-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathmodels.py
83 lines (67 loc) · 2.71 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from itertools import chain
import paddle
from paddle import nn
import paddle.nn.functional as F
from pgl.nn import GCNConv, GATConv, GraphSageConv
from pgl.nn.pool import GraphPool
class DeepFRI(nn.Layer):
def __init__(self, args):
super().__init__()
self.n_channels = args.n_channels
self.gc_dims = args.gc_dims
self.fc_dims = args.fc_dims
self.drop = args.drop
self.n_labels = args.n_labels
# Load language model
self.lm_model = None
if args.lm_model_name:
pass # TODO: Load a pre-trained lm_model for protein sequence learning
self.lm_dim = args.lm_dim
self.aa_emb = nn.Embedding(self.n_channels, self.lm_dim)
self.gcnn_list = nn.LayerList()
self.gc_layer = args.gc_layer
if self.gc_layer == "GAT":
GConvLayer = GATConv
params = dict(feat_drop=0, attn_drop=0, num_heads=2, concat=False)
in_feats = [self.lm_dim] + [
(d * params["num_heads"] if params["concat"] else d)
for d in self.gc_dims[:-1]
]
elif self.gc_layer == "GraphConv":
GConvLayer = GCNConv
params = {}
in_feats = [self.lm_dim] + self.gc_dims[:-1]
elif self.gc_layer == "SAGEConv":
GConvLayer = GraphSageConv
params = {}
in_feats = [self.lm_dim] + self.gc_dims[:-1]
# More graph convolution networks can be added here
else:
GConvLayer = None
raise ValueError("gc_layer not specified.")
for in_f, out_f in zip(in_feats, self.gc_dims):
self.gcnn_list.append(GConvLayer(in_f, out_f, **params))
self.fc_list = nn.LayerList()
in_feats = sum(self.gc_dims)
for out_feats in self.fc_dims:
self.fc_list.append(nn.Linear(in_feats, out_feats))
in_feats = out_feats
self.global_pool = GraphPool(pool_type="sum")
self.func_predictor = nn.Linear(in_feats, self.n_labels)
def forward(self, graphs, padded_feats):
out = self.aa_emb(graphs.node_feat["seq"])
if self.lm_model is not None:
pass # TODO: Sum output from lm_model using 'padded_feats' as input and variable 'out' above.
gcnn_concat = []
for gcnn in self.gcnn_list:
out = gcnn(graphs, out)
out = F.elu(out)
gcnn_concat.append(out)
out = paddle.concat(gcnn_concat, axis=1)
out = self.global_pool(graphs, out)
for fc in self.fc_list:
out = fc(out)
out = F.relu(out)
out = F.dropout(out, p=self.drop, training=self.training)
out = self.func_predictor(out)
return out