-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
stat.py
334 lines (281 loc) · 13.3 KB
/
stat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define statistical functions of a tensor
import numpy as np
from ..fluid.framework import Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import core, in_dygraph_mode
from ..fluid import layers
from .search import where
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
import paddle
from paddle import _C_ops
__all__ = []
def mean(x, axis=None, keepdim=False, name=None):
"""
Computes the mean of the input tensor's elements along ``axis``.
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform mean
calculations. ``axis`` should be int, list(int) or tuple(int). If
``axis`` is a list/tuple of dimension(s), mean is calculated along
all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
should be in range [-D, D), where D is the dimensions of ``x`` . If
``axis`` or element(s) of ``axis`` is less than 0, it works the
same way as :math:`axis + D` . If ``axis`` is None, mean is
calculated over all elements of ``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of average along ``axis`` of ``x``, with the same data
type as ``x``.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.]],
[[13., 14., 15., 16.],
[17., 18., 19., 20.],
[21., 22., 23., 24.]]])
out1 = paddle.mean(x)
# [12.5]
out2 = paddle.mean(x, axis=-1)
# [[ 2.5 6.5 10.5]
# [14.5 18.5 22.5]]
out3 = paddle.mean(x, axis=-1, keepdim=True)
# [[[ 2.5]
# [ 6.5]
# [10.5]]
# [[14.5]
# [18.5]
# [22.5]]]
out4 = paddle.mean(x, axis=[0, 2])
# [ 8.5 12.5 16.5]
"""
if isinstance(axis, int):
axis = [axis]
reduce_all = True if axis is None \
or len(axis)==0 \
or len(axis) == len(x.shape) else False
if axis is None or len(axis) == 0:
axis = [0]
if in_dygraph_mode():
return _C_ops.reduce_mean(x, 'dim', axis, 'keep_dim', keepdim,
'reduce_all', reduce_all)
check_variable_and_dtype(x, 'x/input', ['uint16', 'float32', 'float64'],
'mean/reduce_mean')
check_type(axis, 'axis/dim', (int, list, tuple), 'mean/reduce_mean')
if isinstance(axis, (list, tuple)):
for item in axis:
check_type(item, 'elements of axis/dim', (int), 'mean/reduce_mean')
helper = LayerHelper('mean', **locals())
attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
out = helper.create_variable_for_type_inference(x.dtype)
helper.append_op(
type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
return out
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
"""
Computes the variance of ``x`` along ``axis`` .
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
variance calculations. ``axis`` should be int, list(int) or
tuple(int). If ``axis`` is a list/tuple of dimension(s), variance
is calculated along all element(s) of ``axis`` . ``axis`` or
element(s) of ``axis`` should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less
than 0, it works the same way as :math:`axis + D` . If ``axis`` is
None, variance is calculated over all elements of ``x``. Default
is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of variance along ``axis`` of ``x``, with the same data
type as ``x``.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
out1 = paddle.var(x)
# [2.66666667]
out2 = paddle.var(x, axis=1)
# [1. 4.33333333]
"""
if not in_dygraph_mode():
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')
u = mean(x, axis, True, name)
out = paddle.sum((x - u)**2, axis, keepdim=keepdim, name=name)
n = paddle.cast(paddle.numel(x), x.dtype) \
/ paddle.cast(paddle.numel(out), x.dtype)
if unbiased:
one_const = paddle.ones([1], x.dtype)
n = where(n > one_const, n - 1., one_const)
out /= n
return out
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
"""
Computes the standard-deviation of ``x`` along ``axis`` .
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
standard-deviation calculations. ``axis`` should be int, list(int)
or tuple(int). If ``axis`` is a list/tuple of dimension(s),
standard-deviation is calculated along all element(s) of ``axis`` .
``axis`` or element(s) of ``axis`` should be in range [-D, D),
where D is the dimensions of ``x`` . If ``axis`` or element(s) of
``axis`` is less than 0, it works the same way as :math:`axis + D` .
If ``axis`` is None, standard-deviation is calculated over all
elements of ``x``. Default is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the standard-deviation is calculated via the
unbiased estimator. If ``unbiased`` is True, the divisor used in
the computation is :math:`N - 1`, where :math:`N` represents the
number of elements along ``axis`` , otherwise the divisor is
:math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of standard-deviation along ``axis`` of ``x``, with the
same data type as ``x``.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
out1 = paddle.std(x)
# [1.63299316]
out2 = paddle.std(x, axis=1)
# [1. 2.081666]
"""
if not in_dygraph_mode():
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')
out = var(**locals())
return paddle.sqrt(out)
def numel(x, name=None):
"""
Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
or a scalar value in imperative mode
Args:
x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
Returns:
Tensor: The number of elements for the input Tensor.
Examples:
.. code-block:: python
import paddle
x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
numel = paddle.numel(x) # 140
"""
if in_dygraph_mode():
return _C_ops.size(x)
if not isinstance(x, Variable):
raise TypeError("x must be a Tensor in numel")
helper = LayerHelper('numel', **locals())
out = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.INT64)
helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
return out
def median(x, axis=None, keepdim=False, name=None):
"""
Compute the median along the specified axis.
Args:
x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.
Examples:
.. code-block:: python
import paddle
x = paddle.arange(12).reshape([3, 4])
# x is [[0 , 1 , 2 , 3 ],
# [4 , 5 , 6 , 7 ],
# [8 , 9 , 10, 11]]
y1 = paddle.median(x)
# y1 is [5.5]
y2 = paddle.median(x, axis=0)
# y2 is [4., 5., 6., 7.]
y3 = paddle.median(x, axis=1)
# y3 is [1.5, 5.5, 9.5]
y4 = paddle.median(x, axis=0, keepdim=True)
# y4 is [[4., 5., 6., 7.]]
"""
if not isinstance(x, Variable):
raise TypeError("In median, the input x should be a Tensor.")
is_flatten = axis is None
dims = len(x.shape)
if is_flatten:
x = paddle.flatten(x)
axis = 0
else:
if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
raise ValueError(
"In median, axis should be none or an integer in range [-rank(x), rank(x))."
)
if axis < 0:
axis += dims
sz = x.shape[axis]
kth = sz >> 1
tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
if sz & 1 == 0:
out_tensor = paddle.slice(
tensor_topk, axes=[axis], starts=[kth - 1],
ends=[kth]) + paddle.slice(
tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
else:
out_tensor = paddle.cast(
paddle.slice(
tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]),
dtype=dtype)
if not keepdim or is_flatten:
if not is_flatten:
newshape = x.shape[:axis] + x.shape[axis + 1:]
elif not keepdim:
newshape = [1]
else:
newshape = [1] * dims
else:
newshape = out_tensor.shape
out_tensor = out_tensor.reshape(newshape, name=name)
return out_tensor