forked from ylingfeng/DynamicMLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
256 lines (212 loc) · 9.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/env python3
import argparse
import datetime
import os
import random
import time
import numpy as np
import torch
import torch.optim as optim
import dataset
import models
import utils
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--name', required=True, type=str)
parser.add_argument('--data', default='inat21_mini', type=str, help='inat21_mini|inat21_full')
parser.add_argument('--data_dir', default='datasets/inat21', type=str)
parser.add_argument('--save_dir', default='./logs', type=str)
parser.add_argument('--model_file', default='sk2res2net_dynamic_mlp', type=str, help='model file name')
parser.add_argument('--model_name', default='sk2res2net101', type=str, help='model type in detail')
parser.add_argument('--fold', default=1, type=int, help='training fold')
parser.add_argument('--random_seed', default=37, type=int)
# train
parser.add_argument('--batch_size', default=512, type=int)
parser.add_argument('--warmup', default=2, type=int)
parser.add_argument('--start_lr', default=0.04, type=float)
parser.add_argument('--stop_epoch', default=90, type=int)
parser.add_argument('--num_workers', default=32, type=int)
# data
parser.add_argument('--tencrop', action='store_true', default=False)
parser.add_argument('--image_only', action='store_true', default=False)
parser.add_argument('--metadata', default='geo_temporal', type=str, help='geo_temporal|geo|temporal')
# model
parser.add_argument('--pretrained', action='store_true', default=False)
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--evaluate', action='store_true', help='evaluate model on validation set')
# dynamic MLP
parser.add_argument('--mlp_type', default='c', type=str, help='dynamic mlp versions: a|b|c')
parser.add_argument('--mlp_d', default=256, type=int)
parser.add_argument('--mlp_h', default=64, type=int)
parser.add_argument('--mlp_n', default=2, type=int)
args = parser.parse_args()
args.mlp_cin = 0
if 'geo' in args.metadata:
args.mlp_cin += 4
if 'temporal' in args.metadata:
args.mlp_cin += 2
# set random seed
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
args.nprocs = torch.cuda.device_count()
# get logger
creat_time = time.strftime("%Y%m%d%H%M%S", time.localtime())
args.path_log = os.path.join(args.save_dir, f'{args.data}', f'{args.name}')
os.makedirs(args.path_log, exist_ok=True)
logger = utils.create_logging(os.path.join(args.path_log, '%s_train.log' % creat_time))
# get datasets
train_loader = dataset.load_train_dataset(args)
val_loader = dataset.load_val_dataset(args)
# print args
for param in sorted(vars(args).keys()):
logger.info('--{0} {1}'.format(param, vars(args)[param]))
# get net
net = models.__dict__[args.model_file].__dict__[args.model_name](logger, args)
net.cuda()
net = torch.nn.DataParallel(net)
# get criterion
criterion = utils.LabelSmoothingLoss(classes=args.num_classes, smoothing=0.1).cuda()
# get optimizer
optimizer = optim.SGD(net.parameters(), lr=args.start_lr, momentum=0.9, weight_decay=1e-4)
start_epoch = 1
if args.resume:
if args.resume in ['best', 'latest']:
args.resume = os.path.join(args.path_log, 'fold%s_%s.pth' % (args.fold, args.resume))
