alerts1" http://localhost:9094/api/v1/alerts
curl -XPOST -d"$alerts1" http://localhost:9095/api/v1/alerts
运行send-alerts.sh后,查看alertmanager日志,可以看到以下输出,3个Alertmanager实例分别接收到模拟的告警信息:
10:43:36 a1 | level=debug ts=2018-03-12T02:43:36.853370185Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=DiskRunningFull[6543bc1][active]
10:43:36 a2 | level=debug ts=2018-03-12T02:43:36.871180749Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=DiskRunningFull[8320f0a][active]
10:43:36 a3 | level=debug ts=2018-03-12T02:43:36.894923811Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=DiskRunningFull[8320f0a][active]
查看webhook日志只接收到一个告警通知:
10:44:06 webhook | 2018/03/12 10:44:06 {
10:44:06 webhook | > "receiver": "default-receiver",
10:44:06 webhook | > "status": "firing",
10:44:06 webhook | > "alerts": [
10:44:06 webhook | > {
10:44:06 webhook | > "status": "firing",
10:44:06 webhook | > "labels": {
10:44:06 webhook | > "alertname": "DiskRunningFull",
由于Gossip机制的实现,在Promthues和Alertmanager实例之间不要使用任何的负载均衡,需要确保Promthues将告警发送到所有的Alertmanager实例中:
alerting:
alertmanagers:
- static_configs:
- targets:
- 127.0.0.1:9093
- 127.0.0.1:9094
- 127.0.0.1:9095
创建Promthues集群配置文件/etc/prometheus/prometheus-ha.yml,完整内容如下:
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 15s
rule_files:
- /etc/prometheus/rules/*.rules
alerting:
alertmanagers:
- static_configs:
- targets:
- 127.0.0.1:9093
- 127.0.0.1:9094
- 127.0.0.1:9095
scrape_configs:
- job_name: prometheus
static_configs:
- targets:
- localhost:9090
- job_name: 'node'
static_configs:
- targets: ['localhost:9100']
同时定义告警规则文件/etc/prometheus/rules/hoststats-alert.rules,如下所示:
groups:
- name: hostStatsAlert
rules:
- alert: hostCpuUsageAlert
expr: sum(avg without (cpu)(irate(node_cpu{mode!='idle'}[5m]))) by (instance) * 100 > 50
for: 1m
labels:
severity: page
annotations:
summary: "Instance {{ $labels.instance }} CPU usgae high"
description: "{{ $labels.instance }} CPU usage above 50% (current value: {{ $value }})"
- alert: hostMemUsageAlert
expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal * 100 > 85
for: 1m
labels:
severity: page
annotations:
summary: "Instance {{ $labels.instance }} MEM usgae high"
description: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }})"
本示例部署结构如下所示:
创建prometheus.procfile文件,创建两个Promthues节点,分别监听9090和9091端口:
p1: prometheus --config.file=/etc/prometheus/prometheus-ha.yml --storage.tsdb.path=/data/prometheus/ --web.listen-address="127.0.0.1:9090"
p2: prometheus --config.file=/etc/prometheus/prometheus-ha.yml --storage.tsdb.path=/data/prometheus2/ --web.listen-address="127.0.0.1:9091"
node_exporter: node_exporter -web.listen-address="0.0.0.0:9100"
使用goreman启动多节点Promthues:
goreman -f prometheus.procfile -p 8556 start
Promthues启动完成后,手动拉高系统CPU使用率:
cat /dev/zero>/dev/null
注意,对于多核主机,如果CPU达不到预期,运行多个命令。
当CPU利用率达到告警规则触发条件,两个Prometheus实例告警分别被触发。查看Alertmanager输出日志:
11:14:41 a3 | level=debug ts=2018-03-12T03:14:41.945493505Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=hostCpuUsageAlert[7d698ac][active]
11:14:41 a1 | level=debug ts=2018-03-12T03:14:41.945534548Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=hostCpuUsageAlert[7d698ac][active]
11:14:41 a2 | level=debug ts=2018-03-12T03:14:41.945687812Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=hostCpuUsageAlert[7d698ac][active]
3个Alertmanager实例分别接收到来自不同Prometheus实例的告警信息。而Webhook服务只接收到来自Alertmanager集群的一条告警通知:
11:15:11 webhook | 2018/03/12 11:15:11 {
11:15:11 webhook | > "receiver": "default-receiver",
11:15:11 webhook | > "status": "firing",
11:15:11 webhook | > "alerts": [
11:15:11 webhook | > {
11:15:11 webhook | > "status": "firing",
11:15:11 webhook | > "labels": {
11:15:11 webhook | > "alertname": "hostCpuUsageAlert",