-
Notifications
You must be signed in to change notification settings - Fork 726
/
bq_reader_train.py
48 lines (42 loc) · 1.84 KB
/
bq_reader_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
from paddle.io import IterableDataset
class RecDataset(IterableDataset):
def __init__(self, file_list, config):
super(RecDataset, self).__init__()
self.file_list = file_list
def __iter__(self):
full_lines = []
for file in self.file_list:
with open(file, "r") as rf:
for line in rf:
output_list = []
features = line.rstrip('\n').split('\t')
query = [
float(feature) for feature in features[0].split(',')
]
output_list.append(np.array(query).astype('float32'))
pos_doc = [
float(feature) for feature in features[1].split(',')
]
output_list.append(np.array(pos_doc).astype('float32'))
for i in range(len(features) - 2):
output_list.append(
np.array([
float(feature)
for feature in features[i + 2].split(',')
]).astype('float32'))
yield output_list