-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevasion_attack.py
125 lines (98 loc) · 4.49 KB
/
evasion_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from models import model_map, choice_map
from common.utils import *
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_id', type=int, default=1)
parser.add_argument('--logger_level', type=int, default=0)
parser.add_argument('--dataset', type=str, default='pubmed', choices=['cora', 'citeseer', 'pubmed', 'cora_ml'])
parser.add_argument('--attack', type=list, default=[
# 'random',
# 'dice',
# 'greedy',
# 'pgdattack-CW',
# 'prbcd',
# 'greedy-rbcd',
'pga',
])
parser.add_argument('--victim', type=str, default='robust')
parser.add_argument('--ptb_rate', type=float, default=0.05)
parser.add_argument('--save', type=bool, default=True)
parser.add_argument('--cmp', type=bool, default=True)
args = parser.parse_args()
assert args.gpu_id in range(0, 4)
assert args.logger_level in [0, 1, 2]
# attacker_name = args.attack[0]
rng = 1 if not args.cmp else len(args.attack)
logger_filename = 'evasion_attack-' + args.dataset + '-' + args.victim + '.log'
logger_name = 'evaluate'
logger = get_logger(logger_filename, level=args.logger_level, name=logger_name)
logger.info(args)
device = get_device(args.gpu_id)
logger.info(f"Device: {device}")
# 读取数据
init_seed = 15
freeze_seed(init_seed)
pyg_data = load_data(name=args.dataset)
n_perturbs = int(args.ptb_rate * (pyg_data.num_edges // 2))
logger.info(f"Rate of perturbation: {args.ptb_rate}")
logger.info(f"The number of perturbations: {n_perturbs}")
for ix in range(rng):
logger.info("\n\n")
attacker_name = args.attack[ix]
# 读取攻击后得到的adj
perturbed_adj = load_perturbed_adj(args.dataset, attacker_name, args.ptb_rate, path='./attack/perturbed_adjs/')
modified_adj_list = perturbed_adj['modified_adj_list']
victims = []
choices = choice_map[args.victim]
victims.extend(choices)
raw_total_mean = []
total_mean = []
total_std = []
for name in victims:
pretrained_models = load_pretrained_model(args.dataset, name, path='./victims/models/')
state_dicts = pretrained_models['state_dicts']
config = pretrained_models['config']
clean_performance = pretrained_models['performance']
victim = model_map[name](config=config, pyg_data=pyg_data, device=device, logger=logger)
victim = victim.to(device)
n_running = len(state_dicts)
attack_acc_list = []
# clean_acc_list = []
init_seed = config['seed']
for i in range(n_running):
freeze_seed(init_seed + i)
victim.load_state_dict(state_dicts[i])
mod_adj = modified_adj_list[i]
attack_acc = evaluate_attack_performance(victim, pyg_data.x, mod_adj, pyg_data.y, pyg_data.test_mask)
attack_acc_list.append(attack_acc)
total_mean.append(float(f"{np.mean(attack_acc_list) * 100:.2f}"))
total_std.append(float(f"{np.std(attack_acc_list) * 100:.2f}"))
logger.info(f"Clean Acc= {clean_performance}, "
f"Attacked Acc= {np.mean(attack_acc_list) * 100:.2f}{chr(177)}{np.std(attack_acc_list) * 100:.2f} \tModel= {name}")
raw_acc = float(clean_performance.split(f'{chr(177)}')[0])
raw_total_mean.append(raw_acc)
if args.save:
save_result_to_json(
attack=attacker_name,
dataset=args.dataset,
victim=name,
ptb_rate=args.ptb_rate,
attacked_acc=f"{np.mean(attack_acc_list) * 100:.2f}{chr(177)}{np.std(attack_acc_list) * 100:.2f}",
attack_type='evasion',
)
print("\n\n")
logger.info(f"Averaged Attack Performance= {np.mean(total_mean):.2f}{chr(177)}{np.mean(total_std):.2f}")
logger.info(f"Averaged Benigh Performance= {np.mean(raw_total_mean):.2f}")
if args.victim in ['robust', 'normal', 'total'] and args.save:
save_result_to_json(
attack=attacker_name,
dataset=args.dataset,
victim=args.victim,
ptb_rate=args.ptb_rate,
attacked_acc=f"{np.mean(total_mean):.2f}{chr(177)}{np.mean(total_std):.2f}",
attack_type='evasion',
)
if __name__ == '__main__':
main()