Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Big data op_test benchmark, for checking output consistent in different runs. #10646

Merged
merged 23 commits into from
Jun 7, 2018
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions paddle/fluid/framework/operator.cc
Original file line number Diff line number Diff line change
Expand Up @@ -617,8 +617,10 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
}
if (t != nullptr) {
int tmp = static_cast<int>(ToDataType(t->type()));
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same.", Type());
PADDLE_ENFORCE(
tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same. Get %d != %d", Type(),
data_type, tmp);
data_type = tmp;
}
}
Expand Down
2 changes: 2 additions & 0 deletions python/paddle/fluid/executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,8 @@ def to_name_str(var):
return var.desc.name()
elif isinstance(var, str):
return var
elif isinstance(var, basestring):
return str(var)
else:
raise TypeError(str(var) + " should be Variable or str")

Expand Down
25 changes: 16 additions & 9 deletions python/paddle/fluid/framework.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,8 @@ def convert_np_dtype_to_dtype_(np_dtype):
return core.VarDesc.VarType.INT64
elif dtype == np.bool:
return core.VarDesc.VarType.BOOL
elif dtype == np.uint16:
return core.VarDesc.VarType.INT16
Copy link
Contributor

@panyx0718 panyx0718 May 22, 2018

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

uint16 and int16 is different?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It is obvious you are right, but we have to use INT16 here, because

  1. we do not have unsigned data type in OpProto, both for uint16, uint32 and uint64.
    https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto#L97

  2. the uint16 in this PR is only for float16 in op_test, it seems a little confusing but it is the fact.
    https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/unittests/op_test.py#L473
    The guy who do the fp16 job explain the reason, "the pybind does not have the built-in float16 support, so he chooses INT16 to allocate the same size memory".
    Considering that our messed datatype in python, it definitely needs to be clean up.

elif dtype == np.uint8:
return core.VarDesc.VarType.UINT8
else:
Expand Down Expand Up @@ -368,6 +370,13 @@ class Operator(object):
Block. Users can use the build in instructions to describe their neural
network.
"""
OP_WITHOUT_KERNEL_SET = {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This set is sad...Can you file a issue and assign to me to clean it up? So that I don't forget.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done.

'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
'ncclInit', 'channel_create', 'channel_close', 'channel_send',
'channel_recv', 'select'
}

def __init__(self,
block,
Expand Down Expand Up @@ -486,17 +495,13 @@ def find_name(var_list, name):
self.desc.set_attr(attr_name, attrs[attr_name])

self.desc.check_attrs()
no_kernel_op_set = {
'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
'recv', 'listen_and_serv', 'parallel_do', 'save_combine',
'load_combine', 'ncclInit', 'channel_create', 'channel_close',
'channel_send', 'channel_recv', 'select', 'gen_nccl_id'
}
if type not in no_kernel_op_set:
if self.has_kernel(type):
self.desc.infer_var_type(self.block.desc)
self.desc.infer_shape(self.block.desc)

def has_kernel(self, op_type):
return op_type not in self.OP_WITHOUT_KERNEL_SET

def to_string(self, throw_on_error):
"""
To debug string.
Expand Down Expand Up @@ -720,7 +725,9 @@ def idx(self):

def var(self, name):
if not isinstance(name, basestring):
raise TypeError()
raise TypeError(
"var require string as parameter, but get %s instead." %
(type(name)))
v = self.vars.get(name, None)
if v is None:
raise ValueError("var %s not in this block" % name)
Expand Down
113 changes: 113 additions & 0 deletions python/paddle/fluid/tests/unittests/benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import time
import itertools

import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest


class BenchmarkSuite(OpTest):
def timeit_function(self, callback, iters, *args, **kwargs):
assert iters != 0, "Iters should >= 1"
start = time.time()
for i in range(iters):
callback(*args, **kwargs)
elapse = time.time() - start
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

+=? shoud elapse be initiated before?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done.

return elapse / iters

def _assert_cpu_gpu_same(self, cpu_outs, gpu_outs, fetch_list, atol):
for item_cpu_out, item_gpu_out, variable in zip(cpu_outs, gpu_outs,
fetch_list):
# the cpu version is baseline, expect gpu version keep same with cpu version.
expect = item_cpu_out
expect_t = np.array(item_cpu_out)
actual = item_gpu_out
actual_t = np.array(item_gpu_out)
var_name = variable if isinstance(variable,
basestring) else variable.name
self.assertTrue(
np.allclose(
actual_t, expect_t, atol=atol),
"Output (" + var_name + ") has diff" + str(actual_t) + "\n" +
str(expect_t))
self.assertListEqual(actual.lod(),
expect.lod(),
"Output (" + var_name + ") has different lod")

def _get_input_names(self):
inputs = []
for name, value in self.inputs.iteritems():
if isinstance(value, list):
inputs.extend([sub_name for sub_name, _ in value])
inputs.append(name)
return inputs

def _get_output_names(self):
outputs = []
for var_name, var in self.outputs.iteritems():
if isinstance(var, list):
for v in var:
outputs.append(v)
else:
outputs.append(var)
if len(outputs) == 0:
for out_name, out_dup in Operator.get_op_outputs(self.op_type):
outputs.append(str(out_name))
return outputs

def check_output_stability(self, atol=1e-8):
places = self._get_places()
if len(places) < 2:
return
cpu_outs, fetch_list = self._calc_output(places[0])
gpu_outs, _ = self._calc_output(places[1])
self._assert_cpu_gpu_same(cpu_outs, gpu_outs, fetch_list, atol)

def timeit_output_with_place(self, place, iters):
return self.timeit_function(self.calc_output, iters, place)

def timeit_output(self, iters=100):
places = self._get_places()
elapses = []
for place in places:
elapses.append(self.timeit_output_with_place(place, iters))
for place, elapse in zip(places, elapses):
print("One pass of ({2}_op) at {0} cost {1}".format(
str(place), elapse, self.op_type))

def timeit_grad_with_place(self, place, iters=100):
inputs_to_check = self._get_input_names()
output_names = self._get_output_names()
return self.timeit_function(
self._get_gradient,
iters,
inputs_to_check,
place,
output_names,
no_grad_set=None)

def timeit_grad(self, iters=100):
places = self._get_places()
elapses = []
for place in places:
elapses.append(self.timeit_grad_with_place(place, iters))
for place, elapse in zip(places, elapses):
print("One pass of ({2}_grad_op) at {0} cost {1}".format(
str(place), elapse, self.op_type))
80 changes: 80 additions & 0 deletions python/paddle/fluid/tests/unittests/benchmark_sum_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle.fluid as fluid
from benchmark import BenchmarkSuite
from op_test import OpTest

# This is a demo op test case for operator benchmarking and high resolution number stability alignment.


class TestSumOp(BenchmarkSuite):
def setUp(self):
self.op_type = "sum"
self.customize_testcase()
self.customize_fetch_list()

def customize_fetch_list(self):
"""
customize fetch list, configure the wanted variables.
>>> self.fetch_list = ["Out"]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this a tab?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The output of operator will be automatically inserted into fetch list, it is same here.

"""
pass

def customize_testcase(self):
# a test case
x0 = np.random.random((300, 400)).astype('float32')
x1 = np.random.random((300, 400)).astype('float32')
x2 = np.random.random((300, 400)).astype('float32')

self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
# NOTE: if the output is empty, then it will autofilled by benchmarkSuite.
# self.outputs = {"Out": x0 + x1 + x2}

def test_check_output(self):
"""
compare the output with customized output. In this case,
you should set the correct output by hands.
>>> self.outputs = {"Out": x0 + x1 + x2}
"""
self.check_output(atol=1e-8)

def test_output_stability(self):
# compare the cpu gpu output in high resolution.
self.check_output_stability()

def test_timeit_output(self):
"""
perf the op, time cost will be averged in iters.
output example
>>> One pass of (sum_op) at CPUPlace cost 0.000461330413818
>>> One pass of (sum_op) at CUDAPlace(0) cost 0.000556070804596
"""
self.timeit_output(iters=100)

def test_timeit_grad(self):
"""
perf the op gradient, time cost will be averged in iters.
output example
>>> One pass of (sum_grad_op) at CPUPlace cost 0.00279935121536
>>> One pass of (sum_grad_op) at CUDAPlace(0) cost 0.00500632047653
"""
self.timeit_grad(iters=100)


if __name__ == "__main__":
unittest.main()
Loading