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
# Map model to be loaded to specified single gpu.
state_dict = torch.load(args.resume)
if 'model' in state_dict:
start_epoch = state_dict['epoch'] + 1
net.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, state_dict['epoch']))
else:
net.load_state_dict(state_dict)
logger.info("=> loaded checkpoint '{}'".format(args.resume))
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
if args.evaluate:
epoch = start_epoch - 1
acc1, acc5, outputs = validate(val_loader, net, criterion, epoch, logger, args)
logger.info('\t'.join(outputs))
logger.info('Exp path: %s' % args.path_log)
return
best_acc1 = 0.0
best_acc5 = 0.0
args.time_sec_tot = 0.0
args.start_epoch = start_epoch
for epoch in range(start_epoch, args.stop_epoch + 1):
train(train_loader, net, criterion, optimizer, epoch, logger, args)
utils.save_checkpoint(epoch, net, optimizer, args, save_name='latest')
acc1, acc5, outputs = validate(val_loader, net, criterion, epoch, logger, args)
if acc1 > best_acc1:
best_acc1 = acc1
best_acc5 = acc5
utils.save_checkpoint(epoch, net, optimizer, args, save_name='best')
outputs += [
'best_acc1: {:.4f}'.format(best_acc1), 'best_acc5: {:.4f}'.format(best_acc5),
'Copypaste: {:.4f}, {:.4f}'.format(best_acc1, best_acc5)
]
logger.info('\t'.join(outputs))
logger.info('Exp path: %s' % args.path_log)
def train(train_loader, net, criterion, optimizer, epoch, logger, args):
# switch to train mode
net.train()
minibatch_count = len(train_loader)
scaler = torch.cuda.amp.GradScaler()
tstart = time.time()
for i, (images, target, location) in enumerate(train_loader):
# change learning rate
learning_rate = utils.adjust_learning_rate(optimizer, i, epoch, minibatch_count, args)
# measure data loading time
tdata = time.time() - tstart
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
location = location.cuda(non_blocking=True).float()
images, target_a, target_b, lam, index = utils.mixup(images, target, alpha=0.4)
location = lam * location + (1 - lam) * location[index]
# compute output
with torch.cuda.amp.autocast():
if args.image_only:
output = net(images)
else:
output = net(images, location)
loss = lam * criterion(output, target_a) + (1 - lam) * criterion(output, target_b)
# measure accuracy and record loss
acc1, acc5 = lam * utils.accuracy(output, target_a, topk=(1, 5)) + (1 - lam) * utils.accuracy(
output, target_b, topk=(1, 5))
# compute gradient and do sgd step
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# measure elapsed time
tend = time.time()
ttrain = tend - tstart
tstart = tend
args.time_sec_tot += ttrain
time_sec_avg = args.time_sec_tot / ((epoch - args.start_epoch) * minibatch_count + i + 1)
eta_sec = time_sec_avg * ((args.stop_epoch + 1 - epoch) * minibatch_count - i - 1)
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
outputs = [
"e: {}/{},{}/{}".format(epoch, args.stop_epoch, i, minibatch_count),
"{:.2f} mb/s".format(1. / ttrain),
'eta: {}'.format(eta_str),
'time: {:.3f}'.format(ttrain),
'data_time: {:.3f}'.format(tdata),
'lr: {:.4f}'.format(learning_rate),
'acc1: {:.4f}'.format(acc1.item()),
'acc5: {:.4f}'.format(acc5.item()),
'loss: {:.4f}'.format(loss.item()),
]
if tdata / ttrain > .05:
outputs += [
"dp/tot: {:.4f}".format(tdata / ttrain),
]
if i % 20 == 0:
logger.info('\t'.join(outputs))
def validate(val_loader, net, criterion, epoch, logger, args):
# switch to evaluate mode
logger.info('eval epoch {}'.format(epoch))
net.eval()
acc1_sum = 0
acc5_sum = 0
loss = 0
valdation_num = 0
for i, (images, target, location) in enumerate(val_loader):
# compute output
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
location = location.cuda(non_blocking=True).float()
with torch.no_grad():
if args.image_only:
output = net(images)
else:
output = net(images, location)
# measure accuracy and record loss
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
num = target.size(0)
valdation_num += num
acc1_sum += acc1.item() * num
acc5_sum += acc5.item() * num
loss += criterion(output, target).item()
if i % 20 == 0:
logger.info('iter {}/{}'.format(i, len(val_loader)))
loss = loss / len(val_loader)
acc1 = acc1_sum / valdation_num
acc5 = acc5_sum / valdation_num
outputs = [
"val e: {}".format(epoch),
'acc1: {:.4f}'.format(acc1),
'acc5: {:.4f}'.format(acc5),
'loss: {:.4f}'.format(loss),
]
return acc1, acc5, outputs
if __name__ == '__main__':
main()