diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index ac518ac83b7a0..1a61072ace6ff 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -645,6 +645,7 @@ def thresholded_relu(x, threshold=None): _gelu_ = generate_layer_fn('gelu') +@deprecated(since="2.0.0", update_to="paddle.nn.functional.gelu") def gelu(x, approximate=False): locals_var = locals().copy() kwargs = dict() @@ -655,10 +656,6 @@ def gelu(x, approximate=False): gelu.__doc__ = """ - :alias_main: paddle.nn.functional.gelu - :alias: paddle.nn.functional.gelu,paddle.nn.functional.activation.gelu - :old_api: paddle.fluid.layers.gelu - :strong:`GeLU Activation Operator` For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415). diff --git a/python/paddle/fluid/tests/unittests/test_activation_op.py b/python/paddle/fluid/tests/unittests/test_activation_op.py index d4c260c41ef28..aef49df577fe5 100644 --- a/python/paddle/fluid/tests/unittests/test_activation_op.py +++ b/python/paddle/fluid/tests/unittests/test_activation_op.py @@ -118,7 +118,7 @@ def setUp(self): x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = np.log(1 / (1 + np.exp(-x))) - self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.inputs = {'X': x} self.outputs = {'Out': out} def test_check_grad(self): @@ -127,6 +127,48 @@ def test_check_grad(self): self.check_grad(['X'], 'Out', max_relative_error=0.008) +class TestLogSigmoidAPI(unittest.TestCase): + # test paddle.nn.LogSigmoid, paddle.nn.functional.logsigmoid + def setUp(self): + self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32') + self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ + else paddle.CPUPlace() + + def test_static_api(self): + with paddle.static.program_guard(paddle.static.Program()): + x = paddle.data('X', [11, 17]) + out1 = F.logsigmoid(x) + m = paddle.nn.LogSigmoid() + out2 = m(x) + exe = paddle.static.Executor(self.place) + res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2]) + out_ref = np.log(1 / (1 + np.exp(-self.x_np))) + for r in res: + self.assertEqual(np.allclose(out_ref, r), True) + + def test_dygraph_api(self): + paddle.disable_static(self.place) + x = paddle.to_tensor(self.x_np) + out1 = F.logsigmoid(x) + m = paddle.nn.LogSigmoid() + out2 = m(x) + out_ref = np.log(1 / (1 + np.exp(-self.x_np))) + for r in [out1, out2]: + self.assertEqual(np.allclose(out_ref, r.numpy()), True) + paddle.enable_static() + + def test_errors(self): + with paddle.static.program_guard(paddle.static.Program()): + # The input type must be Variable. + self.assertRaises(TypeError, F.logsigmoid, 1) + # The input dtype must be float16, float32, float64. + x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32') + self.assertRaises(TypeError, F.logsigmoid, x_int32) + # support the input dtype is float16 + x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16') + F.logsigmoid(x_fp16) + + class TestTanh(TestActivation, TestParameter): def setUp(self): self.op_type = "tanh" @@ -644,7 +686,7 @@ def setUp(self): x[np.abs(x) < 0.005] = 0.02 out = np.maximum(x, 0) - self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.inputs = {'X': x} self.outputs = {'Out': out} def test_check_grad(self): @@ -653,18 +695,46 @@ def test_check_grad(self): self.check_grad(['X'], 'Out') -class TestReluOpError(unittest.TestCase): +class TestReluAPI(unittest.TestCase): + # test paddle.nn.ReLU, paddle.nn.functional.relu + def setUp(self): + self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32') + self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ + else paddle.CPUPlace() + + def test_static_api(self): + with paddle.static.program_guard(paddle.static.Program()): + x = paddle.data('X', [10, 12]) + out1 = F.relu(x) + m = paddle.nn.ReLU() + out2 = m(x) + exe = paddle.static.Executor(self.place) + res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2]) + out_ref = np.maximum(self.x_np, 0) + for r in res: + self.assertEqual(np.allclose(out_ref, r), True) + + def test_dygraph_api(self): + paddle.disable_static(self.place) + x = paddle.to_tensor(self.x_np) + out1 = F.relu(x) + m = paddle.nn.ReLU() + out2 = m(x) + out_ref = np.maximum(self.x_np, 0) + for r in [out1, out2]: + self.assertEqual(np.allclose(out_ref, r.numpy()), True) + paddle.enable_static() + def test_errors(self): - with program_guard(Program()): + with paddle.static.program_guard(paddle.static.Program()): # The input type must be Variable. - self.assertRaises(TypeError, fluid.layers.relu, 1) + self.assertRaises(TypeError, F.relu, 1) # The input dtype must be float16, float32, float64. - x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32') - self.assertRaises(TypeError, fluid.layers.relu, x_int32) + x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32') + self.assertRaises(TypeError, F.relu, x_int32) # support the input dtype is float16 - x_fp16 = fluid.layers.data( - name='x_fp16', shape=[12, 10], dtype='float16') - fluid.layers.relu(x_fp16) + x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16') + F.relu(x_fp16) class TestLeakyRelu(TestActivation): @@ -717,7 +787,7 @@ def setUp(self): x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = gelu(x, approximate) - self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {"approximate": approximate} @@ -735,7 +805,7 @@ def setUp(self): x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = gelu(x, approximate) - self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {"approximate": approximate} @@ -745,6 +815,55 @@ def test_check_grad(self): self.check_grad(['X'], 'Out') +class TestGELUAPI(unittest.TestCase): + # test paddle.nn.GELU, paddle.nn.functional.gelu + def setUp(self): + self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32') + self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ + else paddle.CPUPlace() + + def test_static_api(self): + with paddle.static.program_guard(paddle.static.Program()): + x = paddle.data('X', [11, 17]) + out1 = F.gelu(x) + m = paddle.nn.GELU() + out2 = m(x) + exe = paddle.static.Executor(self.place) + res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2]) + out_ref = gelu(self.x_np, False) + for r in res: + self.assertEqual(np.allclose(out_ref, r), True) + + def test_dygraph_api(self): + paddle.disable_static(self.place) + x = paddle.to_tensor(self.x_np) + out1 = F.gelu(x) + m = paddle.nn.GELU() + out2 = m(x) + out_ref = gelu(self.x_np, False) + for r in [out1, out2]: + self.assertEqual(np.allclose(out_ref, r.numpy()), True) + + out1 = F.gelu(x, True) + m = paddle.nn.GELU(True) + out2 = m(x) + out_ref = gelu(self.x_np, True) + for r in [out1, out2]: + self.assertEqual(np.allclose(out_ref, r.numpy()), True) + paddle.enable_static() + + def test_errors(self): + with paddle.static.program_guard(paddle.static.Program()): + # The input type must be Variable. + self.assertRaises(TypeError, F.gelu, 1) + # The input dtype must be float16, float32, float64. + x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32') + self.assertRaises(TypeError, F.gelu, x_int32) + # support the input dtype is float16 + x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16') + F.gelu(x_fp16) + + class TestBRelu(TestActivation): def setUp(self): self.op_type = "brelu" @@ -894,6 +1013,11 @@ def test_errors(self): fluid.layers.soft_relu(x_fp16) +def elu(x, alpha): + out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) + return out_ref.astype(x.dtype) + + class TestELU(TestActivation): def setUp(self): self.op_type = "elu" @@ -901,7 +1025,7 @@ def setUp(self): x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype) alpha = 1. - out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) + out = elu(x, alpha) # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1) # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here self.inputs = {'X': x} @@ -914,16 +1038,53 @@ def test_check_grad(self): self.check_grad(['X'], 'Out') -class TestELUOpError(unittest.TestCase): +class TestELUAPI(unittest.TestCase): + # test paddle.nn.ELU, paddle.nn.functional.elu + def