-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
270 lines (236 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import datetime
import os
import pickle
import time
import numpy as np
import torch
from model import NET
from utils import *
"""
seed = 987
np.random.seed(seed)
torch.manual_seed(seed)
"""
def split_by_time(data):
times = []
latest_t = -1
for i, tuple in enumerate(data):
t = tuple[3]
if t != latest_t:
times.append([i, t])
latest_t = t
return times
def make_backgrounds(data, data_t, k):
backgrounds = []
times = data_t[-k:]
for i in range(len(times)):
l = times[i][0]
if i < len(times)-1:
r = times[i+1][0]
else:
r = len(data)
backgrounds.append(np.array(data[l:r][:,:3]))
return backgrounds
def train(args):
settings = {}
num_nodes, num_rels, num_t = get_total_number('./data/' + args.dataset, 'stat.txt')
train_data, _ = load_quadruples('./data/' + args.dataset, 'train.txt')
try:
dev_data, _ = load_quadruples('./data/' + args.dataset, 'valid.txt')
except:
print(args.dataset, 'does not have valid set.')
test_data, _ = load_quadruples('./data/' + args.dataset, 'test.txt')
try:
total_data, _ = load_quadruples('./data/' + args.dataset, 'train.txt', 'valid.txt', 'test.txt')
except:
total_data, _ = load_quadruples('./data/' + args.dataset, 'train.txt', 'test.txt')
print(args.dataset, 'does not have valid set.')
train_t = split_by_time(train_data)
if args.use_valid:
dev_t = split_by_time(dev_data)
test_t = split_by_time(test_data)
train_s_frequency_f = '/train_s_frequency.txt'
train_o_frequency_f = '/train_o_frequency.txt'
dev_s_frequency_f = '/dev_s_frequency.txt'
dev_o_frequency_f = '/dev_o_frequency.txt'
test_s_frequency_f = '/test_s_frequency.txt'
test_o_frequency_f = '/test_o_frequency.txt'
test_s_frequency_offline_f = '/test_s_frequency_offline.txt'
test_o_frequency_offline_f = '/test_o_frequency_offline.txt'
with open('./data/' + args.dataset + train_s_frequency_f, 'rb') as f:
train_s_frequency = pickle.load(f).toarray()
with open('./data/' + args.dataset + train_o_frequency_f, 'rb') as f:
train_o_frequency = pickle.load(f).toarray()
if args.use_valid:
with open('./data/' + args.dataset + dev_s_frequency_f, 'rb') as f:
dev_s_frequency = pickle.load(f).toarray()
with open('./data/' + args.dataset + dev_o_frequency_f, 'rb') as f:
dev_o_frequency = pickle.load(f).toarray()
if args.mode == "online":
with open('./data/' + args.dataset + test_s_frequency_f, 'rb') as f:
test_s_frequency = pickle.load(f).toarray()
with open('./data/' + args.dataset + test_o_frequency_f, 'rb') as f:
test_o_frequency = pickle.load(f).toarray()
elif args.mode == "offline":
with open('./data/' + args.dataset + test_s_frequency_offline_f, 'rb') as f:
test_s_frequency = pickle.load(f).toarray()
with open('./data/' + args.dataset + test_o_frequency_offline_f, 'rb') as f:
test_o_frequency = pickle.load(f).toarray()
else:
print("Invalid mode!")
exit()
device = args.device
model = NET(num_nodes, num_rels, num_t, args)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_dc_step)
model = model.to(device)
now = datetime.datetime.now()
dt_string = args.description + now.strftime("%d-%m-%Y,%H-%M-%S") + \
args.dataset + '-EPOCH' + str(args.max_epochs)
main_dirName = os.path.join(args.save_dir, dt_string)
if not os.path.exists(main_dirName):
os.makedirs(main_dirName)
model_path = os.path.join(main_dirName, 'models')
if not os.path.exists(model_path):
os.makedirs(model_path)
settings['main_dirName'] = main_dirName
file_training = open(os.path.join(main_dirName, "training_record.txt"), "w")
file_training.write("Training Configuration: \n")
for key in settings:
file_training.write(key + ': ' + str(settings[key]) + '\n')
for arg in vars(args):
file_training.write(arg + ': ' + str(getattr(args, arg)) + '\n')
print("Start training...")
file_training.write("Training Start \n")
file_training.write("===============================\n")
train_backgrounds, dev_backgrounds, test_backgrounds = [], [], []
if args.use_valid:
dev_backgrounds = make_backgrounds(train_data, train_t, args.history_len)
test_backgrounds = make_backgrounds(dev_data, dev_t, args.history_len)
else:
test_backgrounds = make_backgrounds(train_data, train_t, args.history_len)
train_his_g, dev_his_g, test_his_g = [], [], []
if args.use_valid:
dev_his_g = [get_big_graph(bg, num_nodes, num_rels).to(device) for bg in dev_backgrounds]
test_his_g = [get_big_graph(bg, num_nodes, num_rels).to(device) for bg in test_backgrounds]
epoch = 0
valid_loss_min = float('inf')
best_epoch = 0
while epoch < args.max_epochs:
model.train()
epoch += 1
print('$Start Epoch: ', epoch)
file_training.write('$Start Epoch: ' + str(epoch) + '\n')
loss_epoch = 0
time_begin = time.time()
_batch = 0
for batch_data in make_batch(train_data, train_s_frequency, train_o_frequency, train_t, args.batch_size):
triples = np.asarray(batch_data[0][:,:3])
batch_data[0] = torch.from_numpy(batch_data[0])
batch_data[1] = torch.from_numpy(batch_data[1]).float()
batch_data[2] = torch.from_numpy(batch_data[2]).float()
batch_data[0] = batch_data[0].to(device)
batch_data[1] = batch_data[1].to(device)
batch_data[2] = batch_data[2].to(device)
batch_loss = model(batch_data, train_his_g, 'Training')
if batch_loss is not None:
error = batch_loss
else:
continue
error.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_norm)
optimizer.step()
optimizer.zero_grad()
loss_epoch += error.item()
_batch += 1
g = get_big_graph(triples, num_nodes, num_rels)
if len(train_backgrounds) >= args.history_len:
train_backgrounds = train_backgrounds[1:]
train_his_g = train_his_g[1:]
train_backgrounds.append(triples)
g = g.to(device)
train_his_g.append(g)
scheduler.step()
epoch_time = time.time()
print("Done\nEpoch {:04d} | Loss {:.4f}| time {:.4f}".
