From 46d30ec680f494e4cc30a73330074497da064fbd Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Thu, 17 Aug 2017 20:34:02 -0700 Subject: [PATCH 01/14] init minst.py --- python/paddle/v2/framework/tests/mnist.py | 140 ++++++++++++++++++++++ 1 file changed, 140 insertions(+) create mode 100644 python/paddle/v2/framework/tests/mnist.py diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py new file mode 100644 index 00000000000000..32a088ac280866 --- /dev/null +++ b/python/paddle/v2/framework/tests/mnist.py @@ -0,0 +1,140 @@ +import paddle.v2.framework.core as core +from paddle.v2.framework.op import Operator +import numpy + +BATCH_SIZE = 100 + +scope = core.Scope() +place = core.CPUPlace() +dev_ctx = core.DeviceContext.create(place) + +# init_net = core.Net.create() +forward_network = core.Net.create() + +# should be init after forward_op is constructed +# backward_net = core.Operator.backward(forward_net, set()) +backward_net = None +optimize_net = core.Net.create() + + +def atom_id(): + id = 0 + while True: + yield id + id += 1 + + +uniq_id = atom_id().next + + +def data_layer(name, dims): + var = scope.new_var(name) + tensor = var.get_tensor() + tensor.set_dims(dims) # 1 is batch size holder. + return name + + +def feed_data(name, data): + assert isinstance(data, numpy.array) + tensor = scope.find_var(name).get_tensor() + tensor.set_dims(data.shape) + tensor.alloc_float(place) + tensor.set(data, place) + + +def grad_var_name(var_name): + return var_name + "@GRAD" + + +def sgd_optimizer(net, param_name, learning_rate=0.01): + grad_name = grad_var_name(param_name) + optimize_op = Operator( + "sgd", param=param_name, grad=grad_name, learning_rate=learning_rate) + net.add_op(optimize_op) + + +# should use operator and add these to the init_network +def init_param(param_name, dims): + print param_name + var = scope.new_var(param_name) + tensor = var.get_tensor() + tensor.set_dims(dims) + data = numpy.random.uniform( + low=0.0, high=1.0, size=tensor.shape()).astype("float32") + tensor.set(data, place) + + +# fc_layer +def fc_layer(net, input, size, act="sigmoid", bias=True, param=None, name=None): + """ + Add a fc layer to net + + :param input: input variable name. + :type input: str + :param size: fully connected layer size. + :param act: activation name + :param param: parameter attribute, used for initialize parameters. + :param bias: bias attribute. False will not have a bias. + :param name: the name of fc layer. If not set, model will generate a + readable name + :return: output variable name. + """ + if name is None: + name = 'fc_%d' % uniq_id() + if not isinstance(name, str): + raise ValueError("name should be string") + + input_dims = scope.find_var(input).get_tensor().get_dims() + + w_name = param or name + ".w" + init_param(param_name=w_name, dims=[input_dims[1], size]) + sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01) + + pre_activation = name + ".mul.out" + scope.new_var(pre_activation) + mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation) + net.add_op(mul_op) + + # create bias variable if needed + if bias: + bias_name = name + ".b" + init_param(param_name=bias_name, dims=[size]) + sgd_optimizer( + net=optimize_net, param_name=bias_name, learning_rate=0.01) + bias_out = name + ".rowwise_add.out" + scope.new_var(bias_out) + rowwise_add_op = Operator( + "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out) + net.add_op(rowwise_add_op) + pre_activation = bias_out + + activation_op = Operator(act, X=pre_activation, Y=name) + net.add_op(activation_op) + scope.new_var(name) + net.infer_shape(scope) + return name + + +def cross_entropy_layer(net, input, label): + cost_name = 'cross_entropy_%d' % uniq_id() + cross_entropy_op = Operator( + "onehot_cross_entropy", X=input, label=label, Y=cost_name) + net.add_op(cross_entropy_op) + scope.new_var(cost_name) + net.infer_shape(scope) + return cost_name + + +images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) +label = data_layer(name='label', dims=[BATCH_SIZE]) +fc = fc_layer(net=forward_network, input=images, size=10, act="softmax") +cost = cross_entropy_layer(net=forward_network, input=fc, label=label) +forward_network.complete_add_op(True) +print(forward_network) +backward_net = core.Operator.backward(forward_network, set()) + +print(backward_net) + +PASS_NUM = 10 +for pass_id in range(PASS_NUM): + print pass_id From 118dd1494fbe3654da8f71c2245523e27616d475 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Mon, 21 Aug 2017 18:22:59 -0700 Subject: [PATCH 02/14] can run, for debug --- .../paddle/v2/framework/tests/CMakeLists.txt | 1 + python/paddle/v2/framework/tests/mnist.py | 73 +++++++++++++++++-- 2 files changed, 66 insertions(+), 8 deletions(-) diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index ce57a071309272..41682c8350def7 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -27,3 +27,4 @@ py_test(test_uniform_random_op SRCS test_uniform_random_op.py) py_test(test_recurrent_op SRCS test_recurrent_op.py) py_test(test_sgd_op SRCS test_sgd_op.py) py_test(test_gradient_checker SRCS test_gradient_checker.py) +py_test(mnist SRCS mnist.py) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index 32a088ac280866..d0c56c457d9646 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -2,7 +2,7 @@ from paddle.v2.framework.op import Operator import numpy -BATCH_SIZE = 100 +BATCH_SIZE = 2 scope = core.Scope() place = core.CPUPlace() @@ -35,10 +35,15 @@ def data_layer(name, dims): def feed_data(name, data): - assert isinstance(data, numpy.array) + assert isinstance(data, numpy.ndarray) tensor = scope.find_var(name).get_tensor() tensor.set_dims(data.shape) - tensor.alloc_float(place) + if data.dtype == numpy.dtype('int32'): + tensor.alloc_float(place) + elif data.dtype == numpy.dtype('float32'): + tensor.alloc_int(place) + else: + raise ValueError("data type not supported") tensor.set(data, place) @@ -49,7 +54,11 @@ def grad_var_name(var_name): def sgd_optimizer(net, param_name, learning_rate=0.01): grad_name = grad_var_name(param_name) optimize_op = Operator( - "sgd", param=param_name, grad=grad_name, learning_rate=learning_rate) + "sgd", + param=param_name, + grad=grad_name, + param_out=param_name, + learning_rate=learning_rate) net.add_op(optimize_op) @@ -65,7 +74,7 @@ def init_param(param_name, dims): # fc_layer -def fc_layer(net, input, size, act="sigmoid", bias=True, param=None, name=None): +def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): """ Add a fc layer to net @@ -125,16 +134,64 @@ def cross_entropy_layer(net, input, label): return cost_name +def get_backward_net(forward_net): + net = core.Operator.backward(forward_net, set()) + for input in net.inputs()["all"]: + var = scope.new_var(input) + var.get_tensor() + for output in net.outputs()["all"]: + var = scope.new_var(output) + var.get_tensor() + return net + + +def print_inputs_outputs(op): + print("===============" + op.type() + "==============") + print("***inputs:***") + for input in op.inputs()["all"]: + print input, scope.find_var(input).get_tensor().get_dims() + print("***outputs:***") + for output in op.outputs()["all"]: + print output, scope.find_var(output).get_tensor().get_dims() + print("") + print("") + + images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) label = data_layer(name='label', dims=[BATCH_SIZE]) fc = fc_layer(net=forward_network, input=images, size=10, act="softmax") cost = cross_entropy_layer(net=forward_network, input=fc, label=label) forward_network.complete_add_op(True) print(forward_network) -backward_net = core.Operator.backward(forward_network, set()) - +backward_net = get_backward_net(forward_network) print(backward_net) +optimize_net.complete_add_op(True) +print(optimize_net) PASS_NUM = 10 for pass_id in range(PASS_NUM): - print pass_id + print("===========forward==========") + feed_data("pixel", numpy.random.random((BATCH_SIZE, 784)).astype('float32')) + feed_data("label", numpy.ones(BATCH_SIZE).astype("int32")) + forward_network.infer_shape(scope) + print_inputs_outputs(forward_network) + + print(numpy.array(scope.find_var("label").get_tensor())) + forward_network.run(scope, dev_ctx) + # print(numpy.array(scope.find_var("fc_0").get_tensor())) + + print("===========backward==========") + cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) + cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() + cost_grad.set_dims(cost_data.shape) + cost_grad.alloc_float(place) + cost_grad.set(cost_data, place) + + backward_net.infer_shape(scope) + print_inputs_outputs(backward_net) + + backward_net.run(scope, dev_ctx) + + print("===========optimize_net==========") + print_inputs_outputs(optimize_net) + optimize_net.run(scope, dev_ctx) From 5a8fbb7d19e95f3be16bbee029e82e14f0a240df Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Tue, 22 Aug 2017 00:56:34 -0700 Subject: [PATCH 03/14] add data --- python/paddle/v2/framework/tests/mnist.py | 26 +++++++++++++++++------ 1 file changed, 19 insertions(+), 7 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index d0c56c457d9646..f75f196168c6d2 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -1,8 +1,9 @@ import paddle.v2.framework.core as core from paddle.v2.framework.op import Operator import numpy +import paddle.v2 as paddle -BATCH_SIZE = 2 +BATCH_SIZE = 100 scope = core.Scope() place = core.CPUPlace() @@ -39,9 +40,9 @@ def feed_data(name, data): tensor = scope.find_var(name).get_tensor() tensor.set_dims(data.shape) if data.dtype == numpy.dtype('int32'): - tensor.alloc_float(place) - elif data.dtype == numpy.dtype('float32'): tensor.alloc_int(place) + elif data.dtype == numpy.dtype('float32'): + tensor.alloc_float(place) else: raise ValueError("data type not supported") tensor.set(data, place) @@ -168,20 +169,31 @@ def print_inputs_outputs(op): optimize_net.complete_add_op(True) print(optimize_net) -PASS_NUM = 10 +reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=8192), + batch_size=BATCH_SIZE) + +PASS_NUM = 1000 for pass_id in range(PASS_NUM): print("===========forward==========") - feed_data("pixel", numpy.random.random((BATCH_SIZE, 784)).astype('float32')) - feed_data("label", numpy.ones(BATCH_SIZE).astype("int32")) + # feed_data("pixel", numpy.random.random((BATCH_SIZE, 784)).astype('float32')) + # feed_data("label", numpy.ones(BATCH_SIZE).astype("int32")) + data = reader().next() + image = numpy.array(map(lambda x: x[0], data)).astype("float32") + label = numpy.array(map(lambda x: x[1], data)).astype("int32") + feed_data("pixel", image) + feed_data("label", label) forward_network.infer_shape(scope) print_inputs_outputs(forward_network) - print(numpy.array(scope.find_var("label").get_tensor())) + # print(numpy.array(scope.find_var("label").get_tensor())) forward_network.run(scope, dev_ctx) # print(numpy.array(scope.find_var("fc_0").get_tensor())) print("===========backward==========") cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) + print(cost_data.sum() / len(cost_data)) cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() cost_grad.set_dims(cost_data.shape) cost_grad.alloc_float(place) From 51792022c9f7963321d77d7dac4143e566af9fdc Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Tue, 22 Aug 2017 12:54:44 -0700 Subject: [PATCH 04/14] refine code and add debug info --- python/paddle/v2/framework/tests/mnist.py | 47 +++++++++++------------ 1 file changed, 23 insertions(+), 24 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index f75f196168c6d2..6a3ed0dce0ab5b 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -52,7 +52,7 @@ def grad_var_name(var_name): return var_name + "@GRAD" -def sgd_optimizer(net, param_name, learning_rate=0.01): +def sgd_optimizer(net, param_name, learning_rate=0.001): grad_name = grad_var_name(param_name) optimize_op = Operator( "sgd", @@ -65,7 +65,6 @@ def sgd_optimizer(net, param_name, learning_rate=0.01): # should use operator and add these to the init_network def init_param(param_name, dims): - print param_name var = scope.new_var(param_name) tensor = var.get_tensor() tensor.set_dims(dims) @@ -158,17 +157,34 @@ def print_inputs_outputs(op): print("") +def set_cost(): + cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) + # print(cost_data) + print(cost_data.sum() / len(cost_data)) + + cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() + cost_grad.set_dims(cost_data.shape) + cost_grad.alloc_float(place) + cost_grad.set(cost_data, place) + + images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) label = data_layer(name='label', dims=[BATCH_SIZE]) fc = fc_layer(net=forward_network, input=images, size=10, act="softmax") cost = cross_entropy_layer(net=forward_network, input=fc, label=label) + forward_network.complete_add_op(True) -print(forward_network) backward_net = get_backward_net(forward_network) -print(backward_net) optimize_net.complete_add_op(True) + +print(forward_network) +print(backward_net) print(optimize_net) +print_inputs_outputs(forward_network) +print_inputs_outputs(backward_net) +print_inputs_outputs(optimize_net) + reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), @@ -176,34 +192,17 @@ def print_inputs_outputs(op): PASS_NUM = 1000 for pass_id in range(PASS_NUM): - print("===========forward==========") - # feed_data("pixel", numpy.random.random((BATCH_SIZE, 784)).astype('float32')) - # feed_data("label", numpy.ones(BATCH_SIZE).astype("int32")) data = reader().next() + image = numpy.array(map(lambda x: x[0], data)).astype("float32") label = numpy.array(map(lambda x: x[1], data)).astype("int32") feed_data("pixel", image) feed_data("label", label) - forward_network.infer_shape(scope) - print_inputs_outputs(forward_network) - # print(numpy.array(scope.find_var("label").get_tensor())) + forward_network.infer_shape(scope) forward_network.run(scope, dev_ctx) - # print(numpy.array(scope.find_var("fc_0").get_tensor())) - - print("===========backward==========") - cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) - print(cost_data.sum() / len(cost_data)) - cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() - cost_grad.set_dims(cost_data.shape) - cost_grad.alloc_float(place) - cost_grad.set(cost_data, place) - + set_cost() backward_net.infer_shape(scope) - print_inputs_outputs(backward_net) - backward_net.run(scope, dev_ctx) - print("===========optimize_net==========") - print_inputs_outputs(optimize_net) optimize_net.run(scope, dev_ctx) From d3c65a64dc4ab98af10498cb2eb9327ef1697e5a Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Tue, 22 Aug 2017 20:21:23 -0700 Subject: [PATCH 05/14] fix data reader --- python/paddle/v2/framework/tests/mnist.py | 29 ++++++++++++----------- 1 file changed, 15 insertions(+), 14 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index 6a3ed0dce0ab5b..1d40fd9a97f3e5 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -52,7 +52,7 @@ def grad_var_name(var_name): return var_name + "@GRAD" -def sgd_optimizer(net, param_name, learning_rate=0.001): +def sgd_optimizer(net, param_name, learning_rate=0.01): grad_name = grad_var_name(param_name) optimize_op = Operator( "sgd", @@ -159,13 +159,13 @@ def print_inputs_outputs(op): def set_cost(): cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) - # print(cost_data) print(cost_data.sum() / len(cost_data)) cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() + cost_grad.set_dims(cost_data.shape) cost_grad.alloc_float(place) - cost_grad.set(cost_data, place) + cost_grad.set(numpy.ones(cost_data.shape).astype("float32"), place) images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) @@ -192,17 +192,18 @@ def set_cost(): PASS_NUM = 1000 for pass_id in range(PASS_NUM): - data = reader().next() - image = numpy.array(map(lambda x: x[0], data)).astype("float32") - label = numpy.array(map(lambda x: x[1], data)).astype("int32") - feed_data("pixel", image) - feed_data("label", label) + print("pass[" + str(pass_id) + "]") + for data in reader(): + image = numpy.array(map(lambda x: x[0], data)).astype("float32") + label = numpy.array(map(lambda x: x[1], data)).astype("int32") + feed_data("pixel", image) + feed_data("label", label) - forward_network.infer_shape(scope) - forward_network.run(scope, dev_ctx) - set_cost() - backward_net.infer_shape(scope) - backward_net.run(scope, dev_ctx) + forward_network.infer_shape(scope) + forward_network.run(scope, dev_ctx) + set_cost() + backward_net.infer_shape(scope) + backward_net.run(scope, dev_ctx) - optimize_net.run(scope, dev_ctx) + optimize_net.run(scope, dev_ctx) From a13798e8f7764239c151864894afc6a543e6c190 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Tue, 22 Aug 2017 20:41:31 -0700 Subject: [PATCH 06/14] rename add_op to append_op --- python/paddle/v2/framework/tests/mnist.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index 1d40fd9a97f3e5..32349b8d4df73b 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -60,7 +60,7 @@ def sgd_optimizer(net, param_name, learning_rate=0.01): grad=grad_name, param_out=param_name, learning_rate=learning_rate) - net.add_op(optimize_op) + net.append_op(optimize_op) # should use operator and add these to the init_network @@ -102,7 +102,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): pre_activation = name + ".mul.out" scope.new_var(pre_activation) mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation) - net.add_op(mul_op) + net.append_op(mul_op) # create bias variable if needed if bias: @@ -112,13 +112,13 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): net=optimize_net, param_name=bias_name, learning_rate=0.01) bias_out = name + ".rowwise_add.out" scope.new_var(bias_out) - rowwise_add_op = Operator( + rowwise_append_op = Operator( "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out) - net.add_op(rowwise_add_op) + net.append_op(rowwise_append_op) pre_activation = bias_out activation_op = Operator(act, X=pre_activation, Y=name) - net.add_op(activation_op) + net.append_op(activation_op) scope.new_var(name) net.infer_shape(scope) return name @@ -128,7 +128,7 @@ def cross_entropy_layer(net, input, label): cost_name = 'cross_entropy_%d' % uniq_id() cross_entropy_op = Operator( "onehot_cross_entropy", X=input, label=label, Y=cost_name) - net.add_op(cross_entropy_op) + net.append_op(cross_entropy_op) scope.new_var(cost_name) net.infer_shape(scope) return cost_name From 6f4b968f5618adce529d12bd2e3b72d4d1b64f61 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 00:58:02 -0700 Subject: [PATCH 07/14] can train the parameters --- python/paddle/v2/framework/tests/mnist.py | 39 +++++++++++++++++------ 1 file changed, 29 insertions(+), 10 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index 32349b8d4df73b..ededf767bcab46 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -69,7 +69,7 @@ def init_param(param_name, dims): tensor = var.get_tensor() tensor.set_dims(dims) data = numpy.random.uniform( - low=0.0, high=1.0, size=tensor.shape()).astype("float32") + low=-0.5, high=0.5, size=tensor.shape()).astype("float32") tensor.set(data, place) @@ -109,7 +109,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): bias_name = name + ".b" init_param(param_name=bias_name, dims=[size]) sgd_optimizer( - net=optimize_net, param_name=bias_name, learning_rate=0.01) + net=optimize_net, param_name=bias_name, learning_rate=0.001) bias_out = name + ".rowwise_add.out" scope.new_var(bias_out) rowwise_append_op = Operator( @@ -158,20 +158,33 @@ def print_inputs_outputs(op): def set_cost(): - cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) + cost_shape = numpy.array(scope.find_var("cross_entropy_3").get_tensor( + )).shape + cost_grad = scope.find_var(grad_var_name("cross_entropy_3")).get_tensor() + cost_grad.set_dims(cost_shape) + cost_grad.alloc_float(place) + cost_grad.set(numpy.ones(cost_shape).astype("float32"), place) + + +def print_cost(): + cost_data = numpy.array(scope.find_var("cross_entropy_3").get_tensor()) print(cost_data.sum() / len(cost_data)) - cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() - cost_grad.set_dims(cost_data.shape) - cost_grad.alloc_float(place) - cost_grad.set(numpy.ones(cost_data.shape).astype("float32"), place) +def error_rate(predict, label): + predict_var = numpy.array(scope.find_var(predict).get_tensor()).argmax( + axis=1) + label = numpy.array(scope.find_var(label).get_tensor()) + error_num = numpy.sum(predict_var != label) + print(error_num / float(len(label))) images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) label = data_layer(name='label', dims=[BATCH_SIZE]) -fc = fc_layer(net=forward_network, input=images, size=10, act="softmax") -cost = cross_entropy_layer(net=forward_network, input=fc, label=label) +fc1 = fc_layer(net=forward_network, input=images, size=100, act="sigmoid") +fc2 = fc_layer(net=forward_network, input=fc1, size=100, act="sigmoid") +predict = fc_layer(net=forward_network, input=fc2, size=100, act="softmax") +cost = cross_entropy_layer(net=forward_network, input=predict, label=label) forward_network.complete_add_op(True) backward_net = get_backward_net(forward_network) @@ -192,8 +205,8 @@ def set_cost(): PASS_NUM = 1000 for pass_id in range(PASS_NUM): + batch_id = 0 - print("pass[" + str(pass_id) + "]") for data in reader(): image = numpy.array(map(lambda x: x[0], data)).astype("float32") label = numpy.array(map(lambda x: x[1], data)).astype("int32") @@ -207,3 +220,9 @@ def set_cost(): backward_net.run(scope, dev_ctx) optimize_net.run(scope, dev_ctx) + if batch_id % 100 == 0: + print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]") + print_cost() + error_rate(predict, "label") + + batch_id = batch_id + 1 From 76677f25774a84d9ced011be02e62ae15b03506c Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 09:12:34 -0700 Subject: [PATCH 08/14] add test --- python/paddle/v2/framework/tests/mnist.py | 36 ++++++++++++++++++----- 1 file changed, 28 insertions(+), 8 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index ededf767bcab46..e47de2436ff737 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -52,7 +52,7 @@ def grad_var_name(var_name): return var_name + "@GRAD" -def sgd_optimizer(net, param_name, learning_rate=0.01): +def sgd_optimizer(net, param_name, learning_rate=0.005): grad_name = grad_var_name(param_name) optimize_op = Operator( "sgd", @@ -166,9 +166,9 @@ def set_cost(): cost_grad.set(numpy.ones(cost_shape).astype("float32"), place) -def print_cost(): +def mean_cost(): cost_data = numpy.array(scope.find_var("cross_entropy_3").get_tensor()) - print(cost_data.sum() / len(cost_data)) + return cost_data.sum() / len(cost_data) def error_rate(predict, label): @@ -176,7 +176,7 @@ def error_rate(predict, label): axis=1) label = numpy.array(scope.find_var(label).get_tensor()) error_num = numpy.sum(predict_var != label) - print(error_num / float(len(label))) + return error_num / float(len(label)) images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) @@ -198,16 +198,35 @@ def error_rate(predict, label): print_inputs_outputs(backward_net) print_inputs_outputs(optimize_net) -reader = paddle.batch( +train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=BATCH_SIZE) + +def test(): + test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128) + cost = [] + error = [] + for data in test_reader(): + image = numpy.array(map(lambda x: x[0], data)).astype("float32") + label = numpy.array(map(lambda x: x[1], data)).astype("int32") + feed_data("pixel", image) + feed_data("label", label) + + forward_network.infer_shape(scope) + forward_network.run(scope, dev_ctx) + cost.append(mean_cost()) + error.append(error_rate(predict, "label")) + print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str( + sum(error) / float(len(error)))) + + PASS_NUM = 1000 for pass_id in range(PASS_NUM): batch_id = 0 - for data in reader(): + for data in train_reader(): image = numpy.array(map(lambda x: x[0], data)).astype("float32") label = numpy.array(map(lambda x: x[1], data)).astype("int32") feed_data("pixel", image) @@ -222,7 +241,8 @@ def error_rate(predict, label): optimize_net.run(scope, dev_ctx) if batch_id % 100 == 0: print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]") - print_cost() - error_rate(predict, "label") + test() + # print(mean_cost()) + # print(error_rate(predict, "label")) batch_id = batch_id + 1 From cf515e4a72f4b02fbbbfdbd79c3b66b1be694e7b Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 09:39:47 -0700 Subject: [PATCH 09/14] optimize code and name --- python/paddle/v2/framework/tests/mnist.py | 56 +++++++++++------------ 1 file changed, 27 insertions(+), 29 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index e47de2436ff737..886e99610dd380 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -134,7 +134,7 @@ def cross_entropy_layer(net, input, label): return cost_name -def get_backward_net(forward_net): +def create_backward_net(forward_net): net = core.Operator.backward(forward_net, set()) for input in net.inputs()["all"]: var = scope.new_var(input) @@ -145,29 +145,29 @@ def get_backward_net(forward_net): return net -def print_inputs_outputs(op): +def debug_print_op(op): print("===============" + op.type() + "==============") print("***inputs:***") for input in op.inputs()["all"]: print input, scope.find_var(input).get_tensor().get_dims() - print("***outputs:***") + print("\n***outputs:***") for output in op.outputs()["all"]: print output, scope.find_var(output).get_tensor().get_dims() print("") print("") -def set_cost(): - cost_shape = numpy.array(scope.find_var("cross_entropy_3").get_tensor( - )).shape - cost_grad = scope.find_var(grad_var_name("cross_entropy_3")).get_tensor() +def set_cost(cost): + cost_shape = numpy.array(scope.find_var(cost).get_tensor()).shape + cost_grad = \ + scope.find_var(grad_var_name(cost)).get_tensor() cost_grad.set_dims(cost_shape) cost_grad.alloc_float(place) cost_grad.set(numpy.ones(cost_shape).astype("float32"), place) -def mean_cost(): - cost_data = numpy.array(scope.find_var("cross_entropy_3").get_tensor()) +def mean_cost(cost): + cost_data = numpy.array(scope.find_var(cost).get_tensor()) return cost_data.sum() / len(cost_data) @@ -180,23 +180,23 @@ def error_rate(predict, label): images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) -label = data_layer(name='label', dims=[BATCH_SIZE]) +labels = data_layer(name='label', dims=[BATCH_SIZE]) fc1 = fc_layer(net=forward_network, input=images, size=100, act="sigmoid") fc2 = fc_layer(net=forward_network, input=fc1, size=100, act="sigmoid") predict = fc_layer(net=forward_network, input=fc2, size=100, act="softmax") -cost = cross_entropy_layer(net=forward_network, input=predict, label=label) +cost = cross_entropy_layer(net=forward_network, input=predict, label=labels) forward_network.complete_add_op(True) -backward_net = get_backward_net(forward_network) +backward_net = create_backward_net(forward_network) optimize_net.complete_add_op(True) print(forward_network) print(backward_net) print(optimize_net) -print_inputs_outputs(forward_network) -print_inputs_outputs(backward_net) -print_inputs_outputs(optimize_net) +debug_print_op(forward_network) +debug_print_op(backward_net) +debug_print_op(optimize_net) train_reader = paddle.batch( paddle.reader.shuffle( @@ -204,19 +204,19 @@ def error_rate(predict, label): batch_size=BATCH_SIZE) -def test(): +def test(cost_name): test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128) cost = [] error = [] for data in test_reader(): - image = numpy.array(map(lambda x: x[0], data)).astype("float32") - label = numpy.array(map(lambda x: x[1], data)).astype("int32") - feed_data("pixel", image) - feed_data("label", label) + image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") + label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") + feed_data(images, image_data) + feed_data(labels, label_data) forward_network.infer_shape(scope) forward_network.run(scope, dev_ctx) - cost.append(mean_cost()) + cost.append(mean_cost(cost_name)) error.append(error_rate(predict, "label")) print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str( sum(error) / float(len(error)))) @@ -227,22 +227,20 @@ def test(): batch_id = 0 for data in train_reader(): - image = numpy.array(map(lambda x: x[0], data)).astype("float32") - label = numpy.array(map(lambda x: x[1], data)).astype("int32") - feed_data("pixel", image) - feed_data("label", label) + image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") + label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") + feed_data(images, image_data) + feed_data(labels, label_data) forward_network.infer_shape(scope) forward_network.run(scope, dev_ctx) - set_cost() + set_cost(cost) backward_net.infer_shape(scope) backward_net.run(scope, dev_ctx) optimize_net.run(scope, dev_ctx) if batch_id % 100 == 0: print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]") - test() - # print(mean_cost()) - # print(error_rate(predict, "label")) + test(cost) batch_id = batch_id + 1 From 9db4ad6130d79d72fa150e534b5b54fa723c3240 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 09:42:58 -0700 Subject: [PATCH 10/14] reduce pass num to 1 --- python/paddle/v2/framework/tests/mnist.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index 886e99610dd380..eefd5709a3bd7a 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -222,7 +222,7 @@ def test(cost_name): sum(error) / float(len(error)))) -PASS_NUM = 1000 +PASS_NUM = 1 for pass_id in range(PASS_NUM): batch_id = 0 From 37cd8165b3089c8e4a6ce743f5e0ee8c029ba46b Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 10:56:56 -0700 Subject: [PATCH 11/14] change 128 to BATCH_SIZE --- python/paddle/v2/framework/tests/mnist.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index eefd5709a3bd7a..e878bfa4e9b2be 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -205,7 +205,8 @@ def error_rate(predict, label): def test(cost_name): - test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128) + test_reader = paddle.batch( + paddle.dataset.mnist.test(), batch_size=BATCH_SIZE) cost = [] error = [] for data in test_reader(): From 0e300f9bf04ba459dbef93af9537f847cebbcd27 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 20:14:54 -0700 Subject: [PATCH 12/14] use init_net and random_op to initialize parameter --- python/paddle/v2/framework/tests/mnist.py | 54 +++++++++++------------ 1 file changed, 27 insertions(+), 27 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index e878bfa4e9b2be..0c27ce3e355b6a 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -9,11 +9,8 @@ place = core.CPUPlace() dev_ctx = core.DeviceContext.create(place) -# init_net = core.Net.create() -forward_network = core.Net.create() - -# should be init after forward_op is constructed -# backward_net = core.Operator.backward(forward_net, set()) +init_net = core.Net.create() +forward_net = core.Net.create() backward_net = None optimize_net = core.Net.create() @@ -64,13 +61,12 @@ def sgd_optimizer(net, param_name, learning_rate=0.005): # should use operator and add these to the init_network -def init_param(param_name, dims): - var = scope.new_var(param_name) - tensor = var.get_tensor() - tensor.set_dims(dims) - data = numpy.random.uniform( - low=-0.5, high=0.5, size=tensor.shape()).astype("float32") - tensor.set(data, place) +def init_param(net, param_name, dims): + scope.new_var(param_name) + op = Operator( + "uniform_random", Out=param_name, dims=dims, min=-0.5, max=0.5, seed=10) + op.infer_shape(scope) + net.append_op(op) # fc_layer @@ -96,7 +92,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): input_dims = scope.find_var(input).get_tensor().get_dims() w_name = param or name + ".w" - init_param(param_name=w_name, dims=[input_dims[1], size]) + init_param(net=init_net, param_name=w_name, dims=[input_dims[1], size]) sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01) pre_activation = name + ".mul.out" @@ -107,7 +103,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): # create bias variable if needed if bias: bias_name = name + ".b" - init_param(param_name=bias_name, dims=[size]) + init_param(net=init_net, param_name=bias_name, dims=[size]) sgd_optimizer( net=optimize_net, param_name=bias_name, learning_rate=0.001) bias_out = name + ".rowwise_add.out" @@ -181,20 +177,22 @@ def error_rate(predict, label): images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) labels = data_layer(name='label', dims=[BATCH_SIZE]) -fc1 = fc_layer(net=forward_network, input=images, size=100, act="sigmoid") -fc2 = fc_layer(net=forward_network, input=fc1, size=100, act="sigmoid") -predict = fc_layer(net=forward_network, input=fc2, size=100, act="softmax") -cost = cross_entropy_layer(net=forward_network, input=predict, label=labels) - -forward_network.complete_add_op(True) -backward_net = create_backward_net(forward_network) +fc1 = fc_layer(net=forward_net, input=images, size=100, act="sigmoid") +fc2 = fc_layer(net=forward_net, input=fc1, size=100, act="sigmoid") +predict = fc_layer(net=forward_net, input=fc2, size=100, act="softmax") +cost = cross_entropy_layer(net=forward_net, input=predict, label=labels) + +init_net.complete_add_op(True) +forward_net.complete_add_op(True) +backward_net = create_backward_net(forward_net) optimize_net.complete_add_op(True) -print(forward_network) +print(init_net) +print(forward_net) print(backward_net) print(optimize_net) -debug_print_op(forward_network) +debug_print_op(forward_net) debug_print_op(backward_net) debug_print_op(optimize_net) @@ -215,8 +213,8 @@ def test(cost_name): feed_data(images, image_data) feed_data(labels, label_data) - forward_network.infer_shape(scope) - forward_network.run(scope, dev_ctx) + forward_net.infer_shape(scope) + forward_net.run(scope, dev_ctx) cost.append(mean_cost(cost_name)) error.append(error_rate(predict, "label")) print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str( @@ -224,6 +222,8 @@ def test(cost_name): PASS_NUM = 1 + +init_net.run(scope, dev_ctx) for pass_id in range(PASS_NUM): batch_id = 0 @@ -233,8 +233,8 @@ def test(cost_name): feed_data(images, image_data) feed_data(labels, label_data) - forward_network.infer_shape(scope) - forward_network.run(scope, dev_ctx) + forward_net.infer_shape(scope) + forward_net.run(scope, dev_ctx) set_cost(cost) backward_net.infer_shape(scope) backward_net.run(scope, dev_ctx) From 3648165b63bd5331d1809cba896176e4af0a9ff2 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 23:00:45 -0700 Subject: [PATCH 13/14] add gpu support --- python/paddle/v2/framework/tests/mnist.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index 0c27ce3e355b6a..d9941023fe69fc 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -7,6 +7,8 @@ scope = core.Scope() place = core.CPUPlace() +# if you want to test GPU training, you can use gpu place +# place = core.GPUPlace(0) dev_ctx = core.DeviceContext.create(place) init_net = core.Net.create() From 625b15355a16fa42476e7dbd166b77e092dcb97f Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 23:56:55 -0700 Subject: [PATCH 14/14] optimize code --- python/paddle/v2/framework/tests/mnist.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index d9941023fe69fc..9a0b109850e92c 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -17,14 +17,14 @@ optimize_net = core.Net.create() -def atom_id(): +def atomic_id(): id = 0 while True: yield id id += 1 -uniq_id = atom_id().next +uniq_id = atomic_id().next def data_layer(name, dims): @@ -164,7 +164,7 @@ def set_cost(cost): cost_grad.set(numpy.ones(cost_shape).astype("float32"), place) -def mean_cost(cost): +def get_cost_mean(cost): cost_data = numpy.array(scope.find_var(cost).get_tensor()) return cost_data.sum() / len(cost_data) @@ -217,7 +217,7 @@ def test(cost_name): forward_net.infer_shape(scope) forward_net.run(scope, dev_ctx) - cost.append(mean_cost(cost_name)) + cost.append(get_cost_mean(cost_name)) error.append(error_rate(predict, "label")) print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str( sum(error) / float(len(error))))