setUp(self): + self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32') + self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ + else paddle.CPUPlace() + + def test_static_api(self): + with paddle.static.program_guard(paddle.static.Program()): + x = paddle.data('X', [10, 12]) + out1 = F.elu(x) + m = paddle.nn.ELU() + out2 = m(x) + exe = paddle.static.Executor(self.place) + res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2]) + out_ref = elu(self.x_np, 1.0) + for r in res: + self.assertEqual(np.allclose(out_ref, r), True) + + def test_dygraph_api(self): + paddle.disable_static(self.place) + x = paddle.to_tensor(self.x_np) + out1 = F.elu(x) + m = paddle.nn.ELU() + out2 = m(x) + out_ref = elu(self.x_np, 1.0) + for r in [out1, out2]: + self.assertEqual(np.allclose(out_ref, r.numpy()), True) + + out1 = F.elu(x, 0.2) + m = paddle.nn.ELU(0.2) + out2 = m(x) + out_ref = elu(self.x_np, 0.2) + for r in [out1, out2]: + self.assertEqual(np.allclose(out_ref, r.numpy()), True) + paddle.enable_static() + def test_errors(self): - with program_guard(Program(), Program()): - # The input type of elu_op must be Variable. - x1 = fluid.create_lod_tensor( - np.array([[-1]]), [[1]], fluid.CPUPlace()) - self.assertRaises(TypeError, fluid.layers.elu, x1) - # The input dtype of elu_op must be float16 float32 or float64. - x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32") - self.assertRaises(TypeError, fluid.layers.elu, x2) + with paddle.static.program_guard(paddle.static.Program()): + # The input type must be Variable. + self.assertRaises(TypeError, F.elu, 1) + # The input dtype must be float16, float32, float64. + x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32') + self.assertRaises(TypeError, F.elu, x_int32) + # support the input dtype is float16 + x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16') + F.elu(x_fp16) class TestReciprocal(TestActivation): @@ -1422,73 +1583,5 @@ def test_check_grad(self): create_test_act_fp16_class(TestSwish) create_test_act_fp16_class(TestHardSwish) - -class TestNNReluAPI(unittest.TestCase): - def setUp(self): - self.init_data() - - def init_data(self): - self.x_shape = [10, 12] - self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32) - self.y = self.ref_forward(self.x) - - def ref_forward(self, x): - return np.maximum(x, 0) - - def ref_backward(self, y, dy): - y_t = y.copy() - y_t[y_t > 0] = 1 - return y_t * dy - - def check_api(self, place=fluid.CPUPlace()): - main_program = Program() - myrelu = nn.ReLU() - with fluid.program_guard(main_program): - x = fluid.data(name='x', shape=self.x_shape) - x.stop_gradient = False - y = myrelu(x) - fluid.backward.append_backward(fluid.layers.mean(y)) - exe = fluid.Executor(place) - out = exe.run(main_program, - feed={'x': self.x}, - fetch_list=[y, y.grad_name, x.grad_name]) - self.assertTrue(np.allclose(out[0], self.y)) - self.assertTrue(np.allclose(out[2], self.ref_backward(self.y, out[1]))) - - with fluid.dygraph.guard(place): - x = fluid.dygraph.to_variable(self.x) - y = myrelu(x) - self.assertTrue(np.allclose(y.numpy(), self.y)) - - def test_check_api(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for place in places: - self.check_api(place) - - -class TestNNFunctionalReluAPI(unittest.TestCase): - def setUp(self): - self.init_data() - - def init_data(self): - self.x_shape = [10, 12] - self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32) - self.y = self.ref_forward(self.x) - - def ref_forward(self, x): - return np.maximum(x, 0) - - def test_check_api(self): - main_program = Program() - with fluid.program_guard(main_program): - x = fluid.data(name='x', shape=self.x_shape) - y = F.relu(x) - exe = fluid.Executor(fluid.CPUPlace()) - out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y]) - self.assertTrue(np.allclose(out[0], self.y)) - - if __name__ == "__main__": unittest.main() diff --git a/python/paddle/nn/__init__.py b/python/paddle/nn/__init__.py index a52d45521fd1b..6249ce59e21d3 100644 --- a/python/paddle/nn/__init__.py +++ b/python/paddle/nn/__init__.py @@ -51,11 +51,14 @@ from .decode import gather_tree #DEFINE_ALIAS from .input import data #DEFINE_ALIAS # from .input import Input #DEFINE_ALIAS +from .layer.activation import ELU +from .layer.activation import GELU from .layer.activation import Hardshrink # from .layer.activation import PReLU #DEFINE_ALIAS -from .layer.activation import ReLU #DEFINE_ALIAS +from .layer.activation import ReLU from .layer.activation import LeakyReLU #DEFINE_ALIAS from .layer.activation import Sigmoid #DEFINE_ALIAS +from .layer.activation import LogSigmoid # from .layer.activation import Softmax #DEFINE_ALIAS from .layer.activation import LogSoftmax #DEFINE_ALIAS from .layer.activation import HSigmoid #DEFINE_ALIAS diff --git a/python/paddle/nn/functional/activation.py b/python/paddle/nn/functional/activation.py index 4dd770139db2a..61476a6172941 100644 --- a/python/paddle/nn/functional/activation.py +++ b/python/paddle/nn/functional/activation.py @@ -14,13 +14,10 @@ # TODO: define activation functions of neural network from ...fluid.layers import brelu #DEFINE_ALIAS -from ...fluid.layers import elu #DEFINE_ALIAS from ...fluid.layers import erf #DEFINE_ALIAS -from ...fluid.layers import gelu #DEFINE_ALIAS from ...fluid.layers import hard_sigmoid #DEFINE_ALIAS from ...fluid.layers import hard_swish #DEFINE_ALIAS from ...fluid.layers import leaky_relu #DEFINE_ALIAS -from ...fluid.layers import logsigmoid #DEFINE_ALIAS from ...fluid.layers import maxout #DEFINE_ALIAS from ...fluid.layers import relu6 #DEFINE_ALIAS from ...fluid.layers import selu #DEFINE_ALIAS @@ -69,6 +66,108 @@ import paddle +def elu(x, alpha=1.0, name=None): + """ + elu activation. + + .. math:: + + elu(x) = max(0, x) + min(0, \\alpha * (e^{x}-1)) + + Parameters: + x (Tensor): The input Tensor with data type float32, float64. + alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Returns: + A Tensor with the same data type and shape as ``x`` . + + Examples: + .. code-block:: python + + import paddle + import paddle.nn.functional as F + import numpy as np + + paddle.disable_static() + + x = paddle.to_tensor(np.array([[-1,6],[1,15.6]])) + out = F.elu(x, alpha=0.2) + # [[-0.12642411 6. ] + # [ 1. 15.6 ]] + """ + + if in_dygraph_mode(): + return core.ops.elu(x, 'alpha', alpha) + + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu') + helper = LayerHelper("elu", **locals()) + out = helper.create_variable_for_type_inference(x.dtype) + helper.append_op( + type='elu', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'alpha': alpha}) + return out + + +def gelu(x, approximate=False, name=None): + """ + gelu activation. + + if approximate is True + .. math:: + gelu(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3}))) + else + .. math:: + gelu(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}})) + + Parameters: + x (Tensor): The input Tensor with data type float32, float64. + approximate (bool, optional): Wether to enable approximation. Default is False. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Returns: + A Tensor with the same data type and shape as ``x`` . + + Examples: + .. code-block:: python + + import paddle + import paddle.nn.functional as F + import numpy as np + + paddle.disable_static() + + data = np.random.randn(2, 3).astype("float32") + x = paddle.to_tensor(data) + + out = F.gelu(x) + + data + # array([[ 0.87165993, -1.0541513 , -0.37214822], + # [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32) + out + # array([[ 0.70456535, -0.15380788, -0.13207214], + # [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32) + """ + + if in_dygraph_mode(): + return core.ops.gelu(x, 'approximate', approximate) + + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu') + helper = LayerHelper("gelu", **locals()) + out = helper.create_variable_for_type_inference(x.dtype) + helper.append_op( + type='gelu', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'approximate': approximate}) + return out + + def hardshrink(x, threshold=0.5, name=None): """ hard shrinkage activation @@ -245,11 +344,8 @@ def hsigmoid(input, return out -def relu(input, inplace=False, name=None): +def relu(x, name=None): """ - :alias_main: paddle.nn.functional.relu - :alias: paddle.nn.functional.relu,paddle.nn.functional.activation.relu - ReLU Activation. .. math: @@ -257,44 +353,74 @@ def relu(input, inplace=False, name=None): out = max(x, 0) Parameters: - input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64. - inplace (bool, optional): If inplace is True, the input and output of ``ReLU`` are the same variable. - Otherwise, the input and output of ``ReLU`` are different variables. Default: False. Note that if x is - more than one OPs' input, inplace must be False. - name (str, optional): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` . + x (Tensor): The input Tensor with data type float32, float64. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. Returns: - Output of relu operator, a Tensor with shape same as input + A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python - import paddle.fluid as fluid - import paddle.nn.functional as functional - import numpy as np + import paddle + import paddle.nn.functional as F + import numpy as np + + paddle.disable_static() - data = np.array([-2, 0, 1]).astype('float32') - with fluid.dygraph.guard(): - data = fluid.dygraph.to_variable(data) - res = functional.relu(data) # [0, 0, 1] + x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32')) + out = F.relu(x) # [0., 0., 1.] """ if in_dygraph_mode(): - if inplace: - warnings.warn( - "Inplace on ReLU is not allowed and will be discarded in dygraph mode currently." - ) - return core.ops.relu(input) - - check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], - 'relu') + return core.ops.relu(x) + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu') helper = LayerHelper('relu', **locals()) - outs = input if inplace else helper.create_variable_for_type_inference( - input.dtype) - helper.append_op(type='relu', inputs={'X': [input]}, outputs={'Out': outs}) - return outs + out = helper.create_variable_for_type_inference(x.dtype) + helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out}) + return out + + +def logsigmoid(x, name=None): + """ + logsigmoid activation. + + .. math: + + logsigmoid(x) = \log \frac{1}{1 + e^{-x}} + + Parameters: + x (Tensor): The input Tensor with data type float32, float64. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Returns: + A Tensor with the same data type and shape as ``x`` . + + Examples: + .. code-block:: python + + import paddle + import paddle.nn.functional as F + import numpy as np + + paddle.disable_static() + + x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0])) + out = F.logsigmoid(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376] + """ + + if in_dygraph_mode(): + return core.ops.logsigmoid(x) + + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], + 'logsigmoid') + helper = LayerHelper("logsigmoid", **locals()) + out = helper.create_variable_for_type_inference(x.dtype) + helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out}) + return out def softmax(x, axis=-1, name=None): diff --git a/python/paddle/nn/layer/activation.py b/python/paddle/nn/layer/activation.py index a0b24eebf5555..6b965564fc9c3 100644 --- a/python/paddle/nn/layer/activation.py +++ b/python/paddle/nn/layer/activation.py @@ -15,12 +15,15 @@ # TODO: define activation functions of neural network __all__ = [ + 'ELU', + 'GELU', 'Hardshrink', # 'PReLU', 'ReLU', 'LeakyReLU', 'Sigmoid', # 'Softmax', + 'LogSigmoid', 'LogSoftmax', 'HSigmoid' ] @@ -31,6 +34,103 @@ from .. import functional as F +class ELU(layers.Layer): + """ + ELU Activation. + + .. math:: + + ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1)) + + Parameters: + alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Shape: + - input: Tensor with any shape. + - output: Tensor with the same shape as input. + + Examples: + .. code-block:: python + + import paddle + import numpy as np + + paddle.disable_static() + + x = paddle.to_tensor(np.array([[-1,6],[1,15.6]])) + m = paddle.nn.ELU(0.2) + out = m(x) + # [[-0.12642411 6. ] + # [ 1. 