Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Commit

Permalink
follow comment
Browse files Browse the repository at this point in the history
  • Loading branch information
dayhaha committed Jan 18, 2017
1 parent 202184b commit 5b47f3c
Show file tree
Hide file tree
Showing 20 changed files with 320 additions and 511 deletions.
2 changes: 2 additions & 0 deletions recognize_digits/.gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,5 @@ data/raw_data
data/train.list
data/test.list
*.log
*.pyc
plot.png
475 changes: 181 additions & 294 deletions recognize_digits/README.md

Large diffs are not rendered by default.

71 changes: 0 additions & 71 deletions recognize_digits/cnn_mnist.py

This file was deleted.

4 changes: 2 additions & 2 deletions recognize_digits/data/get_mnist_data.sh
Original file line number Diff line number Diff line change
Expand Up @@ -31,5 +31,5 @@ done

cd $DIR
rm -f *.list
echo "./data/raw_data/train\n" > "$DIR/train.list"
echo "./data/raw_data/t10k\n" > "$DIR/test.list"
echo "./data/raw_data/train" > "$DIR/train.list"
echo "./data/raw_data/t10k" > "$DIR/test.list"
4 changes: 1 addition & 3 deletions recognize_digits/evaluate.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,6 @@ def get_best_pass(filename):

filename = sys.argv[1]
log = get_best_pass(filename)
predict_error = math.sqrt(float(log[0])) / 2
classification_accuracy = (1 - float(log[1])) * 100
print 'Best pass is %s, error is %s, which means predict get error as %f' % (
log[2], log[0], predict_error)
print 'Best pass is %s, testing Avgcost is %s' % (log[2], log[0])
print 'The classification accuracy is %.2f%%' % classification_accuracy
Binary file removed recognize_digits/image/Conv_layer.png
Binary file not shown.
Binary file modified recognize_digits/image/cnn_train_log.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added recognize_digits/image/conv_layer.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Binary file modified recognize_digits/image/mlp_train_log.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified recognize_digits/image/softmax_train_log.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
34 changes: 14 additions & 20 deletions recognize_digits/load_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,34 +14,28 @@
import numpy as np
import matplotlib.pyplot as plt
import random
import struct


def read_data(path, filename):
imgf = path + filename + "-images-idx3-ubyte"
labelf = path + filename + "-labels-idx1-ubyte"
f = open(imgf, "rb")
l = open(labelf, "rb")

f.read(16)
l.read(8)

# Define number of samples for train/test
n = 60000 if "train" in filename else 10000

rows = 28
cols = 28

images = np.fromfile(
f, 'ubyte',
count=n * rows * cols).reshape(n, rows, cols).astype('float32')
labels = np.fromfile(l, 'ubyte', count=n).astype("int")
with open(path + filename + "-images-idx3-ubyte",
"rb") as f: # open picture file
magic, n, rows, cols = struct.unpack(">IIII", f.read(16))
images = np.fromfile(
f, 'ubyte',
count=n * rows * cols).reshape(n, rows, cols).astype('float32')

with open(path + filename + "-labels-idx1-ubyte",
"rb") as l: # open label file
magic, n = struct.unpack(">II", l.read(8))
labels = np.fromfile(l, 'ubyte', count=n).astype("int")

return images, labels


if __name__ == "__main__":
train_images, train_labels = read_data("./raw_data/", "train")
test_images, test_labels = read_data("./raw_data/", "t10k")
train_images, train_labels = read_data("./data/raw_data/", "train")
test_images, test_labels = read_data("./data/raw_data/", "t10k")
label_list = []
for i in range(10):
index = random.randint(0, train_images.shape[0] - 1)
Expand Down
54 changes: 47 additions & 7 deletions recognize_digits/mlp_mnist.py → recognize_digits/mnist_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,53 @@
label_size = 10
img = data_layer(name='pixel', size=data_size)

# The first fully-connected layer
hidden1 = fc_layer(input=img, size=128, act=ReluActivation())
# The second fully-connected layer and the according activation function
hidden2 = fc_layer(input=hidden1, size=64, act=ReluActivation())
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = fc_layer(input=hidden2, size=10, act=SoftmaxActivation())

def softmax_regression(img):
predict = fc_layer(input=img, size=10, act=SoftmaxActivation())
return predict


def multilayer_perceptron(img):
# The first fully-connected layer
hidden1 = fc_layer(input=img, size=128, act=ReluActivation())
# The second fully-connected layer and the according activation function
hidden2 = fc_layer(input=hidden1, size=64, act=ReluActivation())
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = fc_layer(input=hidden2, size=10, act=SoftmaxActivation())
return predict


def convolutional_neural_network(img):
# first conv layer
conv_pool_1 = simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=TanhActivation())
# second conv layer
conv_pool_2 = simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=TanhActivation())
# The first fully-connected layer
fc1 = fc_layer(input=conv_pool_2, size=128, act=TanhActivation())
# The softmax layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = fc_layer(input=fc1, size=10, act=SoftmaxActivation())
return predict


predict = softmax_regression(img)
#predict = multilayer_perceptron(img)
#predict = convolutional_neural_network(img)

if not is_predict:
lbl = data_layer(name="label", size=label_size)
Expand Down
35 changes: 12 additions & 23 deletions recognize_digits/mnist_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,36 +13,25 @@
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *
import numpy
import numpy as np
import struct


# Define a py data provider
@provider(
input_types={'pixel': dense_vector(28 * 28),
'label': integer_value(10)},
cache=CacheType.CACHE_PASS_IN_MEM)
'label': integer_value(10)})
def process(settings, filename): # settings is not used currently.
imgf = filename + "-images-idx3-ubyte"
labelf = filename + "-labels-idx1-ubyte"
f = open(imgf, "rb")
l = open(labelf, "rb")
with open(filename + "-images-idx3-ubyte", "rb") as f: # open picture file
magic, n, rows, cols = struct.unpack(">IIII", f.read(16))
images = np.fromfile(
f, 'ubyte',
count=n * rows * cols).reshape(n, rows, cols).astype('float32')
images = images / 255.0 * 2.0 - 1.0 # normalized to [-1,1]

f.read(16)
l.read(8)

# Define number of samples for train/test
if "train" in filename:
n = 60000
else:
n = 10000

images = numpy.fromfile(
f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32')
images = images / 255.0 * 2.0 - 1.0
labels = numpy.fromfile(l, 'ubyte', count=n).astype("int")
with open(filename + "-labels-idx1-ubyte", "rb") as l: # open label file
magic, n = struct.unpack(">II", l.read(8))
labels = np.fromfile(l, 'ubyte', count=n).astype("int")

for i in xrange(n):
yield {"pixel": images[i, :], 'label': labels[i]}

f.close()
l.close()
54 changes: 54 additions & 0 deletions recognize_digits/plot_cost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import matplotlib.pyplot as plt
import re
import sys


def plot_log(filename):
with open(filename, 'r') as f:
text = f.read()
pattern = re.compile(
'AvgCost=([0-9]+\.[0-9]+).*?Test.*? cost=([0-9]+\.[0-9]+).*?pass-([0-9]+)',
re.S)
results = re.findall(pattern, text)
train_cost, test_cost, pass_ = zip(*results)
train_cost_float = map(float, train_cost)
test_cost_float = map(float, test_cost)
pass_int = map(int, pass_)
plt.plot(pass_int, train_cost_float, 'red', label='Train')
plt.plot(pass_int, test_cost_float, 'g--', label='Test')
plt.ylabel('AvgCost')
plt.xlabel('Epoch')

# Now add the legend with some customizations.
legend = plt.legend(loc='upper right', shadow=False)

# The frame is matplotlib.patches.Rectangle instance surrounding the legend.
frame = legend.get_frame()
frame.set_facecolor('0.90')

# Set the fontsize
for label in legend.get_texts():
label.set_fontsize('large')

for label in legend.get_lines():
label.set_linewidth(1.5) # the legend line width

plt.show()


if __name__ == '__main__':
plot_log(sys.argv[1])
36 changes: 0 additions & 36 deletions recognize_digits/plot_error.py

This file was deleted.

6 changes: 4 additions & 2 deletions recognize_digits/predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Usage: predict.py -c CONF -d DATA -m MODEL
"""Usage: predict.py -c CONF -d ./data/raw_data/ -m MODEL
Arguments:
Expand Down Expand Up @@ -57,8 +57,10 @@ def predict(self, index):
output = self.network.forwardTest(input)
prob = output[0]["value"]
predict = np.argsort(-prob)
print "Predicted probability of each digit:"
print prob
print predict[0][0], self.labels[index]
print "Predict Number: %d" % predict[0][0]
print "Actual Number: %d" % self.labels[index]


def main():
Expand Down
Loading

0 comments on commit 5b47f3c

Please sign in to comment.