format(epoch, loss_epoch / _batch, epoch_time - time_begin))
file_training.write("******\nEpoch {:04d} | Loss {:.4f}| time {:.4f}".
format(epoch, loss_epoch / _batch, epoch_time - time_begin) + '\n')
if args.use_valid and epoch % args.valid_epochs == 0:
print("Start valid...")
file_training.write("Start valid...\n")
valid_loss = execute_valid(args, dev_backgrounds, dev_his_g, num_nodes, num_rels, total_data, model,
dev_data, dev_s_frequency, dev_o_frequency, dev_t)
print("Valid loss:", valid_loss)
file_training.write("Valid loss:" + str(valid_loss) + "\n")
if valid_loss < valid_loss_min:
valid_loss_min = valid_loss
best_epoch = epoch
torch.save(model, model_path + '/' + args.dataset + '_best.pth')
if not args.use_valid:
torch.save(model, model_path + '/' + args.dataset + '_best.pth')
print("Training done")
file_training.write("Training done")
file_training.close()
# Evaluation
if args.only_eva:
dt_string = args.model_dir
main_dirName = os.path.join(args.save_dir, dt_string)
model_path = os.path.join(main_dirName, 'models')
settings['main_dirName'] = main_dirName
if args.filtering:
if args.only_eva:
file_test_path = os.path.join(main_dirName, "test_record_filtering_eva.txt")
else:
file_test_path = os.path.join(main_dirName, "test_record_filtering.txt")
else:
if args.only_eva:
file_test_path = os.path.join(main_dirName, "test_record_raw_eva.txt")
else:
file_test_path = os.path.join(main_dirName, "test_record_raw.txt")
file_test = open(file_test_path, "w")
file_test.write("Testing starts: \n")
model = torch.load(model_path + '/' + args.dataset + '_best.pth')
model.eval()
model.args = args
if args.dataset != "ICEWS14":
valid_loss = execute_valid(args, dev_backgrounds, dev_his_g, num_nodes, num_rels, total_data, model,
dev_data, dev_s_frequency, dev_o_frequency, dev_t)
print("***Best Epoch:", best_epoch, "***Minimal Valid loss:", valid_loss)
file_test.write("***Best Epoch: " + str(best_epoch) + " ***Minimal Valid loss: " + str(valid_loss) + "\n")
s_ranks1, o_ranks1, all_ranks1 = execute_test(args, test_backgrounds, test_his_g, num_nodes, num_rels, total_data, model,
test_data, test_s_frequency, test_o_frequency, test_t)
# evaluation for link prediction
write2file(s_ranks1, o_ranks1, all_ranks1, file_test)
file_test.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TKGNET')
parser.add_argument("--description", type=str, default='yago', help="description")
parser.add_argument("-d", "--dataset", type=str, default='YAGO', help="dataset")
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--batch-size", type=int, default=1024)
parser.add_argument("--max-epochs", type=int, default=30, help="maximum epochs")
parser.add_argument("--valid-epochs", type=int, default=1, help="validation epochs")
parser.add_argument("--alpha", type=float, default=0.2, help="alpha for nceloss")
parser.add_argument("--lambdax", type=float, default=2.0, help="lambda")
parser.add_argument("--history-len", type=int, default=1)
parser.add_argument("--mode", type=str, default="offline")
parser.add_argument("--graph-layer", type=int, default=2)
parser.add_argument("--embedding-dim", type=int, default=200)
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--weight-decay", type=float, default=1e-5, help="weight decay")
parser.add_argument("--lr-dc-step", type=int, default=50)
parser.add_argument("--dropout", type=float, default=0.4, help="dropout probability")
parser.add_argument("--grad-norm", type=float, default=1.0, help="norm to clip gradient to")
parser.add_argument("--filtering", type=str2bool, default=True)
parser.add_argument("--only-eva", type=str2bool, default=False, help="whether only evaluation on test set")
parser.add_argument("--use-valid", type=str2bool, default=True, help="whether using validation set")
parser.add_argument("--model-dir", type=str, default="", help="model directory")
parser.add_argument("--save-dir", type=str, default="SAVE", help="save directory")
parser.add_argument("--eva-dir", type=str, default="SAVE", help="saved dir of the testing model")
args_main = parser.parse_args()
print(args_main)
if not os.path.exists(args_main.save_dir):
os.makedirs(args_main.save_dir)
train(args_main)