15.6 ]] + """ + + def __init__(self, alpha=1.0, name=None): + super(ELU, self).__init__() + self._alpha = alpha + self._name = name + + def forward(self, x): + return F.elu(x, self._alpha, self._name) + + +class GELU(layers.Layer): + """ + GELU Activation. + + If approximate is True + + .. math:: + + GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3}))) + + else + + .. math:: + + GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}})) + + Parameters: + approximate (bool, optional): Wether to enable approximation. Default is False. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Shape: + - input: Tensor with any shape. + - output: Tensor with the same shape as input. + + Examples: + .. code-block:: python + + import paddle + import numpy as np + + paddle.disable_static() + + data = np.random.randn(2, 3).astype("float32") + x = paddle.to_tensor(data) + + m = paddle.nn.GELU() + out = m(x) + + data + # array([[ 0.87165993, -1.0541513 , -0.37214822], + # [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32) + out + # array([[ 0.70456535, -0.15380788, -0.13207214], + # [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32) + """ + + def __init__(self, approximate=False, name=None): + super(GELU, self).__init__() + self._approximate = approximate + self._name = name + + def forward(self, x): + return F.gelu(x, self._approximate, self._name) + + class Hardshrink(layers.Layer): """ Hardshrink Activation @@ -216,44 +316,39 @@ def forward(self, input, label, path_table=None, path_code=None): class ReLU(layers.Layer): """ - :alias_main: paddle.nn.ReLU - :alias: paddle.nn.ReLU,paddle.nn.layer.ReLU,paddle.nn.layer.activation.ReLU - ReLU Activation. .. math: - out = max(x, 0) + ReLU(x) = max(x, 0) Parameters: - inplace (bool, optional): If inplace is True, the input and output of - ``ReLU`` are the same variable. Otherwise, the input and output of - ``ReLU`` are different variables. Default False. Note that if x is - more than one OPs' input, inplace must be False. - - Returns: - None + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Shape: + - input: Tensor with any shape. + - output: Tensor with the same shape as input. Examples: .. code-block:: python - import paddle.fluid as fluid - import paddle.nn as nn - import numpy as np + import paddle + import numpy as np - data = np.array([-2, 0, 1]).astype('float32') - my_relu = nn.ReLU() - with fluid.dygraph.guard(): - data = fluid.dygraph.to_variable(data) - res = my_relu(data) # [0, 0, 1] + paddle.disable_static() + + x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32')) + m = paddle.nn.ReLU() + out = m(x) # [0., 0., 1.] """ - def __init__(self, inplace=False): + def __init__(self, name=None): super(ReLU, self).__init__() - self._inplace = inplace + self._name = name - def forward(self, input): - return F.relu(input, self._inplace) + def forward(self, x): + return F.relu(x, self._name) class LeakyReLU(layers.Layer): @@ -336,6 +431,44 @@ def forward(self, x): return F.sigmoid(x, self.name) +class LogSigmoid(layers.Layer): + """ + LogSigmoid Activation. + + .. math: + + LogSigmoid(x) = \log \frac{1}{1 + e^{-x}} + + Parameters: + x (Tensor): The input Tensor with data type float32, or float64. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Shape: + - input: Tensor with any shape. + - output: Tensor with the same shape as input. + + Examples: + .. code-block:: python + + import paddle + import numpy as np + + paddle.disable_static() + + x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0])) + m = paddle.nn.LogSigmoid() + out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376] + """ + + def __init__(self, name=None): + super(LogSigmoid, self).__init__() + self._name = name + + def forward(self, x): + return F.logsigmoid(x, self._name) + + class LogSoftmax(layers.Layer): """ This operator implements the log_softmax layer. The calculation process is as follows: