From c418dac5b44148c039e34ec9c12075b09f37534d Mon Sep 17 00:00:00 2001 From: Superjom Date: Fri, 7 Jul 2017 18:45:42 +0800 Subject: [PATCH 01/37] add rnn op interfaces --- paddle/framework/recurrent_network_op.h | 98 +++++++++++++++++++++++++ 1 file changed, 98 insertions(+) create mode 100644 paddle/framework/recurrent_network_op.h diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h new file mode 100644 index 00000000000000..de8c3ba6c1c1e3 --- /dev/null +++ b/paddle/framework/recurrent_network_op.h @@ -0,0 +1,98 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/scope.h" + +namespace paddle { +namespace framework { + +// fake interfaces that has not be implemented by other modules. +struct OpRunContext { + Scope* scope; +}; + +class OperatorBase { + public: + virtual ~OperatorBase() {} + virtual void Run(OpRunContext* context) const = 0; + virtual void InferShape(const Scope* scope) const = 0; + + protected: + std::vector inputs_; + std::vector outputs_; +} + +class RecurrentForwardOp { + public: + virtual void InferShape(const Scope* scope) = 0; + /* + * Forward run the RNN. + * + * NOTE the context's scope is not given until `Run` called, so step scopes' + * father should be set/updated in this method. + */ + virtual void Run(OpRunContext* contex) const = 0; + + protected: + /* + * Prepare inputs for each stepnet. + */ + void ApplyInLinks(Scope* scope); + + /* + * Process outputs of stepnets and merge to variables. + */ + void ApplyOutLinks(Scope* scope); + + /* + * Build a `Net` which is shared across all steps. + */ + void BuildStepNet(Scope* scope); + + /* + * Create a scope for each step, the context's scope is shared across all the + * step scopes as the father scope. The step scopes will be stored in the + * father scope as a variable. + */ + void CreateScopes(Scope* scope); + + /* + * Prepare steps' states and relations. + */ + void PrepareStates(Scope* scope); + + protected: + /* + * these are defined in BaseOperator + * + * std::vector inputs_; + * std::vector outputs_; + */ + + // State of a RNN (same as the role of `Momory` in PaddlePaddle) + struct StateAttr { + // name of current state variable + std::string var; + // name of previous step's state variable + std::string pre_var; + // name of the variable to init a state, which is store in context's scope. + std::string boot_var; + }; + std::vector states_; +}; + +class RecurrentBackwardOp; +} // namespace framework +} // namespace paddle From 604279516bc6801fe1720ca1bd95f84dcfe34958 Mon Sep 17 00:00:00 2001 From: Superjom Date: Fri, 7 Jul 2017 21:38:10 +0800 Subject: [PATCH 02/37] add Run --- paddle/framework/recurrent_network_op.h | 57 ++++++++++++++++++++++--- 1 file changed, 50 insertions(+), 7 deletions(-) diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index de8c3ba6c1c1e3..b4ad7e1d94ec78 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -13,7 +13,10 @@ limitations under the License. */ #pragma once + +#include "paddle/framework/enforce.h" #include "paddle/framework/scope.h" +#include "paddle/framework/variable.h" namespace paddle { namespace framework { @@ -23,6 +26,11 @@ struct OpRunContext { Scope* scope; }; +// TODO replace this with Net's proto. +struct NetDesc { + std::string name; +} + class OperatorBase { public: virtual ~OperatorBase() {} @@ -34,8 +42,13 @@ class OperatorBase { std::vector outputs_; } -class RecurrentForwardOp { +class RecurrentGroupForwardOp { public: + RecurrentGroupForwardOp(NetDesc& net_desc) + : name_(net_desc.name), + net_name_(net_desc.name + "__net__"), + step_scopes_name_(net_desc.name + "__step_scopes_") {} + virtual void InferShape(const Scope* scope) = 0; /* * Forward run the RNN. @@ -43,7 +56,31 @@ class RecurrentForwardOp { * NOTE the context's scope is not given until `Run` called, so step scopes' * father should be set/updated in this method. */ - virtual void Run(OpRunContext* contex) const = 0; + virtual void Run(OpRunContext* contex) const { + auto scope = contex.scope; + + Variable* net = scope->GetVariable(net_name_); + if (net == nullptr) { + BuildStepNet(scope); + net = scope->GetVariable(net_name_); + } + PADDLE_ENFORCE(net); + + // expand lazily. + CreateScopes(scope); + ApplyInLinks(scope); + PrepareStates(scope); + Variable* step_scopes = scope->GetVariable(step_scopes_name_); + PADDLE_ENFORCE(step_scopes); + + // forward + for (Scope* step_scope : step_scopes->GetMutable>()) { + net->Run(step_scope); + } + + // prepare outputs + ApplyOutLinks(scope); + } protected: /* @@ -62,9 +99,9 @@ class RecurrentForwardOp { void BuildStepNet(Scope* scope); /* - * Create a scope for each step, the context's scope is shared across all the - * step scopes as the father scope. The step scopes will be stored in the - * father scope as a variable. + * Create a scope for each step, the context's scope is shared across all + * the step scopes as the father scope. The step scopes will be stored in + * the father scope as a variable. */ void CreateScopes(Scope* scope); @@ -87,12 +124,18 @@ class RecurrentForwardOp { std::string var; // name of previous step's state variable std::string pre_var; - // name of the variable to init a state, which is store in context's scope. + // name of the variable to init a state, which is store in context's + // scope. std::string boot_var; }; + std::vector states_; + std::string name_; + + const std::string net_name_; + const std::string step_scopes_name_; }; -class RecurrentBackwardOp; +class RecurrentGroupBackwardOp; } // namespace framework } // namespace paddle From 13d8ca9357de5a5e53dcf09fb0bcc08b97c2dc47 Mon Sep 17 00:00:00 2001 From: Superjom Date: Fri, 7 Jul 2017 21:39:27 +0800 Subject: [PATCH 03/37] rename state -> memory --- paddle/framework/recurrent_network_op.h | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index b4ad7e1d94ec78..a3c8ed4cb7623c 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -108,7 +108,7 @@ class RecurrentGroupForwardOp { /* * Prepare steps' states and relations. */ - void PrepareStates(Scope* scope); + void PrepareMemorys(Scope* scope); protected: /* @@ -118,8 +118,8 @@ class RecurrentGroupForwardOp { * std::vector outputs_; */ - // State of a RNN (same as the role of `Momory` in PaddlePaddle) - struct StateAttr { + // Memory of a RNN (same as the role of `Momory` in PaddlePaddle) + struct MemoryAttr { // name of current state variable std::string var; // name of previous step's state variable @@ -129,7 +129,7 @@ class RecurrentGroupForwardOp { std::string boot_var; }; - std::vector states_; + std::vector memorys_; std::string name_; const std::string net_name_; From a645ae661ab71f0cb74dbc06cffcae68bc83ce58 Mon Sep 17 00:00:00 2001 From: Superjom Date: Fri, 7 Jul 2017 21:43:39 +0800 Subject: [PATCH 04/37] change state -> memory --- paddle/framework/recurrent_network_op.h | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index a3c8ed4cb7623c..38f6af35171578 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -68,8 +68,8 @@ class RecurrentGroupForwardOp { // expand lazily. CreateScopes(scope); - ApplyInLinks(scope); - PrepareStates(scope); + ScatterLinks(scope); + PrepareMemories(scope); Variable* step_scopes = scope->GetVariable(step_scopes_name_); PADDLE_ENFORCE(step_scopes); @@ -79,19 +79,19 @@ class RecurrentGroupForwardOp { } // prepare outputs - ApplyOutLinks(scope); + GatherOutLinks(scope); } protected: /* * Prepare inputs for each stepnet. */ - void ApplyInLinks(Scope* scope); + void ScatterInLinks(Scope* scope); /* * Process outputs of stepnets and merge to variables. */ - void ApplyOutLinks(Scope* scope); + void GatherOutLinks(Scope* scope); /* * Build a `Net` which is shared across all steps. @@ -108,7 +108,7 @@ class RecurrentGroupForwardOp { /* * Prepare steps' states and relations. */ - void PrepareMemorys(Scope* scope); + void PrepareMemories(Scope* scope); protected: /* @@ -129,7 +129,7 @@ class RecurrentGroupForwardOp { std::string boot_var; }; - std::vector memorys_; + std::vector memories_; std::string name_; const std::string net_name_; From 8640f96a4d9b4e86bf691eedf96c411eaf3b1554 Mon Sep 17 00:00:00 2001 From: Superjom Date: Sat, 8 Jul 2017 11:20:56 +0800 Subject: [PATCH 05/37] make compilable --- paddle/framework/CMakeLists.txt | 1 + paddle/framework/recurrent_network_op.h | 85 ++++++++++++------------- 2 files changed, 43 insertions(+), 43 deletions(-) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 4409c6feae2182..f7d640e1e54d32 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -16,3 +16,4 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. # Generate an empty __init__.py to make framework_py_proto as a valid python module. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) +add_library(recurrent_network_op recurrent_network_op.cc) diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 38f6af35171578..5ec83de450d22b 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -21,7 +21,9 @@ namespace paddle { namespace framework { +// -------------------------------------------------------------------- // fake interfaces that has not be implemented by other modules. +// TODO keep updating according to other modules' designs. struct OpRunContext { Scope* scope; }; @@ -29,7 +31,14 @@ struct OpRunContext { // TODO replace this with Net's proto. struct NetDesc { std::string name; -} +}; + +class PlainNet { + public: + PlainNet() {} + PlainNet(const NetDesc& desc) {} + void Run(Scope* scope) {} +}; class OperatorBase { public: @@ -40,75 +49,59 @@ class OperatorBase { protected: std::vector inputs_; std::vector outputs_; -} +}; +// fake interfaces end +// -------------------------------------------------------------------- -class RecurrentGroupForwardOp { +class RecurrentOp : public OperatorBase { public: - RecurrentGroupForwardOp(NetDesc& net_desc) + RecurrentOp(NetDesc& net_desc) : name_(net_desc.name), net_name_(net_desc.name + "__net__"), step_scopes_name_(net_desc.name + "__step_scopes_") {} - virtual void InferShape(const Scope* scope) = 0; + virtual void InferShape(const Scope* scope) const override; + /* * Forward run the RNN. * * NOTE the context's scope is not given until `Run` called, so step scopes' * father should be set/updated in this method. */ - virtual void Run(OpRunContext* contex) const { - auto scope = contex.scope; - - Variable* net = scope->GetVariable(net_name_); - if (net == nullptr) { - BuildStepNet(scope); - net = scope->GetVariable(net_name_); - } - PADDLE_ENFORCE(net); - - // expand lazily. - CreateScopes(scope); - ScatterLinks(scope); - PrepareMemories(scope); - Variable* step_scopes = scope->GetVariable(step_scopes_name_); - PADDLE_ENFORCE(step_scopes); - - // forward - for (Scope* step_scope : step_scopes->GetMutable>()) { - net->Run(step_scope); - } - - // prepare outputs - GatherOutLinks(scope); - } + virtual void Run(OpRunContext* contex) const override; protected: /* * Prepare inputs for each stepnet. */ - void ScatterInLinks(Scope* scope); + void SegmentInputs(Scope* scope) const; /* * Process outputs of stepnets and merge to variables. */ - void GatherOutLinks(Scope* scope); + void ConcateOutputs(Scope* scope) const; /* - * Build a `Net` which is shared across all steps. + * Create a `Net` which is shared across all steps. */ - void BuildStepNet(Scope* scope); + void CreateStepNet(Scope* scope) const; /* * Create a scope for each step, the context's scope is shared across all * the step scopes as the father scope. The step scopes will be stored in - * the father scope as a variable. + * the father scope as a variable whose name is specified by + * `step_scopes_name_`. + * + * NOTE the scopes are reused by both the `Forward` and `Backward`, so just + * create once and expand its size if more steps need. */ - void CreateScopes(Scope* scope); + void CreateScopes(Scope* scope) const; /* - * Prepare steps' states and relations. + * Prepare steps' states and link previous state's memory to current scope by + * a `reference`. */ - void PrepareMemories(Scope* scope); + void PrepareMemories(Scope* scope) const; protected: /* @@ -124,18 +117,24 @@ class RecurrentGroupForwardOp { std::string var; // name of previous step's state variable std::string pre_var; - // name of the variable to init a state, which is store in context's - // scope. + // name of the variables to init this memory (same role of `boot_layer` in + // PaddlePaddle), which is store in father's scope. std::string boot_var; }; - std::vector memories_; + // this op's name, used as a unique key in father scope. + // TODO repace it with OpBase's interface if supported. std::string name_; - + // name of rnn op's step net, the step net will be shared by both `Forward` + // and `Backward`, so we store it as a variable in father's scope, with a + // unique key specified by `net_name_`. const std::string net_name_; + // name of steps' scopes which is store in father scope with a unique key + // specified by `step_scopes_name_`. const std::string step_scopes_name_; }; -class RecurrentGroupBackwardOp; +class RecurrentGradientOp; + } // namespace framework } // namespace paddle From d4cde5176162ab508673ae13aca6e8d43528b7b7 Mon Sep 17 00:00:00 2001 From: Superjom Date: Sat, 8 Jul 2017 11:24:21 +0800 Subject: [PATCH 06/37] add .cc --- paddle/framework/recurrent_network_op.cc | 32 ++++++++++++++++++++++++ 1 file changed, 32 insertions(+) create mode 100644 paddle/framework/recurrent_network_op.cc diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc new file mode 100644 index 00000000000000..ada7934f720388 --- /dev/null +++ b/paddle/framework/recurrent_network_op.cc @@ -0,0 +1,32 @@ +#include "paddle/framework/recurrent_network_op.h" + +namespace paddle { +namespace framework { + +void RecurrentOp::Run(OpRunContext* contex) const { + auto scope = contex->scope; + + Variable* net = scope->GetVariable(net_name_); + if (net == nullptr) { + CreateStepNet(scope); + net = scope->GetVariable(net_name_); + } + PADDLE_ENFORCE(net, "failed to create step net"); + + CreateScopes(scope); + SegmentInputs(scope); + PrepareMemories(scope); + + Variable* step_scopes = scope->GetVariable(step_scopes_name_); + PADDLE_ENFORCE(step_scopes, "failed to get scopes"); + // forward + for (Scope* step_scope : *step_scopes->GetMutable>()) { + net->GetMutable()->Run(step_scope); + } + + // prepare outputs + ConcateOutputs(scope); +} + +} // namespace framework +} // namespace paddle From 6e9928960d98da7597af938f8299da66dcdd5f5c Mon Sep 17 00:00:00 2001 From: Superjom Date: Sat, 8 Jul 2017 19:05:43 +0800 Subject: [PATCH 07/37] init test --- paddle/framework/CMakeLists.txt | 1 + paddle/framework/recurrent_network_op.cc | 54 ++++++++++++++++--- paddle/framework/recurrent_network_op.h | 16 ++++-- paddle/framework/recurrent_network_op_test.cc | 20 +++++++ 4 files changed, 79 insertions(+), 12 deletions(-) create mode 100644 paddle/framework/recurrent_network_op_test.cc diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index f7d640e1e54d32..6b8e8a38f9eee7 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -17,3 +17,4 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) add_library(recurrent_network_op recurrent_network_op.cc) +cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index ada7934f720388..a0819f06d00983 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -1,4 +1,5 @@ #include "paddle/framework/recurrent_network_op.h" +#include "paddle/framework/tensor.h" namespace paddle { namespace framework { @@ -6,21 +7,38 @@ namespace framework { void RecurrentOp::Run(OpRunContext* contex) const { auto scope = contex->scope; - Variable* net = scope->GetVariable(net_name_); - if (net == nullptr) { + if (!scope->HasVariable(net_name_)) { CreateStepNet(scope); - net = scope->GetVariable(net_name_); } - PADDLE_ENFORCE(net, "failed to create step net"); + Variable* net = scope->GetVariable(net_name_); + PADDLE_ENFORCE(net, "failed to get step net"); CreateScopes(scope); SegmentInputs(scope); - PrepareMemories(scope); + CreateMemories(scope); Variable* step_scopes = scope->GetVariable(step_scopes_name_); - PADDLE_ENFORCE(step_scopes, "failed to get scopes"); + PADDLE_ENFORCE(step_scopes, "failed to get step scopes"); // forward - for (Scope* step_scope : *step_scopes->GetMutable>()) { + auto& scopes = *step_scopes->GetMutable>(); + for (size_t step_id = 0; step_id < scopes.size(); step_id++) { + Scope* step_scope = scopes[step_id]; + // TODO replace memorys' copy with reference + // copy pre-memory + for (const auto& attr : memory_attrs_) { + Variable* pre_memory_var = step_scope->CreateVariable(attr.pre_var); + // copy boot_var to current memory in first step + if (step_id == 0) { + Variable* boot_var = step_scope->GetVariable(attr.boot_var); + *pre_memory_var->GetMutable() = *boot_var->GetMutable(); + // copy varible of memory in previous scope to current pre-memory + } else { + Variable* pre_state_var = scopes[step_id - 1]->GetVariable(attr.var); + *pre_memory_var->GetMutable() = + *pre_state_var->GetMutable(); + } + } + net->GetMutable()->Run(step_scope); } @@ -28,5 +46,27 @@ void RecurrentOp::Run(OpRunContext* contex) const { ConcateOutputs(scope); } +void RecurrentOp::CreateMemories(Scope* scope) const { + Variable* scopes_var = scope->CreateVariable(step_scopes_name_); + auto scopes = scopes_var->GetMutable>(); + PADDLE_ENFORCE(!scopes->empty(), "step scopes should be created before."); + + PADDLE_ENFORCE(!memory_attrs_.empty(), + "memory attributes should be provided."); + for (size_t i = 0; i < scopes->size(); i++) { + for (const auto& attr : memory_attrs_) { + // check boot var exists + PADDLE_ENFORCE(scope->HasVariable(attr.boot_var), + "boot var %s not in context scope", attr.boot_var); + // create the memory in this scope + scope->CreateVariable(attr.var); + // create pre-memory in this scope + scope->CreateVariable(attr.pre_var); + // TODO reference pre-memory to the memory in previous scope if Variance + // supports reference + } + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 5ec83de450d22b..96fe666125e5a8 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -98,12 +98,16 @@ class RecurrentOp : public OperatorBase { void CreateScopes(Scope* scope) const; /* - * Prepare steps' states and link previous state's memory to current scope by - * a `reference`. + * Create memories in each step scope. */ - void PrepareMemories(Scope* scope) const; + void CreateMemories(Scope* scope) const; - protected: + /* + * Link memory in previous step scope to current scope. + */ + // void LinkMemories(Scope* scope) const; + + private: /* * these are defined in BaseOperator * @@ -122,6 +126,8 @@ class RecurrentOp : public OperatorBase { std::string boot_var; }; + std::vector memory_attrs_; + // this op's name, used as a unique key in father scope. // TODO repace it with OpBase's interface if supported. std::string name_; @@ -129,7 +135,7 @@ class RecurrentOp : public OperatorBase { // and `Backward`, so we store it as a variable in father's scope, with a // unique key specified by `net_name_`. const std::string net_name_; - // name of steps' scopes which is store in father scope with a unique key + // name of steps' scopes which is stored in father scope with a unique key // specified by `step_scopes_name_`. const std::string step_scopes_name_; }; diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc new file mode 100644 index 00000000000000..1647f170ca65c6 --- /dev/null +++ b/paddle/framework/recurrent_network_op_test.cc @@ -0,0 +1,20 @@ +/* + Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ + +#include "paddle/framework/recurrent_network_op.h" +#include "gtest/gtest.h" + +namespace paddle { +namespace framework {} // namespace framework + +} // namespace paddle From 007ca1e2f0605b5d447dddcdb4e7a070a0e7c75f Mon Sep 17 00:00:00 2001 From: Superjom Date: Mon, 10 Jul 2017 09:13:42 +0800 Subject: [PATCH 08/37] add op fake implementation --- paddle/framework/recurrent_network_op.cc | 35 +++++++++++++++++++ paddle/framework/recurrent_network_op_test.cc | 8 ++++- 2 files changed, 42 insertions(+), 1 deletion(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index a0819f06d00983..ef09fca47d211a 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -4,6 +4,41 @@ namespace paddle { namespace framework { +// fake op implementations +namespace fake { +class FcOp : public OperatorBase { + public: + FcOp(NetDesc& net_desc) : name_(net_desc.name) {} + + virtual void InferShape(const Scope* scope) const override { + LOG(INFO) << "fc InferShape"; + } + + virtual void Run(OpRunContext* contex) const override { + LOG(INFO) << "fc Run"; + } + + private: + std::string name_; +}; + +class SGDOptimizerOp : public OperatorBase { + public: + FcOp(NetDesc& net_desc) : name_(net_desc.name) {} + + virtual void InferShape(const Scope* scope) const override { + LOG(INFO) << "optimizer InferShape"; + } + + virtual void Run(OpRunContext* contex) const override { + LOG(INFO) << "optimizer Run"; + } + + private: + std::string name_; +}; +}; // namespace fake + void RecurrentOp::Run(OpRunContext* contex) const { auto scope = contex->scope; diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 1647f170ca65c6..83d7bb3c15388b 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -15,6 +15,12 @@ #include "gtest/gtest.h" namespace paddle { -namespace framework {} // namespace framework +namespace framework { + +class RecurrentOpTest : public ::testing::Test { + protected: + virtual void SetUp() override {} +}; +} // namespace framework } // namespace paddle From 2538b2fac5f8409cd15c04cbb3c2ae89cd9feee7 Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Mon, 10 Jul 2017 09:48:54 +0800 Subject: [PATCH 09/37] add CreateStepNet and CreateScopes implementation. --- paddle/framework/recurrent_network_op.cc | 33 +++++++++++++++++++++++- paddle/framework/recurrent_network_op.h | 22 +++++++++++++--- paddle/framework/tensor.h | 4 +++ paddle/framework/variable.h | 5 ++++ 4 files changed, 59 insertions(+), 5 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index a0819f06d00983..a6a6d3d4c33b10 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -20,8 +20,10 @@ void RecurrentOp::Run(OpRunContext* contex) const { Variable* step_scopes = scope->GetVariable(step_scopes_name_); PADDLE_ENFORCE(step_scopes, "failed to get step scopes"); // forward + auto dims = Input(scope, 0)->GetMutable()->dims(); + size_t seq_len = dims[1]; auto& scopes = *step_scopes->GetMutable>(); - for (size_t step_id = 0; step_id < scopes.size(); step_id++) { + for (size_t step_id = 0; step_id < seq_len; step_id++) { Scope* step_scope = scopes[step_id]; // TODO replace memorys' copy with reference // copy pre-memory @@ -46,6 +48,35 @@ void RecurrentOp::Run(OpRunContext* contex) const { ConcateOutputs(scope); } +void RecurrentOp::CreateScopes(Scope* scope) const { + auto dims = Input(scope, 0)->GetMutable()->dims(); + size_t seq_len = dims[1]; + Variable* scopes_var = scope->GetVariable(step_scopes_name_); + // auto step_scopes = + // scopes_var->GetMutable>>(); + auto step_scopes = scopes_var->GetMutable>(); + // TODO Only two scopes are needed for inference, this case will be supported + // later. + if (seq_len > step_scopes->size()) { + for (size_t i = step_scopes->size(); i < seq_len; ++i) { + // step_scopes->push_back(std::make_shared( + // std::shared_ptr(scope))); + step_scopes->push_back(new Scope(std::shared_ptr(scope))); + } + } +} + +void RecurrentOp::CreateStepNet(Scope* scope) const { + Variable* var = scope->CreateVariable(net_name_); + auto step_net = GetAttr("step_net"); + // get the step net proto from the string. + // PADDLE_ENFORCE( + // google::protobuf::TextFormat::ParseFromString(step_net, + // &step_net_desc_)); + // this is a fake net, it will be rewrite after the network has been merged. + var->Reset(new PlainNet(step_net)); +} + void RecurrentOp::CreateMemories(Scope* scope) const { Variable* scopes_var = scope->CreateVariable(step_scopes_name_); auto scopes = scopes_var->GetMutable>(); diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 96fe666125e5a8..1a509deda36b8b 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -14,6 +14,8 @@ #pragma once +#include +#include "paddle/framework/attr_checker.h" #include "paddle/framework/enforce.h" #include "paddle/framework/scope.h" #include "paddle/framework/variable.h" @@ -30,13 +32,14 @@ struct OpRunContext { // TODO replace this with Net's proto. struct NetDesc { - std::string name; + std::string name_; }; class PlainNet { public: PlainNet() {} PlainNet(const NetDesc& desc) {} + PlainNet(const std::string desc) {} void Run(Scope* scope) {} }; @@ -45,10 +48,19 @@ class OperatorBase { virtual ~OperatorBase() {} virtual void Run(OpRunContext* context) const = 0; virtual void InferShape(const Scope* scope) const = 0; + inline Variable* Input(Scope* scope, int index) const { + return scope->GetVariable(inputs_[index]); + }; + + template + inline const T GetAttr(const std::string& name) const { + return boost::get(attrs_.at(name)); + } protected: std::vector inputs_; std::vector outputs_; + AttributeMap attrs_; }; // fake interfaces end // -------------------------------------------------------------------- @@ -56,9 +68,9 @@ class OperatorBase { class RecurrentOp : public OperatorBase { public: RecurrentOp(NetDesc& net_desc) - : name_(net_desc.name), - net_name_(net_desc.name + "__net__"), - step_scopes_name_(net_desc.name + "__step_scopes_") {} + : name_(net_desc.name_), + net_name_(net_desc.name_ + "__net__"), + step_scopes_name_(net_desc.name_ + "__step_scopes_") {} virtual void InferShape(const Scope* scope) const override; @@ -138,6 +150,8 @@ class RecurrentOp : public OperatorBase { // name of steps' scopes which is stored in father scope with a unique key // specified by `step_scopes_name_`. const std::string step_scopes_name_; + + const NetDesc step_net_desc_; }; class RecurrentGradientOp; diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index ce5d98b04e6b53..6f1ae09fc00605 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -42,6 +42,7 @@ class Tensor { || holder_->Size() < product(dims) * sizeof(T)) { holder_.reset(new PlaceholderImpl(place, product(dims) * sizeof(T))); } + dims_ = dims; return static_cast(holder_->Ptr()); } @@ -51,6 +52,8 @@ class Tensor { return mutable_data(dims, paddle::platform::get_place()); } + const DDim& dims() const { return dims_; } + private: // Placeholder hides type T, so it doesn't appear as a template // parameter of Variable. @@ -91,6 +94,7 @@ class Tensor { size_t size_; // size of the memory block. }; + DDim dims_; std::shared_ptr holder_; // holds the memory block if allocated. }; diff --git a/paddle/framework/variable.h b/paddle/framework/variable.h index 72c4a7a2a1d1cf..adc00f5492fd4e 100644 --- a/paddle/framework/variable.h +++ b/paddle/framework/variable.h @@ -29,6 +29,11 @@ class Variable { return *static_cast(holder_->Ptr()); } + template + void Reset(T* p) { + holder_.reset(new PlaceholderImpl(p)); + } + template T* GetMutable() { if (!IsType()) { From 5eb87f0c697ba2a5a9a30da38939b7ded5077322 Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Mon, 10 Jul 2017 11:29:24 +0800 Subject: [PATCH 10/37] add TODO list --- paddle/framework/recurrent_network_op.cc | 16 +++++++--------- paddle/framework/recurrent_network_op.h | 5 ++++- 2 files changed, 11 insertions(+), 10 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index a6a6d3d4c33b10..5ff71ee83a2ca2 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -30,15 +30,13 @@ void RecurrentOp::Run(OpRunContext* contex) const { for (const auto& attr : memory_attrs_) { Variable* pre_memory_var = step_scope->CreateVariable(attr.pre_var); // copy boot_var to current memory in first step - if (step_id == 0) { - Variable* boot_var = step_scope->GetVariable(attr.boot_var); - *pre_memory_var->GetMutable() = *boot_var->GetMutable(); - // copy varible of memory in previous scope to current pre-memory - } else { - Variable* pre_state_var = scopes[step_id - 1]->GetVariable(attr.var); - *pre_memory_var->GetMutable() = - *pre_state_var->GetMutable(); - } + + Variable* pre_state_var = + (step_id == 0) ? step_scope->GetVariable(attr.boot_var) + : scopes[step_id - 1]->GetVariable(attr.var); + // copy varible of memory in previous scope to current pre-memory + *pre_memory_var->GetMutable() = + *pre_state_var->GetMutable(); } net->GetMutable()->Run(step_scope); diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 1a509deda36b8b..0f5bcd2ad316dd 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -64,7 +64,10 @@ class OperatorBase { }; // fake interfaces end // -------------------------------------------------------------------- - +// TODO: +// 1. No-padding computing for sequences with indifinite length in one batch. +// 2. Hierarchical RNN for sequence with sub-sequence. +// 3. Multi-inputs with indifinate length for RecurrentOp. class RecurrentOp : public OperatorBase { public: RecurrentOp(NetDesc& net_desc) From ca53f3a746b4e059fa64fb5e06ade14e81d694a9 Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Mon, 10 Jul 2017 14:51:17 +0800 Subject: [PATCH 11/37] init memory attributes. --- paddle/framework/CMakeLists.txt | 4 +- paddle/framework/op_desc.proto | 7 +++- paddle/framework/recurrent_network_op.h | 51 ++++++++++++++++++++----- 3 files changed, 49 insertions(+), 13 deletions(-) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 6b8e8a38f9eee7..e61979f265d712 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -16,5 +16,5 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. # Generate an empty __init__.py to make framework_py_proto as a valid python module. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) -add_library(recurrent_network_op recurrent_network_op.cc) -cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc) +cc_library(recurrent_network_op SRCS recurrent_network_op.cc DEPS op_desc) +#cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc) diff --git a/paddle/framework/op_desc.proto b/paddle/framework/op_desc.proto index 89497f3c16bc28..84aaf59ac55324 100644 --- a/paddle/framework/op_desc.proto +++ b/paddle/framework/op_desc.proto @@ -51,6 +51,9 @@ message OpDesc { // type of this Operator, such as "add", "sub", "fc". required string type = 3; + // the name of this Operator. + required string name = 4; + // Attributes of this Operator. e.g., scale=3.0 in cosine op. - repeated AttrDesc attrs = 4; -}; \ No newline at end of file + repeated AttrDesc attrs = 5; +}; diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 1a509deda36b8b..613e00f0b8367b 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -20,6 +20,10 @@ #include "paddle/framework/scope.h" #include "paddle/framework/variable.h" +// Remove when including operator.h +#include "paddle/framework/attr_checker.h" +#include "paddle/framework/op_desc.pb.h" + namespace paddle { namespace framework { @@ -46,6 +50,7 @@ class PlainNet { class OperatorBase { public: virtual ~OperatorBase() {} + void Init(const OpDesc& op_desc, AttributeMap& attrs) {} virtual void Run(OpRunContext* context) const = 0; virtual void InferShape(const Scope* scope) const = 0; inline Variable* Input(Scope* scope, int index) const { @@ -67,10 +72,22 @@ class OperatorBase { class RecurrentOp : public OperatorBase { public: - RecurrentOp(NetDesc& net_desc) - : name_(net_desc.name_), - net_name_(net_desc.name_ + "__net__"), - step_scopes_name_(net_desc.name_ + "__step_scopes_") {} + void Init(const OpDesc& op_desc, AttributeMap& attrs) { + OperatorBase::Init(op_desc, attrs); + name_ = op_desc.name(); + net_name_ = op_desc.name() + "_net"; + step_scopes_name_ = op_desc.name() + "_step_scopes"; + auto memories = GetAttr>("memories"); + auto boot_memories = GetAttr>("boot_memories"); + PADDLE_ENFORCE(memories.size() == boot_memories.size(), + "The size of memories and boot_memories is mismatched."); + for (size_t i = 0; i < memories.size(); ++i) { + MemoryAttr mem_attr; + mem_attr.var = memories[i]; + mem_attr.boot_var = boot_memories[i]; + memory_attrs_.push_back(mem_attr); + } + } virtual void InferShape(const Scope* scope) const override; @@ -86,12 +103,12 @@ class RecurrentOp : public OperatorBase { /* * Prepare inputs for each stepnet. */ - void SegmentInputs(Scope* scope) const; + void SegmentInputs(Scope* scope) const {}; /* * Process outputs of stepnets and merge to variables. */ - void ConcateOutputs(Scope* scope) const; + void ConcateOutputs(Scope* scope) const {}; /* * Create a `Net` which is shared across all steps. @@ -138,6 +155,22 @@ class RecurrentOp : public OperatorBase { std::string boot_var; }; + /* + * The attributes in protobuf about the memory description and the booted + * memory description are as follows. The number of booted memories should + * equal to the memories number. + * + * arg { + * name: “memories” + * strings: "hidden” + * strings: "state” + * } + * arg { + * name: “boot_memories” + * strings: "boot_hidden” + * strings: "boot_state” + * } + */ std::vector memory_attrs_; // this op's name, used as a unique key in father scope. @@ -146,12 +179,12 @@ class RecurrentOp : public OperatorBase { // name of rnn op's step net, the step net will be shared by both `Forward` // and `Backward`, so we store it as a variable in father's scope, with a // unique key specified by `net_name_`. - const std::string net_name_; + std::string net_name_; // name of steps' scopes which is stored in father scope with a unique key // specified by `step_scopes_name_`. - const std::string step_scopes_name_; + std::string step_scopes_name_; - const NetDesc step_net_desc_; + NetDesc step_net_desc_; }; class RecurrentGradientOp; From 1e48cc8546e992dc77d10a889ff1d11e29673b70 Mon Sep 17 00:00:00 2001 From: Superjom Date: Mon, 10 Jul 2017 16:16:27 +0800 Subject: [PATCH 12/37] add LinkMemories --- paddle/framework/recurrent_network_op.cc | 73 +++++++++++++----------- paddle/framework/recurrent_network_op.h | 20 ++++--- 2 files changed, 53 insertions(+), 40 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 3aa0c030ac6a6d..e4d7a327c5a1f6 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -1,3 +1,6 @@ +#include +#include + #include "paddle/framework/recurrent_network_op.h" #include "paddle/framework/tensor.h" @@ -8,7 +11,7 @@ namespace framework { namespace fake { class FcOp : public OperatorBase { public: - FcOp(NetDesc& net_desc) : name_(net_desc.name) {} + FcOp(NetDesc& net_desc) : name_(net_desc.name_) {} virtual void InferShape(const Scope* scope) const override { LOG(INFO) << "fc InferShape"; @@ -24,7 +27,7 @@ class FcOp : public OperatorBase { class SGDOptimizerOp : public OperatorBase { public: - FcOp(NetDesc& net_desc) : name_(net_desc.name) {} + SGDOptimizerOp(NetDesc& net_desc) : name_(net_desc.name_) {} virtual void InferShape(const Scope* scope) const override { LOG(INFO) << "optimizer InferShape"; @@ -50,7 +53,6 @@ void RecurrentOp::Run(OpRunContext* contex) const { CreateScopes(scope); SegmentInputs(scope); - CreateMemories(scope); Variable* step_scopes = scope->GetVariable(step_scopes_name_); PADDLE_ENFORCE(step_scopes, "failed to get step scopes"); @@ -61,18 +63,7 @@ void RecurrentOp::Run(OpRunContext* contex) const { for (size_t step_id = 0; step_id < seq_len; step_id++) { Scope* step_scope = scopes[step_id]; // TODO replace memorys' copy with reference - // copy pre-memory - for (const auto& attr : memory_attrs_) { - Variable* pre_memory_var = step_scope->CreateVariable(attr.pre_var); - // copy boot_var to current memory in first step - - Variable* pre_state_var = - (step_id == 0) ? step_scope->GetVariable(attr.boot_var) - : scopes[step_id - 1]->GetVariable(attr.var); - // copy varible of memory in previous scope to current pre-memory - *pre_memory_var->GetMutable() = - *pre_state_var->GetMutable(); - } + LinkMemories(scope, scopes, step_id); net->GetMutable()->Run(step_scope); } @@ -110,24 +101,42 @@ void RecurrentOp::CreateStepNet(Scope* scope) const { var->Reset(new PlainNet(step_net)); } -void RecurrentOp::CreateMemories(Scope* scope) const { - Variable* scopes_var = scope->CreateVariable(step_scopes_name_); - auto scopes = scopes_var->GetMutable>(); - PADDLE_ENFORCE(!scopes->empty(), "step scopes should be created before."); - - PADDLE_ENFORCE(!memory_attrs_.empty(), - "memory attributes should be provided."); - for (size_t i = 0; i < scopes->size(); i++) { - for (const auto& attr : memory_attrs_) { - // check boot var exists +void RecurrentOp::LinkMemories(Scope* scope, std::vector& step_scopes, + size_t step) const { + PADDLE_ENFORCE(step < step_scopes.size(), + "step [%d] out of range of step scopes' size [%d]", step, + step_scopes.size()); + // copy boot memory + for (auto& attr : memory_attrs_) { + Scope* step_scope = step_scopes[step]; + + Tensor* boot_tensor{nullptr}; + Variable* memory_var = step_scope->CreateVariable(attr.pre_var); + if (step == 0) { PADDLE_ENFORCE(scope->HasVariable(attr.boot_var), - "boot var %s not in context scope", attr.boot_var); - // create the memory in this scope - scope->CreateVariable(attr.var); - // create pre-memory in this scope - scope->CreateVariable(attr.pre_var); - // TODO reference pre-memory to the memory in previous scope if Variance - // supports reference + "memory [%s]'s boot variable [%s] not exists", attr.var, + attr.boot_var); + // update memory's ddim + boot_tensor = scope->CreateVariable(attr.boot_var)->GetMutable(); + attr.dims = boot_tensor->dims(); + } + + // copy from boot memory + // TODO support more device + float* memory_tensor_val = + memory_var->GetMutable()->mutable_data( + attr.dims, platform::CPUPlace()); + if (step == 0) { + PADDLE_ENFORCE(boot_tensor, "boot_tensor should be retrieved before"); + // copy from boot memory + std::memcpy(memory_tensor_val, boot_tensor->data(), + product(attr.dims)); + } else { + // copy from previous step scope's memory to this scope's `pre-memory` + Tensor* pre_step_memory = + step_scopes[step - 1]->GetVariable(attr.var)->GetMutable(); + std::memcpy(memory_tensor_val, pre_step_memory->data(), + product(attr.dims)); } } } diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 0f5bcd2ad316dd..45de31664bfbf2 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -16,6 +16,7 @@ #include #include "paddle/framework/attr_checker.h" +#include "paddle/framework/ddim.h" #include "paddle/framework/enforce.h" #include "paddle/framework/scope.h" #include "paddle/framework/variable.h" @@ -115,22 +116,22 @@ class RecurrentOp : public OperatorBase { /* * Create memories in each step scope. */ - void CreateMemories(Scope* scope) const; + // void CreateMemories(Scope* scope) const; /* * Link memory in previous step scope to current scope. */ - // void LinkMemories(Scope* scope) const; + void LinkMemories(Scope* scope, std::vector& step_scopes, + size_t step) const; private: /* - * these are defined in BaseOperator + * Memory of a RNN (same as the role of `Momory` in PaddlePaddle). * - * std::vector inputs_; - * std::vector outputs_; + * Memory attributes cached by this op, dims will be infered from + * boot memories in father scope. Other attributes are copied from Op's proto + * attributes. */ - - // Memory of a RNN (same as the role of `Momory` in PaddlePaddle) struct MemoryAttr { // name of current state variable std::string var; @@ -139,9 +140,12 @@ class RecurrentOp : public OperatorBase { // name of the variables to init this memory (same role of `boot_layer` in // PaddlePaddle), which is store in father's scope. std::string boot_var; + // this dim will infered from boot memories's tensor in the first step. + DDim dims; }; - std::vector memory_attrs_; + // TODO copy from OpBase's + mutable std::vector memory_attrs_; // this op's name, used as a unique key in father scope. // TODO repace it with OpBase's interface if supported. From f7916a6b5fdde2d19f56ec3631ab9b03eea086fc Mon Sep 17 00:00:00 2001 From: Superjom Date: Mon, 10 Jul 2017 17:20:09 +0800 Subject: [PATCH 13/37] add PlainNet fake implementation --- paddle/framework/recurrent_network_op.cc | 27 ++++++--------- paddle/framework/recurrent_network_op.h | 42 ++++++++++++++++-------- 2 files changed, 39 insertions(+), 30 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index e4d7a327c5a1f6..129b24348fc150 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -11,7 +11,7 @@ namespace framework { namespace fake { class FcOp : public OperatorBase { public: - FcOp(NetDesc& net_desc) : name_(net_desc.name_) {} + FcOp(const OpDesc& desc) {} virtual void InferShape(const Scope* scope) const override { LOG(INFO) << "fc InferShape"; @@ -24,23 +24,13 @@ class FcOp : public OperatorBase { private: std::string name_; }; +}; // namespace fake -class SGDOptimizerOp : public OperatorBase { - public: - SGDOptimizerOp(NetDesc& net_desc) : name_(net_desc.name_) {} - - virtual void InferShape(const Scope* scope) const override { - LOG(INFO) << "optimizer InferShape"; - } - - virtual void Run(OpRunContext* contex) const override { - LOG(INFO) << "optimizer Run"; +void PlainNet::AddOp(const OpDesc& desc) { + if (desc.type() == "fc") { + ops_.emplace_back(new fake::FcOp(desc)); } - - private: - std::string name_; -}; -}; // namespace fake +} void RecurrentOp::Run(OpRunContext* contex) const { auto scope = contex->scope; @@ -98,7 +88,10 @@ void RecurrentOp::CreateStepNet(Scope* scope) const { // google::protobuf::TextFormat::ParseFromString(step_net, // &step_net_desc_)); // this is a fake net, it will be rewrite after the network has been merged. - var->Reset(new PlainNet(step_net)); + NetDesc desc; + desc.name_ = "rnn_step_net"; + var->Reset(new PlainNet(desc)); + // TODO add op descs } void RecurrentOp::LinkMemories(Scope* scope, std::vector& step_scopes, diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 030efd97bc15b4..eb9a390728c0fe 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -35,19 +35,6 @@ struct OpRunContext { Scope* scope; }; -// TODO replace this with Net's proto. -struct NetDesc { - std::string name_; -}; - -class PlainNet { - public: - PlainNet() {} - PlainNet(const NetDesc& desc) {} - PlainNet(const std::string desc) {} - void Run(Scope* scope) {} -}; - class OperatorBase { public: virtual ~OperatorBase() {} @@ -68,6 +55,35 @@ class OperatorBase { std::vector outputs_; AttributeMap attrs_; }; + +// TODO replace this with Net's proto. +struct NetDesc { + std::string name_; + std::vector op_descs; +}; + +class PlainNet { + public: + PlainNet() {} + PlainNet(const NetDesc& desc) { + for (const OpDesc& proto : desc.op_descs) { + AddOp(proto); + } + } + // PlainNet(const std::string desc) {} + void AddOp(const OpDesc& desc); + void Run(Scope* scope) { + OpRunContext ctx; + ctx.scope = scope; + for (auto& op : ops_) { + op->Run(&ctx); + } + } + + private: + std::vector> ops_; +}; + // fake interfaces end // -------------------------------------------------------------------- // TODO: From 089c44810566a85592e0e904f825ada98ed353f3 Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Mon, 10 Jul 2017 21:15:51 +0800 Subject: [PATCH 14/37] Use std::shared_ptr in the OpRunContext. --- paddle/framework/recurrent_network_op.cc | 64 ++++++++++++++----- paddle/framework/recurrent_network_op.h | 44 +++++-------- .../paddle/trainer_config_helpers/networks.py | 4 +- 3 files changed, 66 insertions(+), 46 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index e4d7a327c5a1f6..b22b81e5bf3c6c 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -1,7 +1,22 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/recurrent_network_op.h" + #include #include -#include "paddle/framework/recurrent_network_op.h" #include "paddle/framework/tensor.h" namespace paddle { @@ -13,7 +28,7 @@ class FcOp : public OperatorBase { public: FcOp(NetDesc& net_desc) : name_(net_desc.name_) {} - virtual void InferShape(const Scope* scope) const override { + virtual void InferShape(const ScopePtr scope) const override { LOG(INFO) << "fc InferShape"; } @@ -29,7 +44,7 @@ class SGDOptimizerOp : public OperatorBase { public: SGDOptimizerOp(NetDesc& net_desc) : name_(net_desc.name_) {} - virtual void InferShape(const Scope* scope) const override { + virtual void InferShape(const ScopePtr scope) const override { LOG(INFO) << "optimizer InferShape"; } @@ -59,9 +74,9 @@ void RecurrentOp::Run(OpRunContext* contex) const { // forward auto dims = Input(scope, 0)->GetMutable()->dims(); size_t seq_len = dims[1]; - auto& scopes = *step_scopes->GetMutable>(); + auto& scopes = *step_scopes->GetMutable>(); for (size_t step_id = 0; step_id < seq_len; step_id++) { - Scope* step_scope = scopes[step_id]; + ScopePtr step_scope = scopes[step_id]; // TODO replace memorys' copy with reference LinkMemories(scope, scopes, step_id); @@ -72,43 +87,58 @@ void RecurrentOp::Run(OpRunContext* contex) const { ConcateOutputs(scope); } -void RecurrentOp::CreateScopes(Scope* scope) const { +void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { + OperatorBase::Init(op_desc, attrs); + name_ = op_desc.name(); + net_name_ = op_desc.name() + "_net"; + step_scopes_name_ = op_desc.name() + "_step_scopes"; + auto memories = GetAttr>("memories"); + auto boot_memories = GetAttr>("boot_memories"); + PADDLE_ENFORCE(memories.size() == boot_memories.size(), + "The size of memories and boot_memories is mismatched."); + for (size_t i = 0; i < memories.size(); ++i) { + MemoryAttr mem_attr; + mem_attr.var = memories[i]; + mem_attr.boot_var = boot_memories[i]; + memory_attrs_.push_back(mem_attr); + } +} + +void RecurrentOp::CreateScopes(ScopePtr scope) const { auto dims = Input(scope, 0)->GetMutable()->dims(); size_t seq_len = dims[1]; Variable* scopes_var = scope->GetVariable(step_scopes_name_); - // auto step_scopes = - // scopes_var->GetMutable>>(); - auto step_scopes = scopes_var->GetMutable>(); - // TODO Only two scopes are needed for inference, this case will be supported - // later. + auto step_scopes = scopes_var->GetMutable>(); + // TODO Only two scopes are needed for inference, this case will be + // supported later. if (seq_len > step_scopes->size()) { for (size_t i = step_scopes->size(); i < seq_len; ++i) { - // step_scopes->push_back(std::make_shared( - // std::shared_ptr(scope))); - step_scopes->push_back(new Scope(std::shared_ptr(scope))); + step_scopes->push_back(std::make_shared(scope)); } } } -void RecurrentOp::CreateStepNet(Scope* scope) const { +void RecurrentOp::CreateStepNet(ScopePtr scope) const { Variable* var = scope->CreateVariable(net_name_); auto step_net = GetAttr("step_net"); // get the step net proto from the string. // PADDLE_ENFORCE( // google::protobuf::TextFormat::ParseFromString(step_net, // &step_net_desc_)); + // var->Reset(new PlainNet(step_net_desc_)); // this is a fake net, it will be rewrite after the network has been merged. var->Reset(new PlainNet(step_net)); } -void RecurrentOp::LinkMemories(Scope* scope, std::vector& step_scopes, +void RecurrentOp::LinkMemories(ScopePtr scope, + std::vector& step_scopes, size_t step) const { PADDLE_ENFORCE(step < step_scopes.size(), "step [%d] out of range of step scopes' size [%d]", step, step_scopes.size()); // copy boot memory for (auto& attr : memory_attrs_) { - Scope* step_scope = step_scopes[step]; + ScopePtr step_scope = step_scopes[step]; Tensor* boot_tensor{nullptr}; Variable* memory_var = step_scope->CreateVariable(attr.pre_var); diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 030efd97bc15b4..f11a470d8a38bf 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -31,8 +31,9 @@ namespace framework { // -------------------------------------------------------------------- // fake interfaces that has not be implemented by other modules. // TODO keep updating according to other modules' designs. +typedef std::shared_ptr ScopePtr; struct OpRunContext { - Scope* scope; + ScopePtr scope; }; // TODO replace this with Net's proto. @@ -45,7 +46,7 @@ class PlainNet { PlainNet() {} PlainNet(const NetDesc& desc) {} PlainNet(const std::string desc) {} - void Run(Scope* scope) {} + void Run(ScopePtr scope) {} }; class OperatorBase { @@ -53,8 +54,8 @@ class OperatorBase { virtual ~OperatorBase() {} void Init(const OpDesc& op_desc, AttributeMap& attrs) {} virtual void Run(OpRunContext* context) const = 0; - virtual void InferShape(const Scope* scope) const = 0; - inline Variable* Input(Scope* scope, int index) const { + virtual void InferShape(const ScopePtr scope) const = 0; + inline Variable* Input(ScopePtr scope, int index) const { return scope->GetVariable(inputs_[index]); }; @@ -76,24 +77,13 @@ class OperatorBase { // 3. Multi-inputs with indifinate length for RecurrentOp. class RecurrentOp : public OperatorBase { public: - void Init(const OpDesc& op_desc, AttributeMap& attrs) { - OperatorBase::Init(op_desc, attrs); - name_ = op_desc.name(); - net_name_ = op_desc.name() + "_net"; - step_scopes_name_ = op_desc.name() + "_step_scopes"; - auto memories = GetAttr>("memories"); - auto boot_memories = GetAttr>("boot_memories"); - PADDLE_ENFORCE(memories.size() == boot_memories.size(), - "The size of memories and boot_memories is mismatched."); - for (size_t i = 0; i < memories.size(); ++i) { - MemoryAttr mem_attr; - mem_attr.var = memories[i]; - mem_attr.boot_var = boot_memories[i]; - memory_attrs_.push_back(mem_attr); - } - } + /* + * Initialize the recurrent operator from the operator protobuf + * and attributes. + */ + void Init(const OpDesc& op_desc, AttributeMap& attrs); - virtual void InferShape(const Scope* scope) const override; + virtual void InferShape(const ScopePtr scope) const override; /* * Forward run the RNN. @@ -107,17 +97,17 @@ class RecurrentOp : public OperatorBase { /* * Prepare inputs for each stepnet. */ - void SegmentInputs(Scope* scope) const {}; + void SegmentInputs(ScopePtr scope) const {}; /* * Process outputs of stepnets and merge to variables. */ - void ConcateOutputs(Scope* scope) const {}; + void ConcateOutputs(ScopePtr scope) const {}; /* * Create a `Net` which is shared across all steps. */ - void CreateStepNet(Scope* scope) const; + void CreateStepNet(ScopePtr scope) const; /* * Create a scope for each step, the context's scope is shared across all @@ -128,17 +118,17 @@ class RecurrentOp : public OperatorBase { * NOTE the scopes are reused by both the `Forward` and `Backward`, so just * create once and expand its size if more steps need. */ - void CreateScopes(Scope* scope) const; + void CreateScopes(ScopePtr scope) const; /* * Create memories in each step scope. */ - // void CreateMemories(Scope* scope) const; + // void CreateMemories(ScopePtr scope) const; /* * Link memory in previous step scope to current scope. */ - void LinkMemories(Scope* scope, std::vector& step_scopes, + void LinkMemories(ScopePtr scope, std::vector& step_scopes, size_t step) const; private: diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index b77932ce5f0947..f0b6625dc37368 100755 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -1395,7 +1395,7 @@ def inputs(layers, *args): if len(args) != 0: layers.extend(args) - Inputs(* [l.name for l in layers]) + Inputs(*[l.name for l in layers]) def outputs(layers, *args): @@ -1438,7 +1438,7 @@ def __dfs_travel__(layer, assert len(layers) > 0 if HasInputsSet(): # input already set - Outputs(* [l.name for l in layers]) + Outputs(*[l.name for l in layers]) return # just return outputs. if len(layers) != 1: From bffd11e91ac2602dc21b17e371eaac5790f47214 Mon Sep 17 00:00:00 2001 From: Superjom Date: Mon, 10 Jul 2017 21:19:42 +0800 Subject: [PATCH 15/37] add test --- paddle/framework/CMakeLists.txt | 2 +- paddle/framework/recurrent_network_op.cc | 23 ++++++-- paddle/framework/recurrent_network_op.h | 6 +- paddle/framework/recurrent_network_op_test.cc | 57 ++++++++++++++++++- 4 files changed, 77 insertions(+), 11 deletions(-) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index e61979f265d712..cdf29c9aa12991 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -17,4 +17,4 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) cc_library(recurrent_network_op SRCS recurrent_network_op.cc DEPS op_desc) -#cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc) +cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc recurrent_network_op.cc DEPS glog gtest gflags ddim system_allocator op_desc) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 129b24348fc150..83447df392b587 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -11,20 +11,33 @@ namespace framework { namespace fake { class FcOp : public OperatorBase { public: - FcOp(const OpDesc& desc) {} + FcOp(const OpDesc& desc) : name_(desc.name()) {} - virtual void InferShape(const Scope* scope) const override { - LOG(INFO) << "fc InferShape"; + virtual void InferShape(Scope* scope) const override { + for (const auto& output : outputs_) { + LOG(INFO) << "fc [" << name_ << "]" + << " create output variable [" << output << "]"; + scope->CreateVariable(output); + } } virtual void Run(OpRunContext* contex) const override { - LOG(INFO) << "fc Run"; + for (const auto& input : inputs_) { + PADDLE_ENFORCE(contex->scope->HasVariable(input), + "no input variable [%s] exists"); + LOG(INFO) << "fc [" << name_ << "] read input [" << input << "]"; + } + for (const auto& output : outputs_) { + PADDLE_ENFORCE(contex->scope->HasVariable(output), + "no output variable [%s] exists"); + LOG(INFO) << "fc [" << name_ << "] write output [" << output << "]"; + } } private: std::string name_; }; -}; // namespace fake +} // namespace fake void PlainNet::AddOp(const OpDesc& desc) { if (desc.type() == "fc") { diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index eb9a390728c0fe..3c1e060f0667c9 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -40,7 +40,7 @@ class OperatorBase { virtual ~OperatorBase() {} void Init(const OpDesc& op_desc, AttributeMap& attrs) {} virtual void Run(OpRunContext* context) const = 0; - virtual void InferShape(const Scope* scope) const = 0; + virtual void InferShape(Scope* scope) const = 0; inline Variable* Input(Scope* scope, int index) const { return scope->GetVariable(inputs_[index]); }; @@ -109,7 +109,7 @@ class RecurrentOp : public OperatorBase { } } - virtual void InferShape(const Scope* scope) const override; + virtual void InferShape(Scope* scope) const override {} /* * Forward run the RNN. @@ -119,6 +119,8 @@ class RecurrentOp : public OperatorBase { */ virtual void Run(OpRunContext* contex) const override; + virtual ~RecurrentOp() {} + protected: /* * Prepare inputs for each stepnet. diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 83d7bb3c15388b..ff31fc6b99eeb7 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -11,16 +11,67 @@ limitations under the License. */ +#include + #include "paddle/framework/recurrent_network_op.h" -#include "gtest/gtest.h" +#include "paddle/framework/tensor.h" namespace paddle { namespace framework { class RecurrentOpTest : public ::testing::Test { protected: - virtual void SetUp() override {} + virtual void SetUp() override { + CreateGlobalVariables(); + CreateRNNOp(); + } + + void CreateGlobalVariables() { + // create boot memory + scope.CreateVariable("h_boot"); + // create input, and init content + Variable* x = scope.CreateVariable("x"); + DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, + 30 /*input dim*/}); + x->GetMutable()->mutable_data(dims, platform::CPUPlace()); + } + + void CreateRNNOp() { + OpDesc op_desc; + + op_desc.set_type("rnn_op"); + op_desc.add_inputs("x"); + // output hidden vectors + op_desc.add_outputs("hiddens"); + + auto memories_attr = op_desc.mutable_attrs()->Add(); + memories_attr->set_type(paddle::framework::AttrType::STRINGS); + + *memories_attr->mutable_strings()->Add() = "h"; + memories_attr->set_name("memories"); + + auto boot_memories_attr = op_desc.mutable_attrs()->Add(); + boot_memories_attr->set_type(paddle::framework::AttrType::STRINGS); + *boot_memories_attr->mutable_strings()->Add() = "h_boot"; + boot_memories_attr->set_name("boot_memories"); + + AttributeMap attrs; + attrs["memories"] = std::vector{"h"}; + attrs["boot_memories"] = std::vector{"h_boot"}; + + rnn_op.Init(op_desc, attrs); + } + + void RunRnnOp() { + // TODO + } + + // father scope + Scope scope; + RecurrentOp rnn_op; }; -} // namespace framework +TEST_F(RecurrentOpTest, create_op) {} + +} // namespace framework } // namespace paddle From c7947de243de3da5b36a7b8db02d7a4db19b3138 Mon Sep 17 00:00:00 2001 From: Superjom Date: Mon, 10 Jul 2017 21:47:16 +0800 Subject: [PATCH 16/37] disable mutable_data --- paddle/framework/recurrent_network_op.cc | 37 ++++++++++--------- paddle/framework/recurrent_network_op_test.cc | 5 ++- 2 files changed, 23 insertions(+), 19 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 83447df392b587..054c7a9fbb0dbd 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -114,10 +114,9 @@ void RecurrentOp::LinkMemories(Scope* scope, std::vector& step_scopes, step_scopes.size()); // copy boot memory for (auto& attr : memory_attrs_) { - Scope* step_scope = step_scopes[step]; + // Scope* step_scope = step_scopes[step]; Tensor* boot_tensor{nullptr}; - Variable* memory_var = step_scope->CreateVariable(attr.pre_var); if (step == 0) { PADDLE_ENFORCE(scope->HasVariable(attr.boot_var), "memory [%s]'s boot variable [%s] not exists", attr.var, @@ -126,24 +125,28 @@ void RecurrentOp::LinkMemories(Scope* scope, std::vector& step_scopes, boot_tensor = scope->CreateVariable(attr.boot_var)->GetMutable(); attr.dims = boot_tensor->dims(); } + // Variable* memory_var = step_scope->CreateVariable(attr.pre_var); // copy from boot memory // TODO support more device - float* memory_tensor_val = - memory_var->GetMutable()->mutable_data( - attr.dims, platform::CPUPlace()); - if (step == 0) { - PADDLE_ENFORCE(boot_tensor, "boot_tensor should be retrieved before"); - // copy from boot memory - std::memcpy(memory_tensor_val, boot_tensor->data(), - product(attr.dims)); - } else { - // copy from previous step scope's memory to this scope's `pre-memory` - Tensor* pre_step_memory = - step_scopes[step - 1]->GetVariable(attr.var)->GetMutable(); - std::memcpy(memory_tensor_val, pre_step_memory->data(), - product(attr.dims)); - } + // TODO mutable_data is currently invalid + // float* memory_tensor_val = + // memory_var->GetMutable()->mutable_data( + // attr.dims, platform::CPUPlace()); + // if (step == 0) { + // PADDLE_ENFORCE(boot_tensor, "boot_tensor should be retrieved + // before"); + // // copy from boot memory + // std::memcpy(memory_tensor_val, boot_tensor->data(), + // product(attr.dims)); + // } else { + // // copy from previous step scope's memory to this scope's + // `pre-memory` Tensor* pre_step_memory = + // step_scopes[step - + // 1]->GetVariable(attr.var)->GetMutable(); + // std::memcpy(memory_tensor_val, pre_step_memory->data(), + // product(attr.dims)); + // } } } diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index ff31fc6b99eeb7..c9dacf98a7dbfc 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -30,10 +30,11 @@ class RecurrentOpTest : public ::testing::Test { // create boot memory scope.CreateVariable("h_boot"); // create input, and init content - Variable* x = scope.CreateVariable("x"); + // Variable* x = scope.CreateVariable("x"); DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); - x->GetMutable()->mutable_data(dims, platform::CPUPlace()); + // TODO mutable_data is not valid + // x->GetMutable()->mutable_data(dims, platform::CPUPlace()); } void CreateRNNOp() { From 6dca71130bdd8fa27be78657fb9f730842cf92c4 Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Mon, 10 Jul 2017 22:19:12 +0800 Subject: [PATCH 17/37] finist segmentInput function --- paddle/framework/CMakeLists.txt | 2 +- paddle/framework/recurrent_network_op.cc | 30 ++++++++++++++++++++---- paddle/framework/recurrent_network_op.h | 5 +++- 3 files changed, 31 insertions(+), 6 deletions(-) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index cdf29c9aa12991..9b810862372856 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -17,4 +17,4 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) cc_library(recurrent_network_op SRCS recurrent_network_op.cc DEPS op_desc) -cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc recurrent_network_op.cc DEPS glog gtest gflags ddim system_allocator op_desc) +#cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc recurrent_network_op.cc DEPS glog gtest gflags ddim system_allocator op_desc) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 2080247cd70ab5..1c0279aae2c324 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -76,7 +76,7 @@ void RecurrentOp::Run(OpRunContext* contex) const { PADDLE_ENFORCE(step_scopes, "failed to get step scopes"); // forward auto dims = Input(scope, 0)->GetMutable()->dims(); - size_t seq_len = dims[1]; + size_t seq_len = dims[0]; auto& scopes = *step_scopes->GetMutable>(); for (size_t step_id = 0; step_id < seq_len; step_id++) { ScopePtr step_scope = scopes[step_id]; @@ -109,7 +109,7 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { void RecurrentOp::CreateScopes(ScopePtr scope) const { auto dims = Input(scope, 0)->GetMutable()->dims(); - size_t seq_len = dims[1]; + size_t seq_len = dims[0]; Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto step_scopes = scopes_var->GetMutable>(); // TODO Only two scopes are needed for inference, this case will be @@ -136,6 +136,30 @@ void RecurrentOp::CreateStepNet(ScopePtr scope) const { // TODO add op descs } +void RecurrentOp::SegmentInputs(ScopePtr scope) const { + Variable* scopes_var = scope->CreateVariable(step_scopes_name_); + auto& step_scopes = *scopes_var->GetMutable>(); + + auto dims = Input(scope, 0)->GetMutable()->dims(); + int seq_len = dims[0]; + int batch_size = dims[1]; + int dim = dims[2]; + int length = batch_size * dim; + for (size_t i = 0; i < inputs_.size(); i++) { + const float* scope_input = + Input(scope, i)->GetMutable()->data(); + for (int j = 0; j < seq_len; j++) { + std::string name = + name_ + "@input_" + inputs_[i] + "@step_" + std::to_string(j); + Variable* input_var = step_scopes[j]->CreateVariable(name); + Tensor* step_input_tensor = input_var->GetMutable(); + float* step_input = step_input_tensor->mutable_data( + make_ddim({1, batch_size, dim}), platform::CPUPlace()); + std::memcpy(step_input, scope_input + j * length, length); + } + } +} + void RecurrentOp::LinkMemories(ScopePtr scope, std::vector& step_scopes, size_t step) const { @@ -144,8 +168,6 @@ void RecurrentOp::LinkMemories(ScopePtr scope, step_scopes.size()); // copy boot memory for (auto& attr : memory_attrs_) { - // Scope* step_scope = step_scopes[step]; - Tensor* boot_tensor{nullptr}; if (step == 0) { PADDLE_ENFORCE(scope->HasVariable(attr.boot_var), diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 05f26ebeb91493..39edd461606cde 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -87,10 +87,13 @@ class PlainNet { // fake interfaces end // -------------------------------------------------------------------- +// The sequence format in RecurrentOp is Tensor now. // TODO: // 1. No-padding computing for sequences with indifinite length in one batch. // 2. Hierarchical RNN for sequence with sub-sequence. // 3. Multi-inputs with indifinate length for RecurrentOp. +// 4. More Complex RNN architecture, such as Gated Feedback RNN. +// Refer to: https://arxiv.org/pdf/1502.02367.pdf class RecurrentOp : public OperatorBase { public: /* @@ -115,7 +118,7 @@ class RecurrentOp : public OperatorBase { /* * Prepare inputs for each stepnet. */ - void SegmentInputs(ScopePtr scope) const {}; + void SegmentInputs(ScopePtr scope) const; /* * Process outputs of stepnets and merge to variables. From d210b0bc8776bd45c612aac98200a2be7e40cd40 Mon Sep 17 00:00:00 2001 From: Superjom Date: Tue, 11 Jul 2017 09:05:05 +0800 Subject: [PATCH 18/37] enable mutable_data with a trick --- paddle/framework/CMakeLists.txt | 2 +- paddle/framework/recurrent_network_op_test.cc | 4 ++-- paddle/framework/tensor.h | 16 +++++++++------- 3 files changed, 12 insertions(+), 10 deletions(-) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 9b810862372856..cdf29c9aa12991 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -17,4 +17,4 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) cc_library(recurrent_network_op SRCS recurrent_network_op.cc DEPS op_desc) -#cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc recurrent_network_op.cc DEPS glog gtest gflags ddim system_allocator op_desc) +cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc recurrent_network_op.cc DEPS glog gtest gflags ddim system_allocator op_desc) diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index c9dacf98a7dbfc..a6951bf4252e43 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -30,11 +30,11 @@ class RecurrentOpTest : public ::testing::Test { // create boot memory scope.CreateVariable("h_boot"); // create input, and init content - // Variable* x = scope.CreateVariable("x"); + Variable* x = scope.CreateVariable("x"); DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); // TODO mutable_data is not valid - // x->GetMutable()->mutable_data(dims, platform::CPUPlace()); + x->GetMutable()->mutable_data(dims, platform::CPUPlace()); } void CreateRNNOp() { diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 6f1ae09fc00605..b642389b44034d 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -36,14 +36,16 @@ class Tensor { template ::value>::type* = nullptr> T* mutable_data(DDim dims, paddle::platform::Place place) { - if (holder_ == nullptr || - !(holder_->Place() == - place) /* some versions of boost::variant don't have operator!= */ - || holder_->Size() < product(dims) * sizeof(T)) { - holder_.reset(new PlaceholderImpl(place, product(dims) * sizeof(T))); - } + // if (holder_ == nullptr || + // !(holder_->Place() == + // place) /* some versions of boost::variant don't have operator!= */ + // || holder_->Size() < product(dims) * sizeof(T)) { + // holder_.reset(new PlaceholderImpl(place, product(dims) * + // sizeof(T))); + // } dims_ = dims; - return static_cast(holder_->Ptr()); + return static_cast(new T[product(dims)]); + // return static_cast(holder_->Ptr()); } template Date: Tue, 11 Jul 2017 09:50:47 +0800 Subject: [PATCH 19/37] RNNOp test. --- paddle/framework/recurrent_network_op.h | 4 +-- paddle/framework/recurrent_network_op_test.cc | 27 ++++++++++++++----- 2 files changed, 23 insertions(+), 8 deletions(-) diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 39edd461606cde..80e940083d2f1e 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -173,8 +173,8 @@ class RecurrentOp : public OperatorBase { }; /* - * The attributes in protobuf about the memory description and the booted - * memory description are as follows. The number of booted memories should + * The attributes in protobuf about the memory description and the initial + * memory description are as follows. The number of initial memories should * equal to the memories number. * * arg { diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index c9dacf98a7dbfc..c4d428330e8402 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -11,6 +11,7 @@ limitations under the License. */ +#include #include #include "paddle/framework/recurrent_network_op.h" @@ -26,11 +27,13 @@ class RecurrentOpTest : public ::testing::Test { CreateRNNOp(); } + virtual void TearDown() {} + void CreateGlobalVariables() { // create boot memory - scope.CreateVariable("h_boot"); + scope_.CreateVariable("h_boot"); // create input, and init content - // Variable* x = scope.CreateVariable("x"); + // Variable* x = scope_.CreateVariable("x"); DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); // TODO mutable_data is not valid @@ -45,22 +48,34 @@ class RecurrentOpTest : public ::testing::Test { // output hidden vectors op_desc.add_outputs("hiddens"); + // add memories auto memories_attr = op_desc.mutable_attrs()->Add(); memories_attr->set_type(paddle::framework::AttrType::STRINGS); - *memories_attr->mutable_strings()->Add() = "h"; memories_attr->set_name("memories"); + // add initial memories auto boot_memories_attr = op_desc.mutable_attrs()->Add(); boot_memories_attr->set_type(paddle::framework::AttrType::STRINGS); *boot_memories_attr->mutable_strings()->Add() = "h_boot"; boot_memories_attr->set_name("boot_memories"); + // add step net desc + auto step_net_attr = op_desc.mutable_attrs()->Add(); + step_net_attr->set_type(paddle::framework::AttrType::STRING); + step_net_attr->set_s(" "); // TODO add step net proto + step_net_attr->set_name("step_net"); + + std::ostringstream stream; + op_desc.SerializeToOstream(&stream); + std::string text = stream.str(); + LOG(INFO) << text; + AttributeMap attrs; attrs["memories"] = std::vector{"h"}; attrs["boot_memories"] = std::vector{"h_boot"}; - rnn_op.Init(op_desc, attrs); + rnn_op_.Init(op_desc, attrs); } void RunRnnOp() { @@ -68,8 +83,8 @@ class RecurrentOpTest : public ::testing::Test { } // father scope - Scope scope; - RecurrentOp rnn_op; + Scope scope_; + RecurrentOp rnn_op_; }; TEST_F(RecurrentOpTest, create_op) {} From 778ebb4af83de14795368a6c06c4303d8a4d05fd Mon Sep 17 00:00:00 2001 From: Superjom Date: Tue, 11 Jul 2017 10:24:32 +0800 Subject: [PATCH 20/37] enable LinkMemories with mutable_data --- paddle/framework/recurrent_network_op.cc | 55 ++++++++++++------- paddle/framework/recurrent_network_op.h | 10 ++-- paddle/framework/recurrent_network_op_test.cc | 17 ++++-- 3 files changed, 52 insertions(+), 30 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 1c0279aae2c324..1d02ef0f1ceb41 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -36,7 +36,7 @@ class FcOp : public OperatorBase { } } - virtual void Run(OpRunContext* contex) const override { + virtual void Run(OpContext* contex) const override { for (const auto& input : inputs_) { PADDLE_ENFORCE(contex->scope->HasVariable(input), "no input variable [%s] exists"); @@ -60,7 +60,7 @@ void PlainNet::AddOp(const OpDesc& desc) { } } -void RecurrentOp::Run(OpRunContext* contex) const { +void RecurrentOp::Run(OpContext* contex) const { auto scope = contex->scope; if (!scope->HasVariable(net_name_)) { @@ -99,15 +99,30 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { auto boot_memories = GetAttr>("boot_memories"); PADDLE_ENFORCE(memories.size() == boot_memories.size(), "The size of memories and boot_memories is mismatched."); + // set memories for (size_t i = 0; i < memories.size(); ++i) { MemoryAttr mem_attr; mem_attr.var = memories[i]; mem_attr.boot_var = boot_memories[i]; memory_attrs_.push_back(mem_attr); + LOG(INFO) << "set memorys:\t" + << "memory:" << mem_attr.var << "\tboot:" << mem_attr.boot_var; + } + + // set inputs + for (const std::string& input : op_desc.inputs()) { + LOG(INFO) << "set input " << input; + inputs_.push_back(input); + } + // set outputs + for (const std::string& output : op_desc.outputs()) { + LOG(INFO) << "set output " << output; + outputs_.push_back(output); } } void RecurrentOp::CreateScopes(ScopePtr scope) const { + LOG(INFO) << "create scopes"; auto dims = Input(scope, 0)->GetMutable()->dims(); size_t seq_len = dims[0]; Variable* scopes_var = scope->GetVariable(step_scopes_name_); @@ -166,6 +181,7 @@ void RecurrentOp::LinkMemories(ScopePtr scope, PADDLE_ENFORCE(step < step_scopes.size(), "step [%d] out of range of step scopes' size [%d]", step, step_scopes.size()); + auto step_scope = step_scopes[step]; // copy boot memory for (auto& attr : memory_attrs_) { Tensor* boot_tensor{nullptr}; @@ -177,28 +193,27 @@ void RecurrentOp::LinkMemories(ScopePtr scope, boot_tensor = scope->CreateVariable(attr.boot_var)->GetMutable(); attr.dims = boot_tensor->dims(); } - // Variable* memory_var = step_scope->CreateVariable(attr.pre_var); + Variable* memory_var = step_scope->CreateVariable(attr.pre_var); // copy from boot memory // TODO support more device // TODO mutable_data is currently invalid - // float* memory_tensor_val = - // memory_var->GetMutable()->mutable_data( - // attr.dims, platform::CPUPlace()); - // if (step == 0) { - // PADDLE_ENFORCE(boot_tensor, "boot_tensor should be retrieved - // before"); - // // copy from boot memory - // std::memcpy(memory_tensor_val, boot_tensor->data(), - // product(attr.dims)); - // } else { - // // copy from previous step scope's memory to this scope's - // `pre-memory` Tensor* pre_step_memory = - // step_scopes[step - - // 1]->GetVariable(attr.var)->GetMutable(); - // std::memcpy(memory_tensor_val, pre_step_memory->data(), - // product(attr.dims)); - // } + float* memory_tensor_val = + memory_var->GetMutable()->mutable_data( + attr.dims, platform::CPUPlace()); + if (step == 0) { + PADDLE_ENFORCE(boot_tensor, "boot_tensor should be retrieved before"); + // copy from boot memory + std::memcpy(memory_tensor_val, boot_tensor->data(), + product(attr.dims)); + } else { + // copy from previous step scope's memory to this scope's + // `pre - memory` + Tensor* pre_step_memory = + step_scopes[step - 1]->GetVariable(attr.var)->GetMutable(); + std::memcpy(memory_tensor_val, pre_step_memory->data(), + product(attr.dims)); + } } } diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 39edd461606cde..8d3020a5218ffb 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -32,15 +32,15 @@ namespace framework { // fake interfaces that has not be implemented by other modules. // TODO keep updating according to other modules' designs. typedef std::shared_ptr ScopePtr; -struct OpRunContext { +struct OpContext { ScopePtr scope; }; class OperatorBase { public: virtual ~OperatorBase() {} - void Init(const OpDesc& op_desc, AttributeMap& attrs) {} - virtual void Run(OpRunContext* context) const = 0; + void Init(const OpDesc& op_desc, AttributeMap& attrs) { attrs_ = attrs; } + virtual void Run(OpContext* context) const = 0; virtual void InferShape(ScopePtr scope) const = 0; inline Variable* Input(ScopePtr scope, int index) const { return scope->GetVariable(inputs_[index]); @@ -74,7 +74,7 @@ class PlainNet { // PlainNet(const std::string desc) {} void AddOp(const OpDesc& desc); void Run(ScopePtr scope) { - OpRunContext ctx; + OpContext ctx; ctx.scope = scope; for (auto& op : ops_) { op->Run(&ctx); @@ -110,7 +110,7 @@ class RecurrentOp : public OperatorBase { * NOTE the context's scope is not given until `Run` called, so step scopes' * father should be set/updated in this method. */ - virtual void Run(OpRunContext* contex) const override; + virtual void Run(OpContext* contex) const override; virtual ~RecurrentOp() {} diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index a6951bf4252e43..ef94cd317593ae 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -11,6 +11,7 @@ limitations under the License. */ +#include #include #include "paddle/framework/recurrent_network_op.h" @@ -27,9 +28,11 @@ class RecurrentOpTest : public ::testing::Test { } void CreateGlobalVariables() { + LOG(INFO) << "create global variable h_boot"; // create boot memory scope.CreateVariable("h_boot"); // create input, and init content + LOG(INFO) << "create global variale x"; Variable* x = scope.CreateVariable("x"); DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); @@ -43,7 +46,7 @@ class RecurrentOpTest : public ::testing::Test { op_desc.set_type("rnn_op"); op_desc.add_inputs("x"); // output hidden vectors - op_desc.add_outputs("hiddens"); + op_desc.add_outputs("h"); auto memories_attr = op_desc.mutable_attrs()->Add(); memories_attr->set_type(paddle::framework::AttrType::STRINGS); @@ -60,11 +63,9 @@ class RecurrentOpTest : public ::testing::Test { attrs["memories"] = std::vector{"h"}; attrs["boot_memories"] = std::vector{"h_boot"}; + LOG(INFO) << "rnn_op to init"; rnn_op.Init(op_desc, attrs); - } - - void RunRnnOp() { - // TODO + LOG(INFO) << "rnn_op finish init"; } // father scope @@ -74,5 +75,11 @@ class RecurrentOpTest : public ::testing::Test { TEST_F(RecurrentOpTest, create_op) {} +TEST_F(RecurrentOpTest, Run) { + OpContext ctx; + ctx.scope = std::make_shared(); + rnn_op.Run(&ctx); +} + } // namespace framework } // namespace paddle From 8642b27c36d75aefe225f83f8e15dd1e05d965ec Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Tue, 11 Jul 2017 10:54:30 +0800 Subject: [PATCH 21/37] update SegmentInput function with comments --- paddle/framework/recurrent_network_op.cc | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 1d02ef0f1ceb41..c7c2b6a0c4cf45 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -152,7 +152,7 @@ void RecurrentOp::CreateStepNet(ScopePtr scope) const { } void RecurrentOp::SegmentInputs(ScopePtr scope) const { - Variable* scopes_var = scope->CreateVariable(step_scopes_name_); + Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto& step_scopes = *scopes_var->GetMutable>(); auto dims = Input(scope, 0)->GetMutable()->dims(); @@ -164,12 +164,10 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { const float* scope_input = Input(scope, i)->GetMutable()->data(); for (int j = 0; j < seq_len; j++) { - std::string name = - name_ + "@input_" + inputs_[i] + "@step_" + std::to_string(j); - Variable* input_var = step_scopes[j]->CreateVariable(name); + Variable* input_var = step_scopes[j]->CreateVariable(inputs_[i]); Tensor* step_input_tensor = input_var->GetMutable(); float* step_input = step_input_tensor->mutable_data( - make_ddim({1, batch_size, dim}), platform::CPUPlace()); + make_ddim({batch_size, dim}), platform::CPUPlace()); std::memcpy(step_input, scope_input + j * length, length); } } From 8e70b376c57dbd74498ad63ec04b12766c37ca10 Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Tue, 11 Jul 2017 19:04:33 +0800 Subject: [PATCH 22/37] finish ConcatOutput function --- paddle/framework/recurrent_network_op.cc | 34 +++++++++++++++++++++--- paddle/framework/recurrent_network_op.h | 2 +- 2 files changed, 31 insertions(+), 5 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 974522b7cd1a7c..4393909b87ff22 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -49,7 +49,7 @@ void RecurrentOp::Run(OpContext* contex) const { } // prepare outputs - ConcateOutputs(scope); + ConcatOutputs(scope); } void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { @@ -122,21 +122,47 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { auto dims = Input(scope, 0)->GetMutable()->dims(); int seq_len = dims[0]; int batch_size = dims[1]; - int dim = dims[2]; - int length = batch_size * dim; for (size_t i = 0; i < inputs_.size(); i++) { + auto input_dims = Input(scope, i)->GetMutable()->dims(); + int input_dim = input_dims[2]; + int length = batch_size * input_dim; const float* scope_input = Input(scope, i)->GetMutable()->data(); for (int j = 0; j < seq_len; j++) { Variable* input_var = step_scopes[j]->CreateVariable(inputs_[i]); Tensor* step_input_tensor = input_var->GetMutable(); float* step_input = step_input_tensor->mutable_data( - make_ddim({batch_size, dim}), platform::CPUPlace()); + make_ddim({batch_size, input_dim}), platform::CPUPlace()); std::memcpy(step_input, scope_input + j * length, length); } } } +void RecurrentOp::ConcatOutputs(ScopePtr scope) const { + Variable* scopes_var = scope->GetVariable(step_scopes_name_); + auto& step_scopes = *scopes_var->GetMutable>(); + + auto dims = Input(scope, 0)->GetMutable()->dims(); + int seq_len = dims[0]; + int batch_size = dims[1]; + for (size_t i = 0; i < outputs_.size(); i++) { + auto output_dims = + step_scopes[0]->GetVariable(outputs_[0])->GetMutable()->dims(); + int output_dim = output_dims[2]; + int length = batch_size * output_dim; + Tensor* output_tensor = + scope->CreateVariable(outputs_[i])->GetMutable(); + float* output = output_tensor->mutable_data( + make_ddim({seq_len, batch_size, output_dim}), platform::CPUPlace()); + for (int j = 0; j < seq_len; j++) { + Variable* output_var = step_scopes[j]->GetVariable(outputs_[i]); + const float* step_output = + output_var->GetMutable()->data(); + std::memcpy(output + j * length, step_output, length); + } + } +} + void RecurrentOp::LinkMemories(ScopePtr scope, std::vector& step_scopes, size_t step) const { diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index afb4f3bbdc2f68..02018c0b7ee963 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -123,7 +123,7 @@ class RecurrentOp : public OperatorBase { /* * Process outputs of stepnets and merge to variables. */ - void ConcateOutputs(ScopePtr scope) const {}; + void ConcatOutputs(ScopePtr scope) const; /* * Create a `Net` which is shared across all steps. From ce802c0413e65082370c39059938b230f86a73cd Mon Sep 17 00:00:00 2001 From: Superjom Date: Wed, 12 Jul 2017 10:45:37 +0800 Subject: [PATCH 23/37] reformat inputs and attributes boot_memories --- paddle/framework/recurrent_network_op.cc | 51 +++++++++++++++--------- paddle/framework/recurrent_network_op.h | 28 ++++++++++--- 2 files changed, 55 insertions(+), 24 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 4393909b87ff22..7cb2f1b902713a 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -54,15 +54,40 @@ void RecurrentOp::Run(OpContext* contex) const { void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { OperatorBase::Init(op_desc, attrs); + + // set original inputs + for (const std::string& input : op_desc.inputs()) { + LOG(INFO) << "set input " << input; + inputs_.push_back(input); + } + // set original outputs + for (const std::string& output : op_desc.outputs()) { + LOG(INFO) << "set output " << output; + outputs_.push_back(output); + } + // prepare inlinks + PADDLE_ENFORCE(inlinks_.empty(), "RecurrentOp duplicate inited"); + for (auto id : GetAttr>("real_input")) { + inlinks_.push_back(inputs_[id]); + } + name_ = op_desc.name(); - net_name_ = op_desc.name() + "_net"; - step_scopes_name_ = op_desc.name() + "_step_scopes"; + net_name_ = inputs_.at(GetAttr("step_net")); + step_scopes_name_ = inputs_.at(GetAttr("step_scopes")); + + // set memories auto memories = GetAttr>("memories"); auto pre_memories = GetAttr>("pre_memories"); - auto boot_memories = GetAttr>("boot_memories"); + PADDLE_ENFORCE(memories.size() == pre_memories.size(), + "The size of memories and pre_memories doesn't match: %d,%d.", + memories.size(), pre_memories.size()); + std::vector boot_memories; + for (auto id : GetAttr>("boot_memories")) { + boot_memories.push_back(inputs_[id]); + } PADDLE_ENFORCE(memories.size() == boot_memories.size(), - "The size of memories and boot_memories is mismatched."); - // set memories + "the size of memories and boot_memories doesn't match: %d,%d", + memories.size(), boot_memories.size()); for (size_t i = 0; i < memories.size(); ++i) { MemoryAttr mem_attr; mem_attr.var = memories[i]; @@ -72,17 +97,6 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { LOG(INFO) << "set memorys:\t" << "memory:" << mem_attr.var << "\tboot:" << mem_attr.boot_var; } - - // set inputs - for (const std::string& input : op_desc.inputs()) { - LOG(INFO) << "set input " << input; - inputs_.push_back(input); - } - // set outputs - for (const std::string& output : op_desc.outputs()) { - LOG(INFO) << "set output " << output; - outputs_.push_back(output); - } } void RecurrentOp::CreateScopes(ScopePtr scope) const { @@ -116,20 +130,21 @@ void RecurrentOp::CreateStepNet(ScopePtr scope) const { } void RecurrentOp::SegmentInputs(ScopePtr scope) const { + PADDLE_ENFORCE(!inlinks_.empty(), "no real inputs are provided."); Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto& step_scopes = *scopes_var->GetMutable>(); auto dims = Input(scope, 0)->GetMutable()->dims(); int seq_len = dims[0]; int batch_size = dims[1]; - for (size_t i = 0; i < inputs_.size(); i++) { + for (size_t i = 0; i < inlinks_.size(); i++) { auto input_dims = Input(scope, i)->GetMutable()->dims(); int input_dim = input_dims[2]; int length = batch_size * input_dim; const float* scope_input = Input(scope, i)->GetMutable()->data(); for (int j = 0; j < seq_len; j++) { - Variable* input_var = step_scopes[j]->CreateVariable(inputs_[i]); + Variable* input_var = step_scopes[j]->CreateVariable(inlinks_[i]); Tensor* step_input_tensor = input_var->GetMutable(); float* step_input = step_input_tensor->mutable_data( make_ddim({batch_size, input_dim}), platform::CPUPlace()); diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 76d924f05b4fc3..2d6ce7af194b35 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -95,6 +95,20 @@ class PlainNet { // 4. More Complex RNN architecture, such as Gated Feedback RNN. // Refer to: https://arxiv.org/pdf/1502.02367.pdf +/* + * RecurrentOp inputs stored in proto: + * - real inputs that need to be segmented to steps. + * - boot memories + * - step net + * - step scopes + * + * Attributes stored in AttributeMap: + * - real_inputs: vector + * - boot_memories: vector + * - step_net: int + * - step_scopes: int + */ + class RecurrentOp : public OperatorBase { public: /* @@ -178,14 +192,14 @@ class RecurrentOp : public OperatorBase { * equal to the memories number. * * arg { - * name: “memories” - * strings: "hidden” - * strings: "state” + * name: "memories" + * strings: "hidden" + * strings: "state" * } * arg { - * name: “boot_memories” - * strings: "boot_hidden” - * strings: "boot_state” + * name: “boot_memories" + * strings: "boot_hidden" + * strings: "boot_state" * } */ // TODO copy from OpBase's @@ -201,6 +215,8 @@ class RecurrentOp : public OperatorBase { // name of steps' scopes which is stored in father scope with a unique key // specified by `step_scopes_name_`. std::string step_scopes_name_; + // real inputs that need to be segmented. + std::vector inlinks_; NetDesc step_net_desc_; }; From a883b4ccc116e9a13cc4ff8f8ce2e549ad56054b Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Wed, 12 Jul 2017 11:21:24 +0800 Subject: [PATCH 24/37] Refine unit test. --- paddle/framework/recurrent_network_op_test.cc | 53 +++++++++++++------ 1 file changed, 36 insertions(+), 17 deletions(-) diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 632d154f1ffbd5..7bd4456a34dfdd 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -104,12 +104,29 @@ class RecurrentOpTest : public ::testing::Test { // create boot memory scope_.CreateVariable("h_boot"); // create input, and init content - LOG(INFO) << "create global variale x"; + LOG(INFO) << "create global variable x"; Variable* x = scope_.CreateVariable("x"); DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); // TODO mutable_data is not valid x->GetMutable()->mutable_data(dims, platform::CPUPlace()); + + LOG(INFO) << "create global variable w"; + Variable* w = scope_.CreateVariable("w"); + w->GetMutable()->mutable_data( + make_ddim(std::vector{30, 30}), platform::CPUPlace()); + + LOG(INFO) << "create global variable h_boot"; + Variable* h_boot = scope_.CreateVariable("h_boot"); + h_boot->GetMutable()->mutable_data( + make_ddim(std::vector{20 /*batch size*/, 30 /*input dim*/}), + platform::CPUPlace()); + + LOG(INFO) << "create variable step_scopes"; + scope_.CreateVariable("step_scopes"); + + LOG(INFO) << "create variable h"; + scope_.CreateVariable("h"); } void CreateRNNOp() { @@ -118,7 +135,6 @@ class RecurrentOpTest : public ::testing::Test { op_desc.set_type("rnn_op"); op_desc.set_name("simple_rnn"); op_desc.add_inputs("x"); - op_desc.add_inputs("w"); op_desc.add_inputs("h_boot"); // initial memory op_desc.add_inputs("step_net"); // step net op_desc.add_inputs("step_scopes"); // step scopes @@ -131,7 +147,7 @@ class RecurrentOpTest : public ::testing::Test { *memories_attr->mutable_strings()->Add() = "h"; memories_attr->set_name("memories"); - // add memories + // add history/previous memories auto pre_memories_attr = op_desc.mutable_attrs()->Add(); pre_memories_attr->set_type(paddle::framework::AttrType::STRINGS); *pre_memories_attr->mutable_strings()->Add() = "h_pre"; @@ -139,22 +155,22 @@ class RecurrentOpTest : public ::testing::Test { // add initial memories auto boot_memories_attr = op_desc.mutable_attrs()->Add(); - boot_memories_attr->set_type(paddle::framework::AttrType::STRINGS); - *boot_memories_attr->mutable_strings()->Add() = "h_boot"; + boot_memories_attr->set_type(paddle::framework::AttrType::INTS); + *boot_memories_attr->mutable_ints()->Add() = 1; boot_memories_attr->set_name("boot_memories"); - // add step scopes - auto step_scopes_attr = op_desc.mutable_attrs()->Add(); - step_scopes_attr->set_type(paddle::framework::AttrType::STRING); - step_scopes_attr->set_s("step_scopes"); - step_scopes_attr->set_name("step_scopes"); - // add step net desc auto step_net_attr = op_desc.mutable_attrs()->Add(); - step_net_attr->set_type(paddle::framework::AttrType::STRING); - step_net_attr->set_s("step_net"); + step_net_attr->set_type(paddle::framework::AttrType::INT); + step_net_attr->set_i(2); step_net_attr->set_name("step_net"); + // add step scopes + auto step_scopes_attr = op_desc.mutable_attrs()->Add(); + step_scopes_attr->set_type(paddle::framework::AttrType::INT); + step_scopes_attr->set_i(3); + step_scopes_attr->set_name("step_scopes"); + // std::ostringstream stream; // op_desc.SerializeToOstream(&stream); // std::string text = stream.str(); @@ -163,9 +179,9 @@ class RecurrentOpTest : public ::testing::Test { AttributeMap attrs; attrs["memories"] = std::vector{"h"}; attrs["pre_memories"] = std::vector{"h_pre"}; - attrs["boot_memories"] = std::vector{"h_boot"}; - attrs["step_net"] = std::vector{"step_net"}; - attrs["step_scopes"] = std::vector{"step_scopes"}; + attrs["boot_memories"] = std::vector{1}; + attrs["step_net"] = 2; + attrs["step_scopes"] = 3; // TODO LOG(INFO) << "rnn_op to init"; @@ -180,6 +196,7 @@ class RecurrentOpTest : public ::testing::Test { op_desc.add_inputs("h_pre"); op_desc.add_inputs("w"); op_desc.add_outputs("s"); + // s = h_pre * check return op_desc; } @@ -190,11 +207,13 @@ class RecurrentOpTest : public ::testing::Test { op_desc.add_inputs("x"); op_desc.add_inputs("s"); op_desc.add_outputs("h"); + // h = x + s return op_desc; } void CreateStepNet() { - Variable* net_var = scope_.CreateVariable("simple_rnn_net"); + LOG(INFO) << "create variable step_net"; + Variable* net_var = scope_.CreateVariable("step_net"); NetDesc net_desc; net_desc.name_ = "simple_rnn_net"; net_desc.op_descs.push_back(CreateFcOpDesc()); From a81be58a500d319b39aef7131ec876fb847ff5fe Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Wed, 12 Jul 2017 12:35:21 +0800 Subject: [PATCH 25/37] Refine unit test. --- paddle/framework/recurrent_network_op.cc | 4 ++- paddle/framework/recurrent_network_op.h | 4 ++- paddle/framework/recurrent_network_op_test.cc | 26 ++++++++++++------- 3 files changed, 23 insertions(+), 11 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 7cb2f1b902713a..36c3b6b0d2ada1 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -67,7 +67,8 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { } // prepare inlinks PADDLE_ENFORCE(inlinks_.empty(), "RecurrentOp duplicate inited"); - for (auto id : GetAttr>("real_input")) { + LOG(INFO) << "set inlinks"; + for (auto id : GetAttr>("real_inputs")) { inlinks_.push_back(inputs_[id]); } @@ -82,6 +83,7 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { "The size of memories and pre_memories doesn't match: %d,%d.", memories.size(), pre_memories.size()); std::vector boot_memories; + LOG(INFO) << "set boot_memories"; for (auto id : GetAttr>("boot_memories")) { boot_memories.push_back(inputs_[id]); } diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 2d6ce7af194b35..88acfd15bf854f 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -47,7 +47,9 @@ class OperatorBase { }; template - inline const T GetAttr(const std::string& name) const { + inline const T& GetAttr(const std::string& name) const { + PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap", + name); return boost::get(attrs_.at(name)); } diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 1714fde8f20e54..29963aa18dd81a 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -100,33 +100,34 @@ class RecurrentOpTest : public ::testing::Test { virtual void TearDown() override {} void CreateGlobalVariables() { + scope_ = std::make_shared(); LOG(INFO) << "create global variable h_boot"; // create boot memory - scope_.CreateVariable("h_boot"); + scope_->CreateVariable("h_boot"); // create input, and init content LOG(INFO) << "create global variable x"; - Variable* x = scope_.CreateVariable("x"); + Variable* x = scope_->CreateVariable("x"); DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); // TODO mutable_data is not valid x->GetMutable()->mutable_data(dims, platform::CPUPlace()); LOG(INFO) << "create global variable w"; - Variable* w = scope_.CreateVariable("w"); + Variable* w = scope_->CreateVariable("w"); w->GetMutable()->mutable_data( make_ddim(std::vector{30, 30}), platform::CPUPlace()); LOG(INFO) << "create global variable h_boot"; - Variable* h_boot = scope_.CreateVariable("h_boot"); + Variable* h_boot = scope_->CreateVariable("h_boot"); h_boot->GetMutable()->mutable_data( make_ddim(std::vector{20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace()); LOG(INFO) << "create variable step_scopes"; - scope_.CreateVariable("step_scopes"); + scope_->CreateVariable("step_scopes"); LOG(INFO) << "create variable h"; - scope_.CreateVariable("h"); + scope_->CreateVariable("h"); } void CreateRNNOp() { @@ -141,6 +142,12 @@ class RecurrentOpTest : public ::testing::Test { // output hidden vectors op_desc.add_outputs("h"); + // add real input + auto input_attr = op_desc.mutable_attrs()->Add(); + input_attr->set_type(paddle::framework::AttrType::INTS); + *input_attr->mutable_ints()->Add() = 0; + input_attr->set_name("real_inputs"); + // add memories auto memories_attr = op_desc.mutable_attrs()->Add(); memories_attr->set_type(paddle::framework::AttrType::STRINGS); @@ -177,6 +184,7 @@ class RecurrentOpTest : public ::testing::Test { // LOG(INFO) << text; AttributeMap attrs; + attrs["real_inputs"] = std::vector{0}; attrs["memories"] = std::vector{"h"}; attrs["pre_memories"] = std::vector{"h_pre"}; attrs["boot_memories"] = std::vector{1}; @@ -213,7 +221,7 @@ class RecurrentOpTest : public ::testing::Test { void CreateStepNet() { LOG(INFO) << "create variable step_net"; - Variable* net_var = scope_.CreateVariable("step_net"); + Variable* net_var = scope_->CreateVariable("step_net"); NetDesc net_desc; net_desc.name_ = "simple_rnn_net"; net_desc.op_descs.push_back(CreateFcOpDesc()); @@ -222,7 +230,7 @@ class RecurrentOpTest : public ::testing::Test { } // father scope - Scope scope_; + std::shared_ptr scope_; RecurrentOp rnn_op_; }; @@ -230,7 +238,7 @@ TEST_F(RecurrentOpTest, create_op) {} TEST_F(RecurrentOpTest, Run) { OpContext ctx; - ctx.scope = std::make_shared(); + ctx.scope = scope_; rnn_op_.Run(&ctx); } From acde9b748f010de42db631c61b4e66cf46446f00 Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Wed, 12 Jul 2017 14:13:54 +0800 Subject: [PATCH 26/37] modify inlinks. --- paddle/framework/recurrent_network_op.cc | 19 +++++++++---------- paddle/framework/recurrent_network_op.h | 2 +- 2 files changed, 10 insertions(+), 11 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 36c3b6b0d2ada1..d423620aaa3115 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -31,13 +31,15 @@ void RecurrentOp::Run(OpContext* contex) const { Variable* net = scope->GetVariable(net_name_); PADDLE_ENFORCE(net, "failed to get step net"); + LOG(INFO) << "create scopes"; CreateScopes(scope); + LOG(INFO) << "segment input"; SegmentInputs(scope); Variable* step_scopes = scope->GetVariable(step_scopes_name_); PADDLE_ENFORCE(step_scopes, "failed to get step scopes"); // forward - auto dims = Input(scope, 0)->GetMutable()->dims(); + auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); size_t seq_len = dims[0]; auto& scopes = *step_scopes->GetMutable>(); for (size_t step_id = 0; step_id < seq_len; step_id++) { @@ -69,7 +71,7 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { PADDLE_ENFORCE(inlinks_.empty(), "RecurrentOp duplicate inited"); LOG(INFO) << "set inlinks"; for (auto id : GetAttr>("real_inputs")) { - inlinks_.push_back(inputs_[id]); + inlinks_.push_back(id); } name_ = op_desc.name(); @@ -102,8 +104,7 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { } void RecurrentOp::CreateScopes(ScopePtr scope) const { - LOG(INFO) << "create scopes"; - auto dims = Input(scope, 0)->GetMutable()->dims(); + auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); size_t seq_len = dims[0]; Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto step_scopes = scopes_var->GetMutable>(); @@ -135,18 +136,17 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { PADDLE_ENFORCE(!inlinks_.empty(), "no real inputs are provided."); Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto& step_scopes = *scopes_var->GetMutable>(); - - auto dims = Input(scope, 0)->GetMutable()->dims(); + auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); int seq_len = dims[0]; int batch_size = dims[1]; - for (size_t i = 0; i < inlinks_.size(); i++) { + for (auto i : inlinks_) { auto input_dims = Input(scope, i)->GetMutable()->dims(); int input_dim = input_dims[2]; int length = batch_size * input_dim; const float* scope_input = Input(scope, i)->GetMutable()->data(); for (int j = 0; j < seq_len; j++) { - Variable* input_var = step_scopes[j]->CreateVariable(inlinks_[i]); + Variable* input_var = step_scopes[j]->CreateVariable(inputs_[i]); Tensor* step_input_tensor = input_var->GetMutable(); float* step_input = step_input_tensor->mutable_data( make_ddim({batch_size, input_dim}), platform::CPUPlace()); @@ -158,8 +158,7 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { void RecurrentOp::ConcatOutputs(ScopePtr scope) const { Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto& step_scopes = *scopes_var->GetMutable>(); - - auto dims = Input(scope, 0)->GetMutable()->dims(); + auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); int seq_len = dims[0]; int batch_size = dims[1]; for (size_t i = 0; i < outputs_.size(); i++) { diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 88acfd15bf854f..476fbe9f0d2397 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -218,7 +218,7 @@ class RecurrentOp : public OperatorBase { // specified by `step_scopes_name_`. std::string step_scopes_name_; // real inputs that need to be segmented. - std::vector inlinks_; + std::vector inlinks_; NetDesc step_net_desc_; }; From 82464f56b3aaff3b8a07babf060ad8e7f0acd6a7 Mon Sep 17 00:00:00 2001 From: Superjom Date: Wed, 12 Jul 2017 15:51:42 +0800 Subject: [PATCH 27/37] add OpDesc to Net --- paddle/framework/net.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/paddle/framework/net.h b/paddle/framework/net.h index 76992e07282904..f16d5d9e84c662 100644 --- a/paddle/framework/net.h +++ b/paddle/framework/net.h @@ -15,6 +15,7 @@ #pragma once #include "paddle/framework/net_proto.pb.h" +#include "paddle/framework/op_desc.pb.h" #include "paddle/framework/op_proto.pb.h" #include "paddle/framework/scope.h" #include "paddle/platform/device_context.h" @@ -31,7 +32,6 @@ typedef int OpIndex; * keep updating if the concepts related are implemented. */ -struct OpDesc; struct OpAttrs {}; class Operator { @@ -74,7 +74,7 @@ class Net { /** * @brief Add an Operator according to `def`. */ - virtual OpIndex AddOp(const OpProto &def) = 0; + virtual OpIndex AddOp(const OpDesc &def) = 0; /** * @brief Add optimizer operators acctording to `attrs`. From 5c5d890dbfcebab4f2bdc1f61fedc050dfce704c Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Wed, 12 Jul 2017 20:37:02 +0800 Subject: [PATCH 28/37] fix bug and update unit test. --- paddle/framework/recurrent_network_op.cc | 81 ++++++++++++------- paddle/framework/recurrent_network_op.h | 5 +- paddle/framework/recurrent_network_op_test.cc | 47 +++++++---- paddle/framework/tensor.h | 10 ++- paddle/platform/CMakeLists.txt | 2 +- 5 files changed, 91 insertions(+), 54 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index d423620aaa3115..c6749ee61ea25d 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -25,9 +25,7 @@ namespace framework { void RecurrentOp::Run(OpContext* contex) const { auto scope = contex->scope; - if (!scope->HasVariable(net_name_)) { - CreateStepNet(scope); - } + PADDLE_ENFORCE(scope->HasVariable(net_name_), "step net is not in scope."); Variable* net = scope->GetVariable(net_name_); PADDLE_ENFORCE(net, "failed to get step net"); @@ -41,8 +39,10 @@ void RecurrentOp::Run(OpContext* contex) const { // forward auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); size_t seq_len = dims[0]; + LOG(INFO) << "sequence length " << seq_len; auto& scopes = *step_scopes->GetMutable>(); for (size_t step_id = 0; step_id < seq_len; step_id++) { + LOG(INFO) << "run step " << step_id; ScopePtr step_scope = scopes[step_id]; // TODO replace memorys' copy with reference LinkMemories(scope, scopes, step_id); @@ -50,6 +50,7 @@ void RecurrentOp::Run(OpContext* contex) const { net->GetMutable()->Run(step_scope); } + LOG(INFO) << "concat outputs"; // prepare outputs ConcatOutputs(scope); } @@ -67,6 +68,11 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { LOG(INFO) << "set output " << output; outputs_.push_back(output); } + + name_ = op_desc.name(); + net_name_ = inputs_.at(GetAttr("step_net")); + step_scopes_name_ = inputs_.at(GetAttr("step_scopes")); + // prepare inlinks PADDLE_ENFORCE(inlinks_.empty(), "RecurrentOp duplicate inited"); LOG(INFO) << "set inlinks"; @@ -74,16 +80,13 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { inlinks_.push_back(id); } - name_ = op_desc.name(); - net_name_ = inputs_.at(GetAttr("step_net")); - step_scopes_name_ = inputs_.at(GetAttr("step_scopes")); - // set memories auto memories = GetAttr>("memories"); auto pre_memories = GetAttr>("pre_memories"); PADDLE_ENFORCE(memories.size() == pre_memories.size(), "The size of memories and pre_memories doesn't match: %d,%d.", memories.size(), pre_memories.size()); + std::vector boot_memories; LOG(INFO) << "set boot_memories"; for (auto id : GetAttr>("boot_memories")) { @@ -117,36 +120,40 @@ void RecurrentOp::CreateScopes(ScopePtr scope) const { } } -void RecurrentOp::CreateStepNet(ScopePtr scope) const { - Variable* var = scope->CreateVariable(net_name_); - auto step_net = GetAttr("step_net"); - // get the step net proto from the string. - // PADDLE_ENFORCE( - // google::protobuf::TextFormat::ParseFromString(step_net, - // &step_net_desc_)); - // var->Reset(new PlainNet(step_net_desc_)); - // this is a fake net, it will be rewrite after the network has been merged. - NetDesc desc; - desc.name_ = "rnn_step_net"; - var->Reset(new PlainNet(desc)); - // TODO add op descs -} +// void RecurrentOp::CreateStepNet(ScopePtr scope) const { +// Variable* var = scope->CreateVariable(net_name_); +// auto step_net = GetAttr("step_net"); +// // get the step net proto from the string. +// // PADDLE_ENFORCE( +// // google::protobuf::TextFormat::ParseFromString(step_net, +// // &step_net_desc_)); +// // var->Reset(new PlainNet(step_net_desc_)); +// // this is a fake net, it will be rewrite after the network has been +// merged. +// NetDesc desc; +// desc.name_ = "rnn_step_net"; +// var->Reset(new PlainNet(desc)); +// } void RecurrentOp::SegmentInputs(ScopePtr scope) const { PADDLE_ENFORCE(!inlinks_.empty(), "no real inputs are provided."); + auto input_alias = GetAttr>("input_alias"); + PADDLE_ENFORCE(inlinks_.size() == input_alias.size(), + "real_inputs/input_alias mismatch."); + Variable* scopes_var = scope->GetVariable(step_scopes_name_); - auto& step_scopes = *scopes_var->GetMutable>(); + auto& step_scopes = *scopes_var->GetMutable>(); auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); int seq_len = dims[0]; int batch_size = dims[1]; - for (auto i : inlinks_) { - auto input_dims = Input(scope, i)->GetMutable()->dims(); + for (size_t i = 0; i < inlinks_.size(); ++i) { + auto input_dims = Input(scope, inlinks_[i])->GetMutable()->dims(); int input_dim = input_dims[2]; int length = batch_size * input_dim; const float* scope_input = - Input(scope, i)->GetMutable()->data(); + Input(scope, inlinks_[i])->GetMutable()->data(); for (int j = 0; j < seq_len; j++) { - Variable* input_var = step_scopes[j]->CreateVariable(inputs_[i]); + Variable* input_var = step_scopes[j]->CreateVariable(input_alias[i]); Tensor* step_input_tensor = input_var->GetMutable(); float* step_input = step_input_tensor->mutable_data( make_ddim({batch_size, input_dim}), platform::CPUPlace()); @@ -156,22 +163,28 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { } void RecurrentOp::ConcatOutputs(ScopePtr scope) const { + auto output_alias = GetAttr>("output_alias"); + PADDLE_ENFORCE(outputs_.size() == output_alias.size(), + "output/output_alias mismatch."); + Variable* scopes_var = scope->GetVariable(step_scopes_name_); - auto& step_scopes = *scopes_var->GetMutable>(); + auto& step_scopes = *scopes_var->GetMutable>(); auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); int seq_len = dims[0]; int batch_size = dims[1]; for (size_t i = 0; i < outputs_.size(); i++) { - auto output_dims = - step_scopes[0]->GetVariable(outputs_[0])->GetMutable()->dims(); - int output_dim = output_dims[2]; + auto output_dims = step_scopes[0] + ->GetVariable(output_alias[0]) + ->GetMutable() + ->dims(); + int output_dim = output_dims[1]; int length = batch_size * output_dim; Tensor* output_tensor = scope->CreateVariable(outputs_[i])->GetMutable(); float* output = output_tensor->mutable_data( make_ddim({seq_len, batch_size, output_dim}), platform::CPUPlace()); for (int j = 0; j < seq_len; j++) { - Variable* output_var = step_scopes[j]->GetVariable(outputs_[i]); + Variable* output_var = step_scopes[j]->GetVariable(output_alias[i]); const float* step_output = output_var->GetMutable()->data(); std::memcpy(output + j * length, step_output, length); @@ -199,6 +212,11 @@ void RecurrentOp::LinkMemories(ScopePtr scope, } Variable* memory_var = step_scope->CreateVariable(attr.pre_var); + // TODO the memory of current step should be allocaled in step net ? + Tensor* cur_memory = + step_scopes[step]->CreateVariable(attr.var)->GetMutable(); + cur_memory->mutable_data(attr.dims, platform::CPUPlace()); + // copy from boot memory // TODO support more device // TODO mutable_data is currently invalid @@ -215,6 +233,7 @@ void RecurrentOp::LinkMemories(ScopePtr scope, // `pre - memory` Tensor* pre_step_memory = step_scopes[step - 1]->GetVariable(attr.var)->GetMutable(); + std::memcpy(memory_tensor_val, pre_step_memory->data(), product(attr.dims)); } diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 476fbe9f0d2397..4dc2ccee7ca840 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -22,6 +22,7 @@ #include "paddle/framework/variable.h" // Remove when including operator.h +#include #include "paddle/framework/attr_checker.h" #include "paddle/framework/op_desc.pb.h" @@ -145,7 +146,7 @@ class RecurrentOp : public OperatorBase { /* * Create a `Net` which is shared across all steps. */ - void CreateStepNet(ScopePtr scope) const; + // void CreateStepNet(ScopePtr scope) const; /* * the step scopes as the father scope. The step scopes will be stored in @@ -219,8 +220,6 @@ class RecurrentOp : public OperatorBase { std::string step_scopes_name_; // real inputs that need to be segmented. std::vector inlinks_; - - NetDesc step_net_desc_; }; class RecurrentGradientOp; diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 29963aa18dd81a..70afd42ecb783e 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -35,6 +35,7 @@ class FcOp : public OperatorBase { } virtual void Run(OpContext* contex) const override { + LOG(INFO) << "run fc op"; for (const auto& input : inputs_) { PADDLE_ENFORCE(contex->scope->HasVariable(input), "no input variable [%s] exists"); @@ -64,6 +65,7 @@ class AddOp : public OperatorBase { } virtual void Run(OpContext* contex) const override { + LOG(INFO) << "run add op"; for (const auto& input : inputs_) { PADDLE_ENFORCE(contex->scope->HasVariable(input), "no input variable [%s] exists"); @@ -113,7 +115,7 @@ class RecurrentOpTest : public ::testing::Test { x->GetMutable()->mutable_data(dims, platform::CPUPlace()); LOG(INFO) << "create global variable w"; - Variable* w = scope_->CreateVariable("w"); + Variable* w = scope_->CreateVariable("rnn/w"); w->GetMutable()->mutable_data( make_ddim(std::vector{30, 30}), platform::CPUPlace()); @@ -134,10 +136,11 @@ class RecurrentOpTest : public ::testing::Test { OpDesc op_desc; op_desc.set_type("rnn_op"); - op_desc.set_name("simple_rnn"); + op_desc.set_name("rnn"); op_desc.add_inputs("x"); - op_desc.add_inputs("h_boot"); // initial memory - op_desc.add_inputs("step_net"); // step net + op_desc.add_inputs("h_boot"); // initial memory + op_desc.add_inputs("step_net"); // step net + // TODO put the step_scopes in the outputs op_desc.add_inputs("step_scopes"); // step scopes // output hidden vectors op_desc.add_outputs("h"); @@ -148,16 +151,28 @@ class RecurrentOpTest : public ::testing::Test { *input_attr->mutable_ints()->Add() = 0; input_attr->set_name("real_inputs"); + // add input alias, this alias is used in step net. + auto input_alias_attr = op_desc.mutable_attrs()->Add(); + input_alias_attr->set_type(paddle::framework::AttrType::STRINGS); + *input_alias_attr->mutable_strings()->Add() = "rnn/x"; + input_alias_attr->set_name("input_alias"); + + // add output alias, this alias is used in step net. + auto output_alias_attr = op_desc.mutable_attrs()->Add(); + output_alias_attr->set_type(paddle::framework::AttrType::STRINGS); + *output_alias_attr->mutable_strings()->Add() = "rnn/h"; + output_alias_attr->set_name("output_alias"); + // add memories auto memories_attr = op_desc.mutable_attrs()->Add(); memories_attr->set_type(paddle::framework::AttrType::STRINGS); - *memories_attr->mutable_strings()->Add() = "h"; + *memories_attr->mutable_strings()->Add() = "rnn/h"; memories_attr->set_name("memories"); // add history/previous memories auto pre_memories_attr = op_desc.mutable_attrs()->Add(); pre_memories_attr->set_type(paddle::framework::AttrType::STRINGS); - *pre_memories_attr->mutable_strings()->Add() = "h_pre"; + *pre_memories_attr->mutable_strings()->Add() = "rnn/h_pre"; pre_memories_attr->set_name("pre_memories"); // add initial memories @@ -185,7 +200,9 @@ class RecurrentOpTest : public ::testing::Test { AttributeMap attrs; attrs["real_inputs"] = std::vector{0}; - attrs["memories"] = std::vector{"h"}; + attrs["input_alias"] = std::vector{"rnn/x"}; + attrs["output_alias"] = std::vector{"rnn/h"}; + attrs["memories"] = std::vector{"rnn/h"}; attrs["pre_memories"] = std::vector{"h_pre"}; attrs["boot_memories"] = std::vector{1}; attrs["step_net"] = 2; @@ -201,9 +218,9 @@ class RecurrentOpTest : public ::testing::Test { OpDesc op_desc; op_desc.set_type("fc"); op_desc.set_name("fc"); - op_desc.add_inputs("h_pre"); - op_desc.add_inputs("w"); - op_desc.add_outputs("s"); + op_desc.add_inputs("rnn/h_pre"); + op_desc.add_inputs("rnn/w"); + op_desc.add_outputs("rnn/s"); // s = h_pre * check return op_desc; } @@ -212,9 +229,9 @@ class RecurrentOpTest : public ::testing::Test { OpDesc op_desc; op_desc.set_type("add"); op_desc.set_name("add"); - op_desc.add_inputs("x"); - op_desc.add_inputs("s"); - op_desc.add_outputs("h"); + op_desc.add_inputs("rnn/x"); + op_desc.add_inputs("rnn/s"); + op_desc.add_outputs("rnn/h"); // h = x + s return op_desc; } @@ -223,7 +240,7 @@ class RecurrentOpTest : public ::testing::Test { LOG(INFO) << "create variable step_net"; Variable* net_var = scope_->CreateVariable("step_net"); NetDesc net_desc; - net_desc.name_ = "simple_rnn_net"; + net_desc.name_ = "rnn"; net_desc.op_descs.push_back(CreateFcOpDesc()); net_desc.op_descs.push_back(CreateAddOpDesc()); net_var->Reset(new PlainNet(net_desc)); @@ -234,7 +251,7 @@ class RecurrentOpTest : public ::testing::Test { RecurrentOp rnn_op_; }; -TEST_F(RecurrentOpTest, create_op) {} +// TEST_F(RecurrentOpTest, create_op) {} TEST_F(RecurrentOpTest, Run) { OpContext ctx; diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 1e75a7e845fd25..a433df8b5bb60a 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -104,7 +104,8 @@ class Tensor { public: Deleter(platform::Place place) : place_(place) {} void operator()(T* ptr) { - paddle::memory::Free(place_, static_cast(ptr)); + // paddle::memory::Free(place_, static_cast(ptr)); + free(static_cast(ptr)); } private: @@ -112,9 +113,11 @@ class Tensor { }; public: + // PlaceholderImpl(paddle::platform::Place place, size_t size) + // : ptr_(static_cast(paddle::memory::Alloc(place, size)), + // Deleter(place)), PlaceholderImpl(paddle::platform::Place place, size_t size) - : ptr_(static_cast(paddle::memory::Alloc(place, size)), - Deleter(place)), + : ptr_(static_cast(malloc(size * sizeof(T))), Deleter(place)), place_(place), size_(size) {} @@ -128,7 +131,6 @@ class Tensor { size_t size_; // size of the memory block. }; - DDim dims_; std::shared_ptr holder_; // holds the memory block if allocated. DDim dims_; size_t offset_; // marks the begin of tensor data area. diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index 7a198aec6cf12c..7cab2291c896b0 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -11,4 +11,4 @@ ELSE() ENDIF() cc_library(device_context SRCS device_context.cc DEPS place eigen3 ${GPU_CTX_DEPS}) -nv_test(device_context_test SRCS device_context_test.cc DEPS device_context glog gflags) +#nv_test(device_context_test SRCS device_context_test.cc DEPS device_context glog gflags) From a6483e8d75baa4e2ec7b6c169e7a5d74b9f3cc52 Mon Sep 17 00:00:00 2001 From: Superjom Date: Wed, 12 Jul 2017 21:30:34 +0800 Subject: [PATCH 29/37] move step scopes from inputs to outputs --- paddle/framework/recurrent_network_op.cc | 12 ++++++++---- paddle/framework/recurrent_network_op.h | 5 ++++- paddle/framework/recurrent_network_op_test.cc | 2 +- 3 files changed, 13 insertions(+), 6 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index c6749ee61ea25d..4dc6d4993c92fb 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -71,7 +71,7 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { name_ = op_desc.name(); net_name_ = inputs_.at(GetAttr("step_net")); - step_scopes_name_ = inputs_.at(GetAttr("step_scopes")); + step_scopes_name_ = outputs_.back(); // prepare inlinks PADDLE_ENFORCE(inlinks_.empty(), "RecurrentOp duplicate inited"); @@ -79,6 +79,10 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { for (auto id : GetAttr>("real_inputs")) { inlinks_.push_back(id); } + PADDLE_ENFORCE( + outputs_.size() > 1, + "more than 1 output should be provided and the last is `step_scopes`"); + outlinks_ = std::vector{outputs_.begin(), outputs_.end() - 1}; // set memories auto memories = GetAttr>("memories"); @@ -164,7 +168,7 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { void RecurrentOp::ConcatOutputs(ScopePtr scope) const { auto output_alias = GetAttr>("output_alias"); - PADDLE_ENFORCE(outputs_.size() == output_alias.size(), + PADDLE_ENFORCE(outlinks_.size() == output_alias.size(), "output/output_alias mismatch."); Variable* scopes_var = scope->GetVariable(step_scopes_name_); @@ -172,7 +176,7 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); int seq_len = dims[0]; int batch_size = dims[1]; - for (size_t i = 0; i < outputs_.size(); i++) { + for (size_t i = 0; i < outlinks_.size(); i++) { auto output_dims = step_scopes[0] ->GetVariable(output_alias[0]) ->GetMutable() @@ -180,7 +184,7 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { int output_dim = output_dims[1]; int length = batch_size * output_dim; Tensor* output_tensor = - scope->CreateVariable(outputs_[i])->GetMutable(); + scope->CreateVariable(outlinks_[i])->GetMutable(); float* output = output_tensor->mutable_data( make_ddim({seq_len, batch_size, output_dim}), platform::CPUPlace()); for (int j = 0; j < seq_len; j++) { diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 4dc2ccee7ca840..276ee18ece94ca 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -103,13 +103,15 @@ class PlainNet { * - real inputs that need to be segmented to steps. * - boot memories * - step net + * + * outputs: + * - real outputs * - step scopes * * Attributes stored in AttributeMap: * - real_inputs: vector * - boot_memories: vector * - step_net: int - * - step_scopes: int */ class RecurrentOp : public OperatorBase { @@ -220,6 +222,7 @@ class RecurrentOp : public OperatorBase { std::string step_scopes_name_; // real inputs that need to be segmented. std::vector inlinks_; + std::vector outlinks_; }; class RecurrentGradientOp; diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 70afd42ecb783e..6e2da8b60c9bad 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -141,9 +141,9 @@ class RecurrentOpTest : public ::testing::Test { op_desc.add_inputs("h_boot"); // initial memory op_desc.add_inputs("step_net"); // step net // TODO put the step_scopes in the outputs - op_desc.add_inputs("step_scopes"); // step scopes // output hidden vectors op_desc.add_outputs("h"); + op_desc.add_outputs("step_scopes"); // step scopes // add real input auto input_attr = op_desc.mutable_attrs()->Add(); From bcd03bfae5eb4363e2d133be4f098fe5c04deea4 Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Thu, 13 Jul 2017 11:01:11 +0800 Subject: [PATCH 30/37] fix merge conflict, update SegmentInput function --- paddle/framework/net.h | 2 +- paddle/framework/recurrent_network_op.cc | 12 +++--------- 2 files changed, 4 insertions(+), 10 deletions(-) diff --git a/paddle/framework/net.h b/paddle/framework/net.h index f16d5d9e84c662..903c22a8729569 100644 --- a/paddle/framework/net.h +++ b/paddle/framework/net.h @@ -128,7 +128,7 @@ class PlainNet : public Net { /** * @brief Add an operator to this network. */ - virtual OpIndex AddOp(const OpProto &def) override; + virtual OpIndex AddOp(const OpProto &def); /** * @brief Add all optimizer operators related into the network. diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 4dc6d4993c92fb..2c919f3184e680 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -149,19 +149,13 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { auto& step_scopes = *scopes_var->GetMutable>(); auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); int seq_len = dims[0]; - int batch_size = dims[1]; for (size_t i = 0; i < inlinks_.size(); ++i) { - auto input_dims = Input(scope, inlinks_[i])->GetMutable()->dims(); - int input_dim = input_dims[2]; - int length = batch_size * input_dim; - const float* scope_input = - Input(scope, inlinks_[i])->GetMutable()->data(); + Tensor* scope_input_tensor = + Input(scope, inlinks_[i])->GetMutable(); for (int j = 0; j < seq_len; j++) { Variable* input_var = step_scopes[j]->CreateVariable(input_alias[i]); Tensor* step_input_tensor = input_var->GetMutable(); - float* step_input = step_input_tensor->mutable_data( - make_ddim({batch_size, input_dim}), platform::CPUPlace()); - std::memcpy(step_input, scope_input + j * length, length); + *step_input_tensor = scope_input_tensor->Slice(j, j + 1); } } } From e64b5d328d63eff9ffbc8523fb099951b25bbf30 Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Fri, 14 Jul 2017 11:41:36 +0800 Subject: [PATCH 31/37] add RecurrentOpProtoAndCheckerMaker. --- paddle/framework/net.h | 2 +- paddle/framework/recurrent_network_op.cc | 73 ++++++++++++------- paddle/framework/recurrent_network_op.h | 7 +- paddle/framework/recurrent_network_op_test.cc | 25 ++----- 4 files changed, 57 insertions(+), 50 deletions(-) diff --git a/paddle/framework/net.h b/paddle/framework/net.h index f16d5d9e84c662..903c22a8729569 100644 --- a/paddle/framework/net.h +++ b/paddle/framework/net.h @@ -128,7 +128,7 @@ class PlainNet : public Net { /** * @brief Add an operator to this network. */ - virtual OpIndex AddOp(const OpProto &def) override; + virtual OpIndex AddOp(const OpProto &def); /** * @brief Add all optimizer operators related into the network. diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 4dc6d4993c92fb..3f51ed17ced385 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -13,12 +13,12 @@ limitations under the License. */ #include "paddle/framework/recurrent_network_op.h" +#include "paddle/framework/tensor.h" +// #include "paddle/framework/op_registry.h" #include #include -#include "paddle/framework/tensor.h" - namespace paddle { namespace framework { @@ -76,7 +76,7 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { // prepare inlinks PADDLE_ENFORCE(inlinks_.empty(), "RecurrentOp duplicate inited"); LOG(INFO) << "set inlinks"; - for (auto id : GetAttr>("real_inputs")) { + for (auto id : GetAttr>("in_links")) { inlinks_.push_back(id); } PADDLE_ENFORCE( @@ -124,26 +124,11 @@ void RecurrentOp::CreateScopes(ScopePtr scope) const { } } -// void RecurrentOp::CreateStepNet(ScopePtr scope) const { -// Variable* var = scope->CreateVariable(net_name_); -// auto step_net = GetAttr("step_net"); -// // get the step net proto from the string. -// // PADDLE_ENFORCE( -// // google::protobuf::TextFormat::ParseFromString(step_net, -// // &step_net_desc_)); -// // var->Reset(new PlainNet(step_net_desc_)); -// // this is a fake net, it will be rewrite after the network has been -// merged. -// NetDesc desc; -// desc.name_ = "rnn_step_net"; -// var->Reset(new PlainNet(desc)); -// } - void RecurrentOp::SegmentInputs(ScopePtr scope) const { - PADDLE_ENFORCE(!inlinks_.empty(), "no real inputs are provided."); - auto input_alias = GetAttr>("input_alias"); - PADDLE_ENFORCE(inlinks_.size() == input_alias.size(), - "real_inputs/input_alias mismatch."); + PADDLE_ENFORCE(!inlinks_.empty(), "no in links are provided."); + auto inlink_alias = GetAttr>("in_link_alias"); + PADDLE_ENFORCE(inlinks_.size() == inlink_alias.size(), + "in_links/in_link_alias mismatch."); Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto& step_scopes = *scopes_var->GetMutable>(); @@ -157,7 +142,7 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { const float* scope_input = Input(scope, inlinks_[i])->GetMutable()->data(); for (int j = 0; j < seq_len; j++) { - Variable* input_var = step_scopes[j]->CreateVariable(input_alias[i]); + Variable* input_var = step_scopes[j]->CreateVariable(inlink_alias[i]); Tensor* step_input_tensor = input_var->GetMutable(); float* step_input = step_input_tensor->mutable_data( make_ddim({batch_size, input_dim}), platform::CPUPlace()); @@ -167,9 +152,9 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { } void RecurrentOp::ConcatOutputs(ScopePtr scope) const { - auto output_alias = GetAttr>("output_alias"); - PADDLE_ENFORCE(outlinks_.size() == output_alias.size(), - "output/output_alias mismatch."); + auto outlink_alias = GetAttr>("out_link_alias"); + PADDLE_ENFORCE(outlinks_.size() == outlink_alias.size(), + "out_links/out_link_alias mismatch."); Variable* scopes_var = scope->GetVariable(step_scopes_name_); auto& step_scopes = *scopes_var->GetMutable>(); @@ -178,7 +163,7 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { int batch_size = dims[1]; for (size_t i = 0; i < outlinks_.size(); i++) { auto output_dims = step_scopes[0] - ->GetVariable(output_alias[0]) + ->GetVariable(outlink_alias[0]) ->GetMutable() ->dims(); int output_dim = output_dims[1]; @@ -188,7 +173,7 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { float* output = output_tensor->mutable_data( make_ddim({seq_len, batch_size, output_dim}), platform::CPUPlace()); for (int j = 0; j < seq_len; j++) { - Variable* output_var = step_scopes[j]->GetVariable(output_alias[i]); + Variable* output_var = step_scopes[j]->GetVariable(outlink_alias[i]); const float* step_output = output_var->GetMutable()->data(); std::memcpy(output + j * length, step_output, length); @@ -244,5 +229,37 @@ void RecurrentOp::LinkMemories(ScopePtr scope, } } +// TODO testing when including operator.h + +// class RecurrentOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { +// public: +// RecurrentOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) +// : OpProtoAndCheckerMaker(proto, op_checker) { +// // AddInput("input", "input of test op"); // need to support dynamic +// number +// // AddOutput("output", "output of test op"); // need to support dynamic +// number +// AddAttr>("in_links", "The input link positions in +// the all inputs.") +// .SetDefault({0}); +// AddAttr>("boot_memories", "The initial memory +// positions in the all inputs."); +// AddAttr("step_net", "The step net position in the all inputs."); +// +// AddAttr>("in_link_alias", "The input link +// alias in the step network."); +// AddAttr>("out_link_alias", "The output link +// alias in the step network."); +// AddAttr>("memories", "The memory names."); +// AddAttr>("pre_memories", "The +// history/previous memory names."); +// +// AddType("recurrent_op"); +// AddComment("This is a recurrent group operator."); +// } +// }; +// +// REGISTER_OP(recurrent_op, RecurrentOp, RecurrentOpProtoAndCheckerMaker); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 276ee18ece94ca..afa4d14c663e41 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -21,9 +21,7 @@ #include "paddle/framework/scope.h" #include "paddle/framework/variable.h" -// Remove when including operator.h #include -#include "paddle/framework/attr_checker.h" #include "paddle/framework/op_desc.pb.h" namespace paddle { @@ -202,6 +200,11 @@ class RecurrentOp : public OperatorBase { * strings: "state" * } * arg { + * name: “pre_memories" + * strings: "pre_hidden" + * strings: "pre_state" + * } + * arg { * name: “boot_memories" * strings: "boot_hidden" * strings: "boot_state" diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 6e2da8b60c9bad..3d88850d773037 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -149,19 +149,19 @@ class RecurrentOpTest : public ::testing::Test { auto input_attr = op_desc.mutable_attrs()->Add(); input_attr->set_type(paddle::framework::AttrType::INTS); *input_attr->mutable_ints()->Add() = 0; - input_attr->set_name("real_inputs"); + input_attr->set_name("in_links"); // add input alias, this alias is used in step net. auto input_alias_attr = op_desc.mutable_attrs()->Add(); input_alias_attr->set_type(paddle::framework::AttrType::STRINGS); *input_alias_attr->mutable_strings()->Add() = "rnn/x"; - input_alias_attr->set_name("input_alias"); + input_alias_attr->set_name("in_link_alias"); // add output alias, this alias is used in step net. auto output_alias_attr = op_desc.mutable_attrs()->Add(); output_alias_attr->set_type(paddle::framework::AttrType::STRINGS); *output_alias_attr->mutable_strings()->Add() = "rnn/h"; - output_alias_attr->set_name("output_alias"); + output_alias_attr->set_name("out_link_alias"); // add memories auto memories_attr = op_desc.mutable_attrs()->Add(); @@ -187,28 +187,15 @@ class RecurrentOpTest : public ::testing::Test { step_net_attr->set_i(2); step_net_attr->set_name("step_net"); - // add step scopes - auto step_scopes_attr = op_desc.mutable_attrs()->Add(); - step_scopes_attr->set_type(paddle::framework::AttrType::INT); - step_scopes_attr->set_i(3); - step_scopes_attr->set_name("step_scopes"); - - // std::ostringstream stream; - // op_desc.SerializeToOstream(&stream); - // std::string text = stream.str(); - // LOG(INFO) << text; - AttributeMap attrs; - attrs["real_inputs"] = std::vector{0}; - attrs["input_alias"] = std::vector{"rnn/x"}; - attrs["output_alias"] = std::vector{"rnn/h"}; + attrs["in_links"] = std::vector{0}; + attrs["in_link_alias"] = std::vector{"rnn/x"}; + attrs["out_link_alias"] = std::vector{"rnn/h"}; attrs["memories"] = std::vector{"rnn/h"}; attrs["pre_memories"] = std::vector{"h_pre"}; attrs["boot_memories"] = std::vector{1}; attrs["step_net"] = 2; - attrs["step_scopes"] = 3; - // TODO LOG(INFO) << "rnn_op to init"; rnn_op_.Init(op_desc, attrs); LOG(INFO) << "rnn_op finish init"; From f525390662a6c48838eb56b595c96e6c52850a41 Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Fri, 14 Jul 2017 12:50:48 +0800 Subject: [PATCH 32/37] clean the codes --- paddle/framework/op_desc.proto | 7 ++----- paddle/framework/recurrent_network_op.cc | 1 - paddle/framework/recurrent_network_op.h | 15 +-------------- paddle/framework/recurrent_network_op_test.cc | 11 ++++------- 4 files changed, 7 insertions(+), 27 deletions(-) diff --git a/paddle/framework/op_desc.proto b/paddle/framework/op_desc.proto index 84aaf59ac55324..89497f3c16bc28 100644 --- a/paddle/framework/op_desc.proto +++ b/paddle/framework/op_desc.proto @@ -51,9 +51,6 @@ message OpDesc { // type of this Operator, such as "add", "sub", "fc". required string type = 3; - // the name of this Operator. - required string name = 4; - // Attributes of this Operator. e.g., scale=3.0 in cosine op. - repeated AttrDesc attrs = 5; -}; + repeated AttrDesc attrs = 4; +}; \ No newline at end of file diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index df4c92d301ef3c..ae4f8000d2f710 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -69,7 +69,6 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { outputs_.push_back(output); } - name_ = op_desc.name(); net_name_ = inputs_.at(GetAttr("step_net")); step_scopes_name_ = outputs_.back(); diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index afa4d14c663e41..b81ed49e7f3e74 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -92,7 +92,7 @@ class PlainNet { // TODO: // 1. No-padding computing for sequences with indifinite length in one batch. // 2. Hierarchical RNN for sequence with sub-sequence. -// 3. Multi-inputs with indifinate length for RecurrentOp. +// 3. External Memory. // 4. More Complex RNN architecture, such as Gated Feedback RNN. // Refer to: https://arxiv.org/pdf/1502.02367.pdf @@ -143,11 +143,6 @@ class RecurrentOp : public OperatorBase { */ void ConcatOutputs(ScopePtr scope) const; - /* - * Create a `Net` which is shared across all steps. - */ - // void CreateStepNet(ScopePtr scope) const; - /* * the step scopes as the father scope. The step scopes will be stored in * the father scope as a variable whose name is specified by @@ -158,11 +153,6 @@ class RecurrentOp : public OperatorBase { */ void CreateScopes(ScopePtr scope) const; - /* - * Create memories in each step scope. - */ - // void CreateMemories(ScopePtr scope) const; - /* * Link memory in previous step scope to current scope. */ @@ -213,9 +203,6 @@ class RecurrentOp : public OperatorBase { // TODO copy from OpBase's mutable std::vector memory_attrs_; - // this op's name, used as a unique key in father scope. - // TODO repace it with OpBase's interface if supported. - std::string name_; // name of rnn op's step net, the step net will be shared by both `Forward` // and `Backward`, so we store it as a variable in father's scope, with a // unique key specified by `net_name_`. diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 3d88850d773037..63d9dfec102d20 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -24,7 +24,7 @@ namespace framework { namespace fake { class FcOp : public OperatorBase { public: - FcOp(const OpDesc& desc) : name_(desc.name()) {} + FcOp(const OpDesc& desc) {} virtual void InferShape(ScopePtr scope) const override { for (const auto& output : outputs_) { @@ -54,7 +54,7 @@ class FcOp : public OperatorBase { class AddOp : public OperatorBase { public: - AddOp(const OpDesc& desc) : name_(desc.name()) {} + AddOp(const OpDesc& desc) {} virtual void InferShape(ScopePtr scope) const override { for (const auto& output : outputs_) { @@ -136,7 +136,6 @@ class RecurrentOpTest : public ::testing::Test { OpDesc op_desc; op_desc.set_type("rnn_op"); - op_desc.set_name("rnn"); op_desc.add_inputs("x"); op_desc.add_inputs("h_boot"); // initial memory op_desc.add_inputs("step_net"); // step net @@ -204,22 +203,20 @@ class RecurrentOpTest : public ::testing::Test { OpDesc CreateFcOpDesc() { OpDesc op_desc; op_desc.set_type("fc"); - op_desc.set_name("fc"); op_desc.add_inputs("rnn/h_pre"); op_desc.add_inputs("rnn/w"); op_desc.add_outputs("rnn/s"); - // s = h_pre * check + // rnn/s = rnn/h_pre * rnn/w return op_desc; } OpDesc CreateAddOpDesc() { OpDesc op_desc; op_desc.set_type("add"); - op_desc.set_name("add"); op_desc.add_inputs("rnn/x"); op_desc.add_inputs("rnn/s"); op_desc.add_outputs("rnn/h"); - // h = x + s + // rnn/h = rnn/x + rnn/s return op_desc; } From 3a27b0200ff7a88a30aef1f86e7211d2a4f34640 Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Fri, 14 Jul 2017 16:30:44 +0800 Subject: [PATCH 33/37] Abstract GetStepScopes and GetMaxSeqLen function --- paddle/framework/recurrent_network_op.cc | 53 +++++++++++++----------- paddle/framework/recurrent_network_op.h | 13 ++++++ 2 files changed, 41 insertions(+), 25 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index ae4f8000d2f710..52fb869663308d 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -34,18 +34,15 @@ void RecurrentOp::Run(OpContext* contex) const { LOG(INFO) << "segment input"; SegmentInputs(scope); - Variable* step_scopes = scope->GetVariable(step_scopes_name_); - PADDLE_ENFORCE(step_scopes, "failed to get step scopes"); // forward - auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); - size_t seq_len = dims[0]; - LOG(INFO) << "sequence length " << seq_len; - auto& scopes = *step_scopes->GetMutable>(); - for (size_t step_id = 0; step_id < seq_len; step_id++) { + size_t max_seq_len = GetMaxSeqLen(scope); + LOG(INFO) << "sequence length " << max_seq_len; + auto step_scopes = GetStepScopes(scope); + for (size_t step_id = 0; step_id < max_seq_len; step_id++) { LOG(INFO) << "run step " << step_id; - ScopePtr step_scope = scopes[step_id]; + ScopePtr step_scope = step_scopes[step_id]; // TODO replace memorys' copy with reference - LinkMemories(scope, scopes, step_id); + LinkMemories(scope, step_scopes, step_id); net->GetMutable()->Run(step_scope); } @@ -109,15 +106,20 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { } } +size_t RecurrentOp::GetMaxSeqLen(ScopePtr scope) const { + // TODO update this function when using variable-length of sequence. + return Input(scope, inlinks_[0])->GetMutable()->dims()[0]; +} + void RecurrentOp::CreateScopes(ScopePtr scope) const { - auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); - size_t seq_len = dims[0]; - Variable* scopes_var = scope->GetVariable(step_scopes_name_); - auto step_scopes = scopes_var->GetMutable>(); + size_t max_seq_len = GetMaxSeqLen(scope); + std::vector* step_scopes = + scope->GetVariable(step_scopes_name_) + ->GetMutable>(); // TODO Only two scopes are needed for inference, this case will be // supported later. - if (seq_len > step_scopes->size()) { - for (size_t i = step_scopes->size(); i < seq_len; ++i) { + if (max_seq_len > step_scopes->size()) { + for (size_t i = step_scopes->size(); i < max_seq_len; ++i) { step_scopes->push_back(std::make_shared(scope)); } } @@ -129,17 +131,17 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { PADDLE_ENFORCE(inlinks_.size() == inlink_alias.size(), "in_links/in_link_alias mismatch."); - Variable* scopes_var = scope->GetVariable(step_scopes_name_); - auto& step_scopes = *scopes_var->GetMutable>(); - auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); - int seq_len = dims[0]; + auto step_scopes = GetStepScopes(scope); + size_t max_seq_len = GetMaxSeqLen(scope); for (size_t i = 0; i < inlinks_.size(); ++i) { Tensor* scope_input_tensor = Input(scope, inlinks_[i])->GetMutable(); - for (int j = 0; j < seq_len; j++) { + for (size_t j = 0; j < max_seq_len; j++) { Variable* input_var = step_scopes[j]->CreateVariable(inlink_alias[i]); Tensor* step_input_tensor = input_var->GetMutable(); *step_input_tensor = scope_input_tensor->Slice(j, j + 1); + // TODO (luotao1): use reshape function to decrease the dims of + // step_input_tensor. } } } @@ -149,10 +151,10 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { PADDLE_ENFORCE(outlinks_.size() == outlink_alias.size(), "out_links/out_link_alias mismatch."); - Variable* scopes_var = scope->GetVariable(step_scopes_name_); - auto& step_scopes = *scopes_var->GetMutable>(); + auto step_scopes = GetStepScopes(scope); + size_t max_seq_len = GetMaxSeqLen(scope); + // TODO (luotao1): update using CopyFrom function in tensor. auto dims = Input(scope, inlinks_[0])->GetMutable()->dims(); - int seq_len = dims[0]; int batch_size = dims[1]; for (size_t i = 0; i < outlinks_.size(); i++) { auto output_dims = step_scopes[0] @@ -164,8 +166,9 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { Tensor* output_tensor = scope->CreateVariable(outlinks_[i])->GetMutable(); float* output = output_tensor->mutable_data( - make_ddim({seq_len, batch_size, output_dim}), platform::CPUPlace()); - for (int j = 0; j < seq_len; j++) { + make_ddim({(int)max_seq_len, batch_size, output_dim}), + platform::CPUPlace()); + for (size_t j = 0; j < max_seq_len; j++) { Variable* output_var = step_scopes[j]->GetVariable(outlink_alias[i]); const float* step_output = output_var->GetMutable()->data(); diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index b81ed49e7f3e74..2f62f365e42b8b 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -133,6 +133,11 @@ class RecurrentOp : public OperatorBase { virtual ~RecurrentOp() {} protected: + /* + * Get the max sequence length of the scope. + */ + size_t GetMaxSeqLen(ScopePtr scope) const; + /* * Prepare inputs for each stepnet. */ @@ -153,6 +158,14 @@ class RecurrentOp : public OperatorBase { */ void CreateScopes(ScopePtr scope) const; + /* + * Get the step scopes. + */ + inline const std::vector& GetStepScopes(ScopePtr scope) const { + return *(scope->GetVariable(step_scopes_name_)) + ->GetMutable>(); + } + /* * Link memory in previous step scope to current scope. */ From aede869805d67b9869912eacaad0c2b090f9508f Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Fri, 14 Jul 2017 17:59:02 +0800 Subject: [PATCH 34/37] refine LinkMemories --- paddle/framework/recurrent_network_op.cc | 60 +++++++++--------------- paddle/framework/recurrent_network_op.h | 5 +- 2 files changed, 24 insertions(+), 41 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 52fb869663308d..316d5deeea5036 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -40,11 +40,10 @@ void RecurrentOp::Run(OpContext* contex) const { auto step_scopes = GetStepScopes(scope); for (size_t step_id = 0; step_id < max_seq_len; step_id++) { LOG(INFO) << "run step " << step_id; - ScopePtr step_scope = step_scopes[step_id]; // TODO replace memorys' copy with reference - LinkMemories(scope, step_scopes, step_id); + LinkMemories(step_scopes, step_id); - net->GetMutable()->Run(step_scope); + net->GetMutable()->Run(step_scopes[step_id]); } LOG(INFO) << "concat outputs"; @@ -177,51 +176,38 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { } } -void RecurrentOp::LinkMemories(ScopePtr scope, - std::vector& step_scopes, - size_t step) const { - PADDLE_ENFORCE(step < step_scopes.size(), - "step [%d] out of range of step scopes' size [%d]", step, +void RecurrentOp::LinkMemories(std::vector& step_scopes, + size_t step_id) const { + PADDLE_ENFORCE(step_id < step_scopes.size(), + "step [%d] out of range of step scopes' size [%d]", step_id, step_scopes.size()); - auto step_scope = step_scopes[step]; - // copy boot memory + ScopePtr step_scope = step_scopes[step_id]; for (auto& attr : memory_attrs_) { - Tensor* boot_tensor{nullptr}; - if (step == 0) { - PADDLE_ENFORCE(scope->HasVariable(attr.boot_var), + Tensor* pre_memory_tensor = + step_scope->CreateVariable(attr.pre_var)->GetMutable(); + + if (step_id == 0) { + PADDLE_ENFORCE(step_scope->HasVariable(attr.boot_var), "memory [%s]'s boot variable [%s] not exists", attr.var, attr.boot_var); - // update memory's ddim - boot_tensor = scope->CreateVariable(attr.boot_var)->GetMutable(); - attr.dims = boot_tensor->dims(); - } - Variable* memory_var = step_scope->CreateVariable(attr.pre_var); - - // TODO the memory of current step should be allocaled in step net ? - Tensor* cur_memory = - step_scopes[step]->CreateVariable(attr.var)->GetMutable(); - cur_memory->mutable_data(attr.dims, platform::CPUPlace()); - - // copy from boot memory - // TODO support more device - // TODO mutable_data is currently invalid - float* memory_tensor_val = - memory_var->GetMutable()->mutable_data( - attr.dims, platform::CPUPlace()); - if (step == 0) { + Tensor* boot_tensor = + step_scope->CreateVariable(attr.boot_var)->GetMutable(); PADDLE_ENFORCE(boot_tensor, "boot_tensor should be retrieved before"); // copy from boot memory - std::memcpy(memory_tensor_val, boot_tensor->data(), - product(attr.dims)); + pre_memory_tensor->ShareDataFrom(*boot_tensor); } else { // copy from previous step scope's memory to this scope's // `pre - memory` Tensor* pre_step_memory = - step_scopes[step - 1]->GetVariable(attr.var)->GetMutable(); - - std::memcpy(memory_tensor_val, pre_step_memory->data(), - product(attr.dims)); + step_scopes[step_id - 1]->GetVariable(attr.var)->GetMutable(); + pre_memory_tensor->ShareDataFrom(*pre_step_memory); } + + // TODO the memory of current step should be allocated in step net ? + Tensor* cur_memory_tensor = + step_scopes[step_id]->CreateVariable(attr.var)->GetMutable(); + cur_memory_tensor->mutable_data(pre_memory_tensor->dims(), + platform::CPUPlace()); } } diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 2f62f365e42b8b..857bb3164d6381 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -169,8 +169,7 @@ class RecurrentOp : public OperatorBase { /* * Link memory in previous step scope to current scope. */ - void LinkMemories(ScopePtr scope, std::vector& step_scopes, - size_t step) const; + void LinkMemories(std::vector& step_scopes, size_t step_id) const; private: /* @@ -188,8 +187,6 @@ class RecurrentOp : public OperatorBase { // name of the variables to init this memory (same role of `boot_layer` in // PaddlePaddle), which is store in father's scope. std::string boot_var; - // this dim will infered from boot memories's tensor in the first step. - DDim dims; }; /* From 45682d20b2e1c81f303406ad74df556f9360eccf Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Sat, 15 Jul 2017 11:55:11 +0800 Subject: [PATCH 35/37] Refine code and add some comments. --- paddle/framework/recurrent_network_op.cc | 32 ++++++++++--------- paddle/framework/recurrent_network_op.h | 24 +++++++++----- paddle/framework/recurrent_network_op_test.cc | 2 -- paddle/platform/CMakeLists.txt | 2 +- 4 files changed, 34 insertions(+), 26 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index 316d5deeea5036..ede8b1193834dc 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -14,7 +14,6 @@ #include "paddle/framework/recurrent_network_op.h" #include "paddle/framework/tensor.h" -// #include "paddle/framework/op_registry.h" #include #include @@ -40,7 +39,6 @@ void RecurrentOp::Run(OpContext* contex) const { auto step_scopes = GetStepScopes(scope); for (size_t step_id = 0; step_id < max_seq_len; step_id++) { LOG(INFO) << "run step " << step_id; - // TODO replace memorys' copy with reference LinkMemories(step_scopes, step_id); net->GetMutable()->Run(step_scopes[step_id]); @@ -72,13 +70,25 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { PADDLE_ENFORCE(inlinks_.empty(), "RecurrentOp duplicate inited"); LOG(INFO) << "set inlinks"; for (auto id : GetAttr>("in_links")) { - inlinks_.push_back(id); + inlinks_.push_back(inputs_[id]); } + auto inlink_alias = GetAttr>("in_link_alias"); + in_link_alias_ = + std::vector{inlink_alias.begin(), inlink_alias.end()}; + PADDLE_ENFORCE(inlinks_.size() == in_link_alias_.size(), + "in_links/in_link_alias mismatch."); + PADDLE_ENFORCE( outputs_.size() > 1, "more than 1 output should be provided and the last is `step_scopes`"); outlinks_ = std::vector{outputs_.begin(), outputs_.end() - 1}; + auto outlink_alias = GetAttr>("out_link_alias"); + out_link_alias_ = + std::vector{outlink_alias.begin(), outlink_alias.end()}; + PADDLE_ENFORCE(outlinks_.size() == outlink_alias.size(), + "out_links/out_link_alias mismatch."); + // set memories auto memories = GetAttr>("memories"); auto pre_memories = GetAttr>("pre_memories"); @@ -126,17 +136,13 @@ void RecurrentOp::CreateScopes(ScopePtr scope) const { void RecurrentOp::SegmentInputs(ScopePtr scope) const { PADDLE_ENFORCE(!inlinks_.empty(), "no in links are provided."); - auto inlink_alias = GetAttr>("in_link_alias"); - PADDLE_ENFORCE(inlinks_.size() == inlink_alias.size(), - "in_links/in_link_alias mismatch."); - auto step_scopes = GetStepScopes(scope); size_t max_seq_len = GetMaxSeqLen(scope); for (size_t i = 0; i < inlinks_.size(); ++i) { Tensor* scope_input_tensor = Input(scope, inlinks_[i])->GetMutable(); for (size_t j = 0; j < max_seq_len; j++) { - Variable* input_var = step_scopes[j]->CreateVariable(inlink_alias[i]); + Variable* input_var = step_scopes[j]->CreateVariable(in_link_alias_[i]); Tensor* step_input_tensor = input_var->GetMutable(); *step_input_tensor = scope_input_tensor->Slice(j, j + 1); // TODO (luotao1): use reshape function to decrease the dims of @@ -146,10 +152,6 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { } void RecurrentOp::ConcatOutputs(ScopePtr scope) const { - auto outlink_alias = GetAttr>("out_link_alias"); - PADDLE_ENFORCE(outlinks_.size() == outlink_alias.size(), - "out_links/out_link_alias mismatch."); - auto step_scopes = GetStepScopes(scope); size_t max_seq_len = GetMaxSeqLen(scope); // TODO (luotao1): update using CopyFrom function in tensor. @@ -157,7 +159,7 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { int batch_size = dims[1]; for (size_t i = 0; i < outlinks_.size(); i++) { auto output_dims = step_scopes[0] - ->GetVariable(outlink_alias[0]) + ->GetVariable(out_link_alias_[0]) ->GetMutable() ->dims(); int output_dim = output_dims[1]; @@ -168,7 +170,7 @@ void RecurrentOp::ConcatOutputs(ScopePtr scope) const { make_ddim({(int)max_seq_len, batch_size, output_dim}), platform::CPUPlace()); for (size_t j = 0; j < max_seq_len; j++) { - Variable* output_var = step_scopes[j]->GetVariable(outlink_alias[i]); + Variable* output_var = step_scopes[j]->GetVariable(out_link_alias_[i]); const float* step_output = output_var->GetMutable()->data(); std::memcpy(output + j * length, step_output, length); @@ -203,7 +205,7 @@ void RecurrentOp::LinkMemories(std::vector& step_scopes, pre_memory_tensor->ShareDataFrom(*pre_step_memory); } - // TODO the memory of current step should be allocated in step net ? + // TODO the memory of current step should be allocated in step net Tensor* cur_memory_tensor = step_scopes[step_id]->CreateVariable(attr.var)->GetMutable(); cur_memory_tensor->mutable_data(pre_memory_tensor->dims(), diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 857bb3164d6381..3d84c399a93987 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -41,8 +41,8 @@ class OperatorBase { void Init(const OpDesc& op_desc, AttributeMap& attrs) { attrs_ = attrs; } virtual void Run(OpContext* context) const = 0; virtual void InferShape(ScopePtr scope) const = 0; - inline Variable* Input(ScopePtr scope, int index) const { - return scope->GetVariable(inputs_[index]); + inline Variable* Input(ScopePtr scope, std::string name) const { + return scope->GetVariable(name); }; template @@ -58,7 +58,6 @@ class OperatorBase { AttributeMap attrs_; }; -// TODO replace this with Net's proto. struct NetDesc { std::string name_; std::vector op_descs; @@ -98,18 +97,25 @@ class PlainNet { /* * RecurrentOp inputs stored in proto: - * - real inputs that need to be segmented to steps. + * - in_links : real inputs that need to be segmented to steps. * - boot memories + * - all weights in step net * - step net * * outputs: - * - real outputs + * - out_links : real outputs * - step scopes * * Attributes stored in AttributeMap: - * - real_inputs: vector + * - in_links: vector * - boot_memories: vector * - step_net: int + * - in_link_alias: vector the alias of in_links in step net. + * - out_link_alias: vector the alias of out_links in step net + * - memories: vector the memory names + * - pre_memories: vector the previous memory names + * + * see RecurrentOpProtoAndCheckerMaker */ class RecurrentOp : public OperatorBase { @@ -210,7 +216,6 @@ class RecurrentOp : public OperatorBase { * strings: "boot_state" * } */ - // TODO copy from OpBase's mutable std::vector memory_attrs_; // name of rnn op's step net, the step net will be shared by both `Forward` @@ -221,8 +226,11 @@ class RecurrentOp : public OperatorBase { // specified by `step_scopes_name_`. std::string step_scopes_name_; // real inputs that need to be segmented. - std::vector inlinks_; + std::vector inlinks_; std::vector outlinks_; + + std::vector in_link_alias_; + std::vector out_link_alias_; }; class RecurrentGradientOp; diff --git a/paddle/framework/recurrent_network_op_test.cc b/paddle/framework/recurrent_network_op_test.cc index 63d9dfec102d20..ce65235c1e40b2 100644 --- a/paddle/framework/recurrent_network_op_test.cc +++ b/paddle/framework/recurrent_network_op_test.cc @@ -111,7 +111,6 @@ class RecurrentOpTest : public ::testing::Test { Variable* x = scope_->CreateVariable("x"); DDim dims = make_ddim(std::vector{10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); - // TODO mutable_data is not valid x->GetMutable()->mutable_data(dims, platform::CPUPlace()); LOG(INFO) << "create global variable w"; @@ -139,7 +138,6 @@ class RecurrentOpTest : public ::testing::Test { op_desc.add_inputs("x"); op_desc.add_inputs("h_boot"); // initial memory op_desc.add_inputs("step_net"); // step net - // TODO put the step_scopes in the outputs // output hidden vectors op_desc.add_outputs("h"); op_desc.add_outputs("step_scopes"); // step scopes diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index 530bf886d4de5c..358d14f4555e1d 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -12,4 +12,4 @@ ELSE() ENDIF() cc_library(device_context SRCS device_context.cc DEPS place eigen3 ${GPU_CTX_DEPS}) -#nv_test(device_context_test SRCS device_context_test.cc DEPS device_context glog gflags) +nv_test(device_context_test SRCS device_context_test.cc DEPS device_context glog gflags) From fc5acee51ec643a65790da61e338852b41411904 Mon Sep 17 00:00:00 2001 From: Superjom Date: Sat, 15 Jul 2017 12:59:57 +0800 Subject: [PATCH 36/37] add backward core --- paddle/framework/recurrent_network_op.cc | 2 +- paddle/framework/recurrent_network_op.h | 74 ++++++++++++++++++------ 2 files changed, 56 insertions(+), 20 deletions(-) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index ede8b1193834dc..93f2f8c2ef2d6f 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -105,7 +105,7 @@ void RecurrentOp::Init(const OpDesc& op_desc, AttributeMap& attrs) { "the size of memories and boot_memories doesn't match: %d,%d", memories.size(), boot_memories.size()); for (size_t i = 0; i < memories.size(); ++i) { - MemoryAttr mem_attr; + details::MemoryAttr mem_attr; mem_attr.var = memories[i]; mem_attr.pre_var = pre_memories[i]; mem_attr.boot_var = boot_memories[i]; diff --git a/paddle/framework/recurrent_network_op.h b/paddle/framework/recurrent_network_op.h index 3d84c399a93987..161408482fc928 100644 --- a/paddle/framework/recurrent_network_op.h +++ b/paddle/framework/recurrent_network_op.h @@ -85,6 +85,27 @@ class PlainNet { std::vector> ops_; }; +namespace details { + +/* + * Memory of a RNN (same as the role of `Momory` in PaddlePaddle). + * + * Memory attributes cached by this op, dims will be infered from + * boot memories in father scope. Other attributes are copied from Op's proto + * attributes. + */ +struct MemoryAttr { + // name of current state variable + std::string var; + // name of previous step's state variable + std::string pre_var; + // name of the variables to init this memory (same role of `boot_layer` in + // PaddlePaddle), which is store in father's scope. + std::string boot_var; +}; + +}; // namespace details + // fake interfaces end // -------------------------------------------------------------------- // The sequence format in RecurrentOp is Tensor now. @@ -178,23 +199,6 @@ class RecurrentOp : public OperatorBase { void LinkMemories(std::vector& step_scopes, size_t step_id) const; private: - /* - * Memory of a RNN (same as the role of `Momory` in PaddlePaddle). - * - * Memory attributes cached by this op, dims will be infered from - * boot memories in father scope. Other attributes are copied from Op's proto - * attributes. - */ - struct MemoryAttr { - // name of current state variable - std::string var; - // name of previous step's state variable - std::string pre_var; - // name of the variables to init this memory (same role of `boot_layer` in - // PaddlePaddle), which is store in father's scope. - std::string boot_var; - }; - /* * The attributes in protobuf about the memory description and the initial * memory description are as follows. The number of initial memories should @@ -216,7 +220,7 @@ class RecurrentOp : public OperatorBase { * strings: "boot_state" * } */ - mutable std::vector memory_attrs_; + mutable std::vector memory_attrs_; // name of rnn op's step net, the step net will be shared by both `Forward` // and `Backward`, so we store it as a variable in father's scope, with a @@ -233,7 +237,39 @@ class RecurrentOp : public OperatorBase { std::vector out_link_alias_; }; -class RecurrentGradientOp; +/* + * RNN's backward alogorithm. + * + * To accelerate the development of RecurrentBackwardOp, we decouple RNN's + * algorithm and `RecurrentBackwardAlgorithm`, the former contains the core + * implementation of a RNN, and will keep stable even if the framework changes a + * lot, and the latter is a wrapper acts like an dapter for it to make RNN an + * operator. + */ +class RecurrentBackwardAlgorithm { + public: + private: + // stepnet for backward + // NOTE this stepnet is created by others and should insert AddOp for its + // weights gradient updating, RNN backward just run it. + std::string stepnet_name_; + // step scopes that shared by both the forward and backward operators. + std::string step_scopes_name_; + + // inputs(gradients of forward operator's outputs) that need to be segmented + // for each step. + std::vector inlinks_; + // outputs(gradients of forward operator's inputs) of each step that need to + // be concated. + std::vector outlinks_; + + // alias to avoid duplicate keys in scopes. + std::vector inlink_alias_; + std::vector outlink_alias_; + + // NOTE the first step's boot memories' gradients should be outputed. + std::vector memories_; +}; } // namespace framework } // namespace paddle From 14dd843a7dd2d7da1eae70600141080b1e5f4e6f Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Sat, 15 Jul 2017 14:28:16 +0800 Subject: [PATCH 37/37] update for develop branch. --- paddle/framework/CMakeLists.txt | 4 ++-- paddle/framework/recurrent_network_op.cc | 9 ++++----- paddle/framework/tensor.h | 5 ++--- 3 files changed, 8 insertions(+), 10 deletions(-) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index e475d6fee70edd..95638ebcdf8ae2 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -19,8 +19,8 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. # Generate an empty __init__.py to make framework_py_proto as a valid python module. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) -cc_library(recurrent_network_op SRCS recurrent_network_op.cc DEPS op_desc) -cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc recurrent_network_op.cc DEPS glog gtest gflags ddim system_allocator op_desc) +cc_library(recurrent_network_op SRCS recurrent_network_op.cc DEPS op_desc place) +cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc DEPS recurrent_network_op glog gtest gflags ddim op_desc) proto_library(net_proto SRCS net_proto.proto DEPS op_proto) cc_library(net SRCS net.cc DEPS net_proto) diff --git a/paddle/framework/recurrent_network_op.cc b/paddle/framework/recurrent_network_op.cc index ede8b1193834dc..df0d977d8a4b96 100644 --- a/paddle/framework/recurrent_network_op.cc +++ b/paddle/framework/recurrent_network_op.cc @@ -139,12 +139,11 @@ void RecurrentOp::SegmentInputs(ScopePtr scope) const { auto step_scopes = GetStepScopes(scope); size_t max_seq_len = GetMaxSeqLen(scope); for (size_t i = 0; i < inlinks_.size(); ++i) { - Tensor* scope_input_tensor = - Input(scope, inlinks_[i])->GetMutable(); + Tensor* input_tensor = Input(scope, inlinks_[i])->GetMutable(); for (size_t j = 0; j < max_seq_len; j++) { Variable* input_var = step_scopes[j]->CreateVariable(in_link_alias_[i]); Tensor* step_input_tensor = input_var->GetMutable(); - *step_input_tensor = scope_input_tensor->Slice(j, j + 1); + *step_input_tensor = input_tensor->Slice(j, j + 1); // TODO (luotao1): use reshape function to decrease the dims of // step_input_tensor. } @@ -196,13 +195,13 @@ void RecurrentOp::LinkMemories(std::vector& step_scopes, step_scope->CreateVariable(attr.boot_var)->GetMutable(); PADDLE_ENFORCE(boot_tensor, "boot_tensor should be retrieved before"); // copy from boot memory - pre_memory_tensor->ShareDataFrom(*boot_tensor); + pre_memory_tensor->ShareDataFrom(*boot_tensor); } else { // copy from previous step scope's memory to this scope's // `pre - memory` Tensor* pre_step_memory = step_scopes[step_id - 1]->GetVariable(attr.var)->GetMutable(); - pre_memory_tensor->ShareDataFrom(*pre_step_memory); + pre_memory_tensor->ShareDataFrom(*pre_step_memory); } // TODO the memory of current step should be allocated in step net diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 35fdcad03b3214..8756c5d33c68df 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -29,8 +29,6 @@ class Tensor { public: Tensor() : numel_(0), offset_(0) {} - Tensor& operator=(const Tensor& src) = delete; - template const T* data() const { CheckDims(); @@ -141,7 +139,8 @@ class Tensor { public: // PlaceholderImpl(paddle::platform::Place place, size_t size) // : ptr_(static_cast(paddle::memory::Alloc(place, size)), - // Deleter(place)), + // Deleter(place)), + PlaceholderImpl(paddle::platform::Place place, size_t size) : ptr_(static_cast(malloc(size * sizeof(T))), Deleter(place)), place